Abstract

In this paper, we present lossless compression of elemental images in photon-counting integral imaging. In order to verify the performance of the compression method applied to low light level three-dimensional (3D) integral imaging, we compute the correlation coefficient and peak to mean square error (PSNR) as metrics for 3D scene reconstruction integrity. We show quantitatively via experiments that a considerable compression of the elemental images in photon-counting integral imaging may be achievable without significant loss in the performance in terms of correlation and PSNR metrics. To the best of our knowledge, this is the first report on applying lossless compression algorithms in photon-counting 3D computational integral imaging.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi, F. Okano, and J. Son, Three-Dimensional Imaging, Visualization, and Display Technologies (Springer, 2008).
  2. G. Lippmann, “La photographic intégrale,” C. R. Acad. Sci. 146, 446–451 (1908).
  3. C. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. 58, 71–76 (1968).
    [CrossRef]
  4. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
    [CrossRef]
  5. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
    [CrossRef]
  6. F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
    [CrossRef]
  7. M. Forman, N. Davies, and M. McCormick, “Continuous parallax in discrete pixelated integral three-dimensional displays,” J. Opt. Soc. Am. A 20, 411–420 (2003).
    [CrossRef]
  8. Y. Igarishi, H. Murata, and M. Ueda, “3D display system using a computer-generated integral photograph,” Jpn. J. Appl. Phys. 171683–1684 (1978).
    [CrossRef]
  9. A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
    [CrossRef]
  10. H. Arimoto and B. Javidi, “Integrate three-dimensional imaging with computed reconstruction,” Opt. Lett. 26, 157–159 (2001).
    [CrossRef]
  11. T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
    [CrossRef]
  12. O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40, 3318–3325 (2001).
    [CrossRef]
  13. B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express 16, 4426–4436 (2008).
    [CrossRef]
  14. M. Daneshpanah, B. Javidi, and E. Watson, “Three dimensional object recognition with photon counting imagery in the presence of noise,” Opt. Express 18, 26450–26460 (2010).
    [CrossRef]
  15. D. Aloni, A. Stern, and B. Javidi, “Three-dimensional photon counting integral imaging reconstruction using penalized maximum likelihood expectation maximization,” Opt. Express 19, 19681–19687 (2011).
    [CrossRef]
  16. S. Narravula, M. Hayat, and B. Javidi, “Information theoretic approach for assessing image fidelity in photon-counting arrays,” Opt. Express 18, 2449–2466 (2010).
    [CrossRef]
  17. I. Moon and B. Javidi, “Three dimensional imaging and recognition using truncated photon counting model and parametric maximum likelihood estimator,” Opt. Express 17, 15709–15715 (2009).
    [CrossRef]
  18. S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13, 9310–9331 (2005).
    [CrossRef]
  19. M. Guillaume, P. Melon, P. Réfrégier, and A. Llebaria, “Maximum-likelihood estimation of an astronomical image from a sequence at low photon levels,” J. Opt. Soc. Am. A 15, 2841–2848 (1998).
    [CrossRef]
  20. L. Duraffourg, J. Merolla, J. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540 nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
    [CrossRef]
  21. A. Dorokhov, A. Glauser, Y. Musienko, C. Regenfus, S. Reucroft, and J. Swain, “Recent progress on cooled avalanche photodiodes for single photon detection,” J. Mod. Opt. 51, 1351–1357 (2004).
  22. J. Boisvert, G. Kinsey, D. McAlister, T. Isshiki, R. Sudharsanan, and M. Krainak, “Large area AlAs/InGaAs single-photon-counting avalanche photodiodes,” Proc. SPIE, 5412, 126–136 (2004).
    [CrossRef]
  23. M. Albota, R. Heinrichs, D. Kocher, D. Fouche, B. Player, M. O’Brien, B. Aull, J. Zayhowski, J. Mooney, B. Willard, and R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002).
    [CrossRef]
  24. P. Hiskett, G. Buller, A. Loudon, J. Smith, I. Gontijo, A. Walker, P. Townsend, and M. Robertson, “Performance and design of InGaAs/InP photodiodes for single-photon counting at 1.55 um,” Appl. Opt. 39, 6818–6829 (2000).
    [CrossRef]
  25. P. Yuan, J. Boisvert, R. Sudharsanan, T. Isshiki, P. McDonald, M. Salisbury, M. Liu, and J. Campbell, “High-efficiency 1.55 um Geiger-mode single-photon counting avalanche photodiodes operating near 0 °C,” Proc. SPIE 6900, 69001B1 (2008).
  26. F. Sadjadi, Selected Papers on Automatic Target Recognition (SPIE, 1999).
  27. F. Dubois, “Automatic spatial frequency selection algorithm for pattern recognition by correlation,”Appl. Opt. 32, 4365–4371 (1993).
    [CrossRef]
  28. A. Nevel and A. Mahalanobis, “Comparative study of maximum average correlation height filter variants using ladar imagery,” Opt. Eng. 42, 541–550 (2003).
    [CrossRef]
  29. E. Watson and G. Morris, “Imaging thermal objects with photon-counting detectors,” Appl. Opt. 31, 4751–4757 (1992).
    [CrossRef]
  30. M. Guillaume, T. Amouroux, P. Réfrégier, B. Milliard, and A. Llebaria, “Optimal correlation at low photon levels: study for astronomical images,” Opt. Lett. 22, 322–324 (1997).
    [CrossRef]
  31. J. W. Goodman, Statistical Optics (Wiley, 1985).
  32. H. Gilbert, Data Compression: Techniques and Applications, Hardware and Software Considerations, 2nd ed. (Wiley, 1987).
  33. K. Sayood, Introduction to Data Compression, 2nd ed. (Morgan Kaufmann, 2000).

2011 (1)

2010 (2)

2009 (2)

I. Moon and B. Javidi, “Three dimensional imaging and recognition using truncated photon counting model and parametric maximum likelihood estimator,” Opt. Express 17, 15709–15715 (2009).
[CrossRef]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

2008 (2)

P. Yuan, J. Boisvert, R. Sudharsanan, T. Isshiki, P. McDonald, M. Salisbury, M. Liu, and J. Campbell, “High-efficiency 1.55 um Geiger-mode single-photon counting avalanche photodiodes operating near 0 °C,” Proc. SPIE 6900, 69001B1 (2008).

B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express 16, 4426–4436 (2008).
[CrossRef]

2006 (2)

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[CrossRef]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

2005 (1)

2004 (2)

A. Dorokhov, A. Glauser, Y. Musienko, C. Regenfus, S. Reucroft, and J. Swain, “Recent progress on cooled avalanche photodiodes for single photon detection,” J. Mod. Opt. 51, 1351–1357 (2004).

J. Boisvert, G. Kinsey, D. McAlister, T. Isshiki, R. Sudharsanan, and M. Krainak, “Large area AlAs/InGaAs single-photon-counting avalanche photodiodes,” Proc. SPIE, 5412, 126–136 (2004).
[CrossRef]

2003 (2)

A. Nevel and A. Mahalanobis, “Comparative study of maximum average correlation height filter variants using ladar imagery,” Opt. Eng. 42, 541–550 (2003).
[CrossRef]

M. Forman, N. Davies, and M. McCormick, “Continuous parallax in discrete pixelated integral three-dimensional displays,” J. Opt. Soc. Am. A 20, 411–420 (2003).
[CrossRef]

2002 (1)

2001 (3)

2000 (1)

1998 (2)

1997 (1)

1993 (1)

1992 (1)

1980 (1)

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
[CrossRef]

1978 (1)

Y. Igarishi, H. Murata, and M. Ueda, “3D display system using a computer-generated integral photograph,” Jpn. J. Appl. Phys. 171683–1684 (1978).
[CrossRef]

1968 (1)

1908 (1)

G. Lippmann, “La photographic intégrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Albota, M.

Aloni, D.

Amouroux, T.

Arai, J.

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[CrossRef]

Arimoto, H.

Aull, B.

Boisvert, J.

P. Yuan, J. Boisvert, R. Sudharsanan, T. Isshiki, P. McDonald, M. Salisbury, M. Liu, and J. Campbell, “High-efficiency 1.55 um Geiger-mode single-photon counting avalanche photodiodes operating near 0 °C,” Proc. SPIE 6900, 69001B1 (2008).

J. Boisvert, G. Kinsey, D. McAlister, T. Isshiki, R. Sudharsanan, and M. Krainak, “Large area AlAs/InGaAs single-photon-counting avalanche photodiodes,” Proc. SPIE, 5412, 126–136 (2004).
[CrossRef]

Buller, G.

Burckhardt, C.

Butterlin, N.

L. Duraffourg, J. Merolla, J. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540 nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

Campbell, J.

P. Yuan, J. Boisvert, R. Sudharsanan, T. Isshiki, P. McDonald, M. Salisbury, M. Liu, and J. Campbell, “High-efficiency 1.55 um Geiger-mode single-photon counting avalanche photodiodes operating near 0 °C,” Proc. SPIE 6900, 69001B1 (2008).

Carlson, R.

Daneshpanah, M.

Davies, N.

Dorokhov, A.

A. Dorokhov, A. Glauser, Y. Musienko, C. Regenfus, S. Reucroft, and J. Swain, “Recent progress on cooled avalanche photodiodes for single photon detection,” J. Mod. Opt. 51, 1351–1357 (2004).

Dubois, F.

Duraffourg, L.

L. Duraffourg, J. Merolla, J. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540 nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

Forman, M.

Fouche, D.

Gilbert, H.

H. Gilbert, Data Compression: Techniques and Applications, Hardware and Software Considerations, 2nd ed. (Wiley, 1987).

Glauser, A.

A. Dorokhov, A. Glauser, Y. Musienko, C. Regenfus, S. Reucroft, and J. Swain, “Recent progress on cooled avalanche photodiodes for single photon detection,” J. Mod. Opt. 51, 1351–1357 (2004).

Goedgebuer, J.

L. Duraffourg, J. Merolla, J. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540 nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

Gontijo, I.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 1985).

Guillaume, M.

Hayat, M.

Heinrichs, R.

Hiskett, P.

Hoshino, H.

Igarishi, Y.

Y. Igarishi, H. Murata, and M. Ueda, “3D display system using a computer-generated integral photograph,” Jpn. J. Appl. Phys. 171683–1684 (1978).
[CrossRef]

Isono, H.

Isshiki, T.

P. Yuan, J. Boisvert, R. Sudharsanan, T. Isshiki, P. McDonald, M. Salisbury, M. Liu, and J. Campbell, “High-efficiency 1.55 um Geiger-mode single-photon counting avalanche photodiodes operating near 0 °C,” Proc. SPIE 6900, 69001B1 (2008).

J. Boisvert, G. Kinsey, D. McAlister, T. Isshiki, R. Sudharsanan, and M. Krainak, “Large area AlAs/InGaAs single-photon-counting avalanche photodiodes,” Proc. SPIE, 5412, 126–136 (2004).
[CrossRef]

Javidi, B.

D. Aloni, A. Stern, and B. Javidi, “Three-dimensional photon counting integral imaging reconstruction using penalized maximum likelihood expectation maximization,” Opt. Express 19, 19681–19687 (2011).
[CrossRef]

S. Narravula, M. Hayat, and B. Javidi, “Information theoretic approach for assessing image fidelity in photon-counting arrays,” Opt. Express 18, 2449–2466 (2010).
[CrossRef]

M. Daneshpanah, B. Javidi, and E. Watson, “Three dimensional object recognition with photon counting imagery in the presence of noise,” Opt. Express 18, 26450–26460 (2010).
[CrossRef]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

I. Moon and B. Javidi, “Three dimensional imaging and recognition using truncated photon counting model and parametric maximum likelihood estimator,” Opt. Express 17, 15709–15715 (2009).
[CrossRef]

B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional visualization by photon counting computational integral imaging,” Opt. Express 16, 4426–4436 (2008).
[CrossRef]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

S. Yeom, B. Javidi, and E. Watson, “Photon counting passive 3D image sensing for automatic target recognition,” Opt. Express 13, 9310–9331 (2005).
[CrossRef]

O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-dimensional object recognition with multiple perspectives imaging,” Appl. Opt. 40, 3318–3325 (2001).
[CrossRef]

H. Arimoto and B. Javidi, “Integrate three-dimensional imaging with computed reconstruction,” Opt. Lett. 26, 157–159 (2001).
[CrossRef]

B. Javidi, F. Okano, and J. Son, Three-Dimensional Imaging, Visualization, and Display Technologies (Springer, 2008).

Kinsey, G.

J. Boisvert, G. Kinsey, D. McAlister, T. Isshiki, R. Sudharsanan, and M. Krainak, “Large area AlAs/InGaAs single-photon-counting avalanche photodiodes,” Proc. SPIE, 5412, 126–136 (2004).
[CrossRef]

Kocher, D.

Krainak, M.

J. Boisvert, G. Kinsey, D. McAlister, T. Isshiki, R. Sudharsanan, and M. Krainak, “Large area AlAs/InGaAs single-photon-counting avalanche photodiodes,” Proc. SPIE, 5412, 126–136 (2004).
[CrossRef]

Lippmann, G.

G. Lippmann, “La photographic intégrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Liu, M.

P. Yuan, J. Boisvert, R. Sudharsanan, T. Isshiki, P. McDonald, M. Salisbury, M. Liu, and J. Campbell, “High-efficiency 1.55 um Geiger-mode single-photon counting avalanche photodiodes operating near 0 °C,” Proc. SPIE 6900, 69001B1 (2008).

Llebaria, A.

Loudon, A.

Mahalanobis, A.

A. Nevel and A. Mahalanobis, “Comparative study of maximum average correlation height filter variants using ladar imagery,” Opt. Eng. 42, 541–550 (2003).
[CrossRef]

Martinez-Corral, M.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

Martinez-Cuenca, R.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

Matoba, O.

McAlister, D.

J. Boisvert, G. Kinsey, D. McAlister, T. Isshiki, R. Sudharsanan, and M. Krainak, “Large area AlAs/InGaAs single-photon-counting avalanche photodiodes,” Proc. SPIE, 5412, 126–136 (2004).
[CrossRef]

McCormick, M.

McDonald, P.

P. Yuan, J. Boisvert, R. Sudharsanan, T. Isshiki, P. McDonald, M. Salisbury, M. Liu, and J. Campbell, “High-efficiency 1.55 um Geiger-mode single-photon counting avalanche photodiodes operating near 0 °C,” Proc. SPIE 6900, 69001B1 (2008).

Melon, P.

Merolla, J.

L. Duraffourg, J. Merolla, J. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540 nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

Milliard, B.

Mitani, K.

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[CrossRef]

Moon, I.

Mooney, J.

Morris, G.

Murata, H.

Y. Igarishi, H. Murata, and M. Ueda, “3D display system using a computer-generated integral photograph,” Jpn. J. Appl. Phys. 171683–1684 (1978).
[CrossRef]

Musienko, Y.

A. Dorokhov, A. Glauser, Y. Musienko, C. Regenfus, S. Reucroft, and J. Swain, “Recent progress on cooled avalanche photodiodes for single photon detection,” J. Mod. Opt. 51, 1351–1357 (2004).

Narravula, S.

Nevel, A.

A. Nevel and A. Mahalanobis, “Comparative study of maximum average correlation height filter variants using ladar imagery,” Opt. Eng. 42, 541–550 (2003).
[CrossRef]

O’Brien, M.

Okano, F.

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[CrossRef]

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
[CrossRef]

B. Javidi, F. Okano, and J. Son, Three-Dimensional Imaging, Visualization, and Display Technologies (Springer, 2008).

Okoshi, T.

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
[CrossRef]

Okui, M.

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[CrossRef]

Player, B.

Réfrégier, P.

Regenfus, C.

A. Dorokhov, A. Glauser, Y. Musienko, C. Regenfus, S. Reucroft, and J. Swain, “Recent progress on cooled avalanche photodiodes for single photon detection,” J. Mod. Opt. 51, 1351–1357 (2004).

Reucroft, S.

A. Dorokhov, A. Glauser, Y. Musienko, C. Regenfus, S. Reucroft, and J. Swain, “Recent progress on cooled avalanche photodiodes for single photon detection,” J. Mod. Opt. 51, 1351–1357 (2004).

Rhods, W.

L. Duraffourg, J. Merolla, J. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540 nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

Robertson, M.

Saavedra, G.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

Sadjadi, F.

F. Sadjadi, Selected Papers on Automatic Target Recognition (SPIE, 1999).

Salisbury, M.

P. Yuan, J. Boisvert, R. Sudharsanan, T. Isshiki, P. McDonald, M. Salisbury, M. Liu, and J. Campbell, “High-efficiency 1.55 um Geiger-mode single-photon counting avalanche photodiodes operating near 0 °C,” Proc. SPIE 6900, 69001B1 (2008).

Sayood, K.

K. Sayood, Introduction to Data Compression, 2nd ed. (Morgan Kaufmann, 2000).

Smith, J.

Son, J.

B. Javidi, F. Okano, and J. Son, Three-Dimensional Imaging, Visualization, and Display Technologies (Springer, 2008).

Stern, A.

D. Aloni, A. Stern, and B. Javidi, “Three-dimensional photon counting integral imaging reconstruction using penalized maximum likelihood expectation maximization,” Opt. Express 19, 19681–19687 (2011).
[CrossRef]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

Sudharsanan, R.

P. Yuan, J. Boisvert, R. Sudharsanan, T. Isshiki, P. McDonald, M. Salisbury, M. Liu, and J. Campbell, “High-efficiency 1.55 um Geiger-mode single-photon counting avalanche photodiodes operating near 0 °C,” Proc. SPIE 6900, 69001B1 (2008).

J. Boisvert, G. Kinsey, D. McAlister, T. Isshiki, R. Sudharsanan, and M. Krainak, “Large area AlAs/InGaAs single-photon-counting avalanche photodiodes,” Proc. SPIE, 5412, 126–136 (2004).
[CrossRef]

Swain, J.

A. Dorokhov, A. Glauser, Y. Musienko, C. Regenfus, S. Reucroft, and J. Swain, “Recent progress on cooled avalanche photodiodes for single photon detection,” J. Mod. Opt. 51, 1351–1357 (2004).

Tajahuerce, E.

Tavakoli, B.

Townsend, P.

Ueda, M.

Y. Igarishi, H. Murata, and M. Ueda, “3D display system using a computer-generated integral photograph,” Jpn. J. Appl. Phys. 171683–1684 (1978).
[CrossRef]

Walker, A.

Watson, E.

Willard, B.

Yeom, S.

Yuan, P.

P. Yuan, J. Boisvert, R. Sudharsanan, T. Isshiki, P. McDonald, M. Salisbury, M. Liu, and J. Campbell, “High-efficiency 1.55 um Geiger-mode single-photon counting avalanche photodiodes operating near 0 °C,” Proc. SPIE 6900, 69001B1 (2008).

Yuyama, I.

Zayhowski, J.

Appl. Opt. (5)

C. R. Acad. Sci. (1)

G. Lippmann, “La photographic intégrale,” C. R. Acad. Sci. 146, 446–451 (1908).

IEEE J. Quantum Electron. (1)

L. Duraffourg, J. Merolla, J. Goedgebuer, N. Butterlin, and W. Rhods, “Photon counting in the 1540 nm wavelength region with a Germanium avalanche photodiode,” IEEE J. Quantum Electron. 37, 75–79 (2001).
[CrossRef]

J. Mod. Opt. (1)

A. Dorokhov, A. Glauser, Y. Musienko, C. Regenfus, S. Reucroft, and J. Swain, “Recent progress on cooled avalanche photodiodes for single photon detection,” J. Mod. Opt. 51, 1351–1357 (2004).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Jpn. J. Appl. Phys. (1)

Y. Igarishi, H. Murata, and M. Ueda, “3D display system using a computer-generated integral photograph,” Jpn. J. Appl. Phys. 171683–1684 (1978).
[CrossRef]

Opt. Eng. (1)

A. Nevel and A. Mahalanobis, “Comparative study of maximum average correlation height filter variants using ladar imagery,” Opt. Eng. 42, 541–550 (2003).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Proc. IEEE (4)

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral imaging based on extremely high resolution video system,” Proc. IEEE 94, 490–501 (2006).
[CrossRef]

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
[CrossRef]

Proc. SPIE (2)

J. Boisvert, G. Kinsey, D. McAlister, T. Isshiki, R. Sudharsanan, and M. Krainak, “Large area AlAs/InGaAs single-photon-counting avalanche photodiodes,” Proc. SPIE, 5412, 126–136 (2004).
[CrossRef]

P. Yuan, J. Boisvert, R. Sudharsanan, T. Isshiki, P. McDonald, M. Salisbury, M. Liu, and J. Campbell, “High-efficiency 1.55 um Geiger-mode single-photon counting avalanche photodiodes operating near 0 °C,” Proc. SPIE 6900, 69001B1 (2008).

Other (5)

F. Sadjadi, Selected Papers on Automatic Target Recognition (SPIE, 1999).

J. W. Goodman, Statistical Optics (Wiley, 1985).

H. Gilbert, Data Compression: Techniques and Applications, Hardware and Software Considerations, 2nd ed. (Wiley, 1987).

K. Sayood, Introduction to Data Compression, 2nd ed. (Morgan Kaufmann, 2000).

B. Javidi, F. Okano, and J. Son, Three-Dimensional Imaging, Visualization, and Display Technologies (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Procedure for compressing the elemental image set in low light level 3D integral imaging.

Fig. 2.
Fig. 2.

Schematic setup for sensing a 3D object in the integral imaging system.

Fig. 3.
Fig. 3.

Schematic setup for reconstructing a 3D scene in integral imaging.

Fig. 4.
Fig. 4.

N-bit-level RC scheme for compressing the quantized elemental image set.

Fig. 5.
Fig. 5.

A toy car used in the experiments for compressing elemental images in integral imaging.

Fig. 6.
Fig. 6.

A Subset of elemental images of Car I with 8 bit gray scale. The size of each elemental image is 256(H)×128(V) pixels.

Fig. 7.
Fig. 7.

Slice images of the 3D scene for Car I reconstructed at a distance of d0=125cm. (a) Reconstructed slice image of Car I with original elemental images, (b) reconstructed slice image of Car I with the expected number of photons per elemental image N˜=50, (c) reconstructed slice image of Car I with the expected number of photons per elemental image N˜=1,000, and (d) reconstructed slice image of Car I with the expected number of photons per elemental image N˜=10,000. The total number of elemental images Ne is 81.

Fig. 8.
Fig. 8.

A subset of elemental images having an average of 50 photons per elemental image generated by a photon-counting detection model, where the maximum number of photons of pixel values in the elemental image set is 2.

Fig. 9.
Fig. 9.

Correlation coefficient values computed between the 3D reconstructed reference image S(v) (see Fig. 7(a)) and the 3D reconstructed photon-counting image Sq(v). The expected number of photons in the elemental image was varied as 1, 10, 25, 50, 100, 500, 1000, 5000, and 10,000. The total number of elemental images Ne is 81.

Fig. 10.
Fig. 10.

PSNR values computed between the 3D reconstructed reference image S(v) and the 3D reconstructed photon-counting image Sq(v), at various expected numbers of photons. The expected number of photons in the elemental image was varied as 1, 10, 25, 50, 100, 500, 1000, 5000, and 10 000. The total number of elemental images Ne was fixed at 81.

Fig. 11.
Fig. 11.

Compression rates of elemental image set (9(H)×9(V) elemental images) versus the expected number of photons for both RC and HC techniques, where we have varied the expected number of photons N˜ as 10, 25, 50, 100, 500, 1000, 5000, and 10,000.

Fig. 12.
Fig. 12.

Correlation coefficient values versus compression rates for both (a) RC and (b) HC techniques. We have applied the RC and HC algorithms to all 9(H)×9(V) quantized elemental images, where the pixel resolution of every elemental image is 256(H)×128(V). The expected number of photons in the elemental image was varied from 10 to 10 000.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S(x,y,z=d0)=S(v)=1O(x,y)i=1Nxj=1NyEij[x+fpxd0×(i1),y+fPyd0×(j1)],
Pr(Ci|λi)=[λi]cieλiCi!,
I^(xi)=E(xi)i=1NtE(xi),
Eq(x)=poissrnd[λ=I^(x)×N˜],
0range of[Eq(x)]2Nq1.
Sq(v)=MLE(λv)=argmaxλv[logk=1Neexp(λv)(λv)Ck(ν)]=1Nek=1NeCk(ν),
2Nc11<Run count2Nc1.
CR=Size of uncompressedE(x)Size of uncompressedEq(x).
corr(S(v),Sq(v))=E[(S(v)-μS(v))(Sq(v)-μSq(v))]σS(v)σSq(v).
PSNR=10·log10(Imax2MSE),
Data size reduction rate(%)=(Uncompressed data sizeCompressed data sizeUncompressed data size)×100.

Metrics