Abstract

The range of variation in environmental stimuli is much larger than the visual system can represent. It is therefore sensible for the system to adjust its responses to the momentary input statistics of the environment, such as when our pupils contract to limit the light entering the eye. Previous evidence indicates that the visual system increasingly centers responses on the mean of the visual input and scales responses to its variation during adaptation. To what degree does adaptation to a stimulus varying in luminance over time result in such adjustment of responses? The first two experiments were designed to test whether sensitivity to changes in the amplitude and the mean of a 9.6° central patch varying sinusoidally in luminance at 0.6 Hz would increase or decrease with adaptation. This was also tested for a dynamic peripheral stimulus (random patches rotating on the screen) to test to what extent the effects uncovered in the first two experiments reflect retinotopic mechanisms. Sensitivity to changes in mean and amplitude of the temporal luminance variation increased sharply the longer the adaptation to the variation, both for the large patch and the peripheral patches. Adaptation to luminance variation leads to increased sensitivity to temporal luminance variation for both central and peripheral presentation, the latter result ruling retinotopic mechanisms out as sole explanations for the adaptation effects.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription