Abstract

Employing Bessel beams in imaging takes advantage of their self-reconstructing properties to achieve small focal points while maintaining a large depth of focus. Bessel beams are efficiently generated using axicons, and their utility in scanning imaging systems, such as optical coherence tomography (OCT), has been demonstrated. As these systems are miniaturized to allow, for example, endoscopic implementations, micro-axicons are required to assure the maintenance of a large depth of focus. We demonstrate here the design, fabrication, and application of molded micro-axicons for use in silicon-based micro-optical benches. It is shown that arrangements of multiple convex and concave axicons may be implemented to optimize the depth of focus in a miniaturized OCT system, using a telescopic optical arrangement of considerably shorter optical system length than that achievable with classical micro-optics.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954).
    [CrossRef]
  2. R. Herman and T. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc.Am. A 8, 932–942 (1991).
    [CrossRef]
  3. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
    [CrossRef]
  4. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
    [CrossRef]
  5. J. A. Kim, K. I. Lee, H. R. Noh, W. Jhe, and M. Ohtsu, “Atom trap in an axicon mirror,” Opt. Lett. 22, 117–119 (1997).
    [CrossRef]
  6. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
    [CrossRef]
  7. S. Klewitz, P. Leiderer, S. Herminghaus, and S. Sogomonian, “Tunable stimulated raman scattering by pumping with Bessel beams,” Opt. Lett. 21, 248–250 (1996).
    [CrossRef]
  8. Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A: Mater. Sci. Process. 84, 423–430 (2006).
    [CrossRef]
  9. R. MacDonald, S. Boothroyd, T. Okamoto, J. Chrostowski, and B. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122, 169–177 (1996).
    [CrossRef]
  10. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31, 5326–5330 (1992).
    [CrossRef]
  11. B. P. S. Ahluwalia, W. C. Cheong, X.-C. Yuan, L.-S. Zhang, S.-H. Tao, J. Bu, and H. Wang, “Design and fabrication of a double-axicon for generation of tailorable self-imaged three-dimensional intensity voids,” Opt. Lett. 31, 987–989 (2006).
    [CrossRef]
  12. O. Brzobohatý, T. Čižmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16, 12688–12700 (2008).
    [CrossRef]
  13. I. Golub, “Fresnel axicon,” Opt. Lett. 31, 1890–1892 (2006).
    [CrossRef]
  14. P. Dufour, M. Piché, Y. D. Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45, 9246–9252 (2006).
    [CrossRef]
  15. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002).
    [CrossRef]
  16. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
    [CrossRef]
  17. K. Lee and J. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33, 1696–1698 (2008).
    [CrossRef]
  18. M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
    [CrossRef]
  19. X.-F. Lin, Q.-D. Chen, L.-G. Niu, T. Jiang, W.-Q. Wang, and H.-B. Sun, “Mask-free production of integratable monolithic micro logarithmic axicon lenses,” J. Lightwave Technol. 28, 1256–1260(2010).
    [CrossRef]
  20. S. Bargiel, K. Rabenorosoa, C. Clévy, C. Gorecki, and P. Lutz, “Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench,” J. Micromech. Microeng. 20, 045012 (2010).
    [CrossRef]
  21. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
    [CrossRef]
  22. J. Pu, H. Zhang, S. Nemoto, W. Zhang, and W. Zhang, “Annular-aperture diffractive axicons illuminated by Gaussian beams,” J. Opt. A: Pure Appl. Opt. 1, 730–734 (1999).
    [CrossRef]
  23. W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
    [CrossRef]
  24. K. Lee, C. Koehler, E. Johnson, E. Teuma, O. Ilegbusi, M. Costa, H. Xie, and J. P. Rolland, “2 mm catheter design for endoscopic optical coherence tomography,” Proc. SPIE 6342, 63420F (2006).
    [CrossRef]
  25. G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
    [CrossRef]
  26. S. Akturk, C. Arnold, B. Prade, and A. Mysyrowicz, “Generation of high quality tunable Bessel beams using a liquid-immersion axicon,” Opt. Commun. 282, 3206–3209 (2009).
    [CrossRef]
  27. B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
    [CrossRef]

2010 (3)

S. Bargiel, K. Rabenorosoa, C. Clévy, C. Gorecki, and P. Lutz, “Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench,” J. Micromech. Microeng. 20, 045012 (2010).
[CrossRef]

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[CrossRef]

X.-F. Lin, Q.-D. Chen, L.-G. Niu, T. Jiang, W.-Q. Wang, and H.-B. Sun, “Mask-free production of integratable monolithic micro logarithmic axicon lenses,” J. Lightwave Technol. 28, 1256–1260(2010).
[CrossRef]

2009 (2)

S. Akturk, C. Arnold, B. Prade, and A. Mysyrowicz, “Generation of high quality tunable Bessel beams using a liquid-immersion axicon,” Opt. Commun. 282, 3206–3209 (2009).
[CrossRef]

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[CrossRef]

2008 (3)

2006 (6)

2005 (2)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[CrossRef]

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

2002 (2)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef]

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243–245 (2002).
[CrossRef]

2001 (1)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

2000 (1)

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[CrossRef]

1999 (1)

J. Pu, H. Zhang, S. Nemoto, W. Zhang, and W. Zhang, “Annular-aperture diffractive axicons illuminated by Gaussian beams,” J. Opt. A: Pure Appl. Opt. 1, 730–734 (1999).
[CrossRef]

1997 (1)

1996 (2)

S. Klewitz, P. Leiderer, S. Herminghaus, and S. Sogomonian, “Tunable stimulated raman scattering by pumping with Bessel beams,” Opt. Lett. 21, 248–250 (1996).
[CrossRef]

R. MacDonald, S. Boothroyd, T. Okamoto, J. Chrostowski, and B. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122, 169–177 (1996).
[CrossRef]

1992 (1)

1991 (1)

R. Herman and T. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc.Am. A 8, 932–942 (1991).
[CrossRef]

1954 (1)

Ahluwalia, B. P. S.

B. P. S. Ahluwalia, W. C. Cheong, X.-C. Yuan, L.-S. Zhang, S.-H. Tao, J. Bu, and H. Wang, “Design and fabrication of a double-axicon for generation of tailorable self-imaged three-dimensional intensity voids,” Opt. Lett. 31, 987–989 (2006).
[CrossRef]

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Akturk, S.

S. Akturk, C. Arnold, B. Prade, and A. Mysyrowicz, “Generation of high quality tunable Bessel beams using a liquid-immersion axicon,” Opt. Commun. 282, 3206–3209 (2009).
[CrossRef]

Al-Akwaa, N.

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[CrossRef]

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[CrossRef]

Arnold, C.

S. Akturk, C. Arnold, B. Prade, and A. Mysyrowicz, “Generation of high quality tunable Bessel beams using a liquid-immersion axicon,” Opt. Commun. 282, 3206–3209 (2009).
[CrossRef]

Bachmann, A. H.

Bará, S.

Bargiel, S.

S. Bargiel, K. Rabenorosoa, C. Clévy, C. Gorecki, and P. Lutz, “Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench,” J. Micromech. Microeng. 20, 045012 (2010).
[CrossRef]

Boothroyd, S.

R. MacDonald, S. Boothroyd, T. Okamoto, J. Chrostowski, and B. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122, 169–177 (1996).
[CrossRef]

Brzobohatý, O.

Bu, J.

Chebbi, B.

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[CrossRef]

Chen, Q.-D.

Chen, Z.

Cheong, W. C.

B. P. S. Ahluwalia, W. C. Cheong, X.-C. Yuan, L.-S. Zhang, S.-H. Tao, J. Bu, and H. Wang, “Design and fabrication of a double-axicon for generation of tailorable self-imaged three-dimensional intensity voids,” Opt. Lett. 31, 987–989 (2006).
[CrossRef]

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Chiu, D. T.

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Chrostowski, J.

R. MacDonald, S. Boothroyd, T. Okamoto, J. Chrostowski, and B. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122, 169–177 (1996).
[CrossRef]

Cižmár, T.

Clévy, C.

S. Bargiel, K. Rabenorosoa, C. Clévy, C. Gorecki, and P. Lutz, “Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench,” J. Micromech. Microeng. 20, 045012 (2010).
[CrossRef]

Costa, M.

K. Lee, C. Koehler, E. Johnson, E. Teuma, O. Ilegbusi, M. Costa, H. Xie, and J. P. Rolland, “2 mm catheter design for endoscopic optical coherence tomography,” Proc. SPIE 6342, 63420F (2006).
[CrossRef]

Dholakia, K.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[CrossRef]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[CrossRef]

Ding, Z.

Dufour, P.

Friedrich, M.

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[CrossRef]

Garces-Chavez, V.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

Golub, I.

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[CrossRef]

I. Golub, “Fresnel axicon,” Opt. Lett. 31, 1890–1892 (2006).
[CrossRef]

Gorecki, C.

S. Bargiel, K. Rabenorosoa, C. Clévy, C. Gorecki, and P. Lutz, “Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench,” J. Micromech. Microeng. 20, 045012 (2010).
[CrossRef]

Goulley, J.

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[CrossRef]

Grapin-Botton, A.

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[CrossRef]

Herman, R.

R. Herman and T. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc.Am. A 8, 932–942 (1991).
[CrossRef]

Herminghaus, S.

Ilegbusi, O.

K. Lee, C. Koehler, E. Johnson, E. Teuma, O. Ilegbusi, M. Costa, H. Xie, and J. P. Rolland, “2 mm catheter design for endoscopic optical coherence tomography,” Proc. SPIE 6342, 63420F (2006).
[CrossRef]

Inoue, T.

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A: Mater. Sci. Process. 84, 423–430 (2006).
[CrossRef]

Jaroszewicz, Z.

Jeffries, G. D. M.

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Jhe, W.

Jiang, T.

Johnson, E.

K. Lee, C. Koehler, E. Johnson, E. Teuma, O. Ilegbusi, M. Costa, H. Xie, and J. P. Rolland, “2 mm catheter design for endoscopic optical coherence tomography,” Proc. SPIE 6342, 63420F (2006).
[CrossRef]

Kim, J. A.

Kizuka, Y.

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A: Mater. Sci. Process. 84, 423–430 (2006).
[CrossRef]

Klewitz, S.

Koehler, C.

K. Lee, C. Koehler, E. Johnson, E. Teuma, O. Ilegbusi, M. Costa, H. Xie, and J. P. Rolland, “2 mm catheter design for endoscopic optical coherence tomography,” Proc. SPIE 6342, 63420F (2006).
[CrossRef]

Kolodziejczyk, A.

Koninck, Y. D.

Lasser, T.

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[CrossRef]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
[CrossRef]

Lee, K.

K. Lee and J. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33, 1696–1698 (2008).
[CrossRef]

K. Lee, C. Koehler, E. Johnson, E. Teuma, O. Ilegbusi, M. Costa, H. Xie, and J. P. Rolland, “2 mm catheter design for endoscopic optical coherence tomography,” Proc. SPIE 6342, 63420F (2006).
[CrossRef]

Lee, K. I.

Leiderer, P.

Leitgeb, R. A.

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[CrossRef]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
[CrossRef]

Lin, X.-F.

Lutz, P.

S. Bargiel, K. Rabenorosoa, C. Clévy, C. Gorecki, and P. Lutz, “Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench,” J. Micromech. Microeng. 20, 045012 (2010).
[CrossRef]

MacDonald, R.

R. MacDonald, S. Boothroyd, T. Okamoto, J. Chrostowski, and B. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122, 169–177 (1996).
[CrossRef]

Matsuoka, Y.

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A: Mater. Sci. Process. 84, 423–430 (2006).
[CrossRef]

McCarthy, N.

McGloin, D.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[CrossRef]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef]

McLeod, J.

Meda, P.

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[CrossRef]

Melville, H.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef]

Milne, G.

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Minko, S.

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[CrossRef]

Mysyrowicz, A.

S. Akturk, C. Arnold, B. Prade, and A. Mysyrowicz, “Generation of high quality tunable Bessel beams using a liquid-immersion axicon,” Opt. Commun. 282, 3206–3209 (2009).
[CrossRef]

Nelson, J. S.

Nemoto, S.

J. Pu, H. Zhang, S. Nemoto, W. Zhang, and W. Zhang, “Annular-aperture diffractive axicons illuminated by Gaussian beams,” J. Opt. A: Pure Appl. Opt. 1, 730–734 (1999).
[CrossRef]

Niu, H. B.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Niu, L.-G.

Noh, H. R.

Ohtsu, M.

Okamoto, T.

R. MacDonald, S. Boothroyd, T. Okamoto, J. Chrostowski, and B. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122, 169–177 (1996).
[CrossRef]

Peng, X.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Piché, M.

Prade, B.

S. Akturk, C. Arnold, B. Prade, and A. Mysyrowicz, “Generation of high quality tunable Bessel beams using a liquid-immersion axicon,” Opt. Commun. 282, 3206–3209 (2009).
[CrossRef]

Pu, J.

J. Pu, H. Zhang, S. Nemoto, W. Zhang, and W. Zhang, “Annular-aperture diffractive axicons illuminated by Gaussian beams,” J. Opt. A: Pure Appl. Opt. 1, 730–734 (1999).
[CrossRef]

Rabenorosoa, K.

S. Bargiel, K. Rabenorosoa, C. Clévy, C. Gorecki, and P. Lutz, “Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench,” J. Micromech. Microeng. 20, 045012 (2010).
[CrossRef]

Ren, H.

Rolland, J.

Rolland, J. P.

K. Lee, C. Koehler, E. Johnson, E. Teuma, O. Ilegbusi, M. Costa, H. Xie, and J. P. Rolland, “2 mm catheter design for endoscopic optical coherence tomography,” Proc. SPIE 6342, 63420F (2006).
[CrossRef]

Sibbett, W.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

Sochacki, J.

Sogomonian, S.

Steinmann, L.

Sun, H.-B.

Syrett, B.

R. MacDonald, S. Boothroyd, T. Okamoto, J. Chrostowski, and B. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122, 169–177 (1996).
[CrossRef]

Tao, S.-H.

Teuma, E.

K. Lee, C. Koehler, E. Johnson, E. Teuma, O. Ilegbusi, M. Costa, H. Xie, and J. P. Rolland, “2 mm catheter design for endoscopic optical coherence tomography,” Proc. SPIE 6342, 63420F (2006).
[CrossRef]

Villiger, M.

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[CrossRef]

R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
[CrossRef]

Wang, H.

B. P. S. Ahluwalia, W. C. Cheong, X.-C. Yuan, L.-S. Zhang, S.-H. Tao, J. Bu, and H. Wang, “Design and fabrication of a double-axicon for generation of tailorable self-imaged three-dimensional intensity voids,” Opt. Lett. 31, 987–989 (2006).
[CrossRef]

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Wang, W.-Q.

Wiggins, T.

R. Herman and T. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc.Am. A 8, 932–942 (1991).
[CrossRef]

Xie, H.

K. Lee, C. Koehler, E. Johnson, E. Teuma, O. Ilegbusi, M. Costa, H. Xie, and J. P. Rolland, “2 mm catheter design for endoscopic optical coherence tomography,” Proc. SPIE 6342, 63420F (2006).
[CrossRef]

Yuan, X.-C.

B. P. S. Ahluwalia, W. C. Cheong, X.-C. Yuan, L.-S. Zhang, S.-H. Tao, J. Bu, and H. Wang, “Design and fabrication of a double-axicon for generation of tailorable self-imaged three-dimensional intensity voids,” Opt. Lett. 31, 987–989 (2006).
[CrossRef]

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Zemánek, P.

Zhang, H.

J. Pu, H. Zhang, S. Nemoto, W. Zhang, and W. Zhang, “Annular-aperture diffractive axicons illuminated by Gaussian beams,” J. Opt. A: Pure Appl. Opt. 1, 730–734 (1999).
[CrossRef]

Zhang, L.-S.

B. P. S. Ahluwalia, W. C. Cheong, X.-C. Yuan, L.-S. Zhang, S.-H. Tao, J. Bu, and H. Wang, “Design and fabrication of a double-axicon for generation of tailorable self-imaged three-dimensional intensity voids,” Opt. Lett. 31, 987–989 (2006).
[CrossRef]

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

Zhang, W.

J. Pu, H. Zhang, S. Nemoto, W. Zhang, and W. Zhang, “Annular-aperture diffractive axicons illuminated by Gaussian beams,” J. Opt. A: Pure Appl. Opt. 1, 730–734 (1999).
[CrossRef]

J. Pu, H. Zhang, S. Nemoto, W. Zhang, and W. Zhang, “Annular-aperture diffractive axicons illuminated by Gaussian beams,” J. Opt. A: Pure Appl. Opt. 1, 730–734 (1999).
[CrossRef]

Zhao, Y.

Appl. Opt. (2)

Appl. Phys. A: Mater. Sci. Process. (1)

Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A: Mater. Sci. Process. 84, 423–430 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[CrossRef]

G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008).
[CrossRef]

Contemp. Phys. (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[CrossRef]

Diabetologia (1)

M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

S. Bargiel, K. Rabenorosoa, C. Clévy, C. Gorecki, and P. Lutz, “Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench,” J. Micromech. Microeng. 20, 045012 (2010).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

J. Pu, H. Zhang, S. Nemoto, W. Zhang, and W. Zhang, “Annular-aperture diffractive axicons illuminated by Gaussian beams,” J. Opt. A: Pure Appl. Opt. 1, 730–734 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc.Am. A (1)

R. Herman and T. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc.Am. A 8, 932–942 (1991).
[CrossRef]

Nature (1)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[CrossRef]

Opt. Commun. (5)

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[CrossRef]

R. MacDonald, S. Boothroyd, T. Okamoto, J. Chrostowski, and B. Syrett, “Interboard optical data distribution by Bessel beam shadowing,” Opt. Commun. 122, 169–177 (1996).
[CrossRef]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301 (2000).
[CrossRef]

S. Akturk, C. Arnold, B. Prade, and A. Mysyrowicz, “Generation of high quality tunable Bessel beams using a liquid-immersion axicon,” Opt. Commun. 282, 3206–3209 (2009).
[CrossRef]

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

Proc. SPIE (1)

K. Lee, C. Koehler, E. Johnson, E. Teuma, O. Ilegbusi, M. Costa, H. Xie, and J. P. Rolland, “2 mm catheter design for endoscopic optical coherence tomography,” Proc. SPIE 6342, 63420F (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic representation of an axicon illuminated by a Gaussian beam with beam waist width w0 and wavelength λ0. The axicon angle is γ and its refractive index na, leading to a refracted propagation angle β. The region in which the refracted rays overlap and interfere to generate an approximation to a Bessel beam is denoted LB, approximately equivalent to the depth of focus.

Fig. 2.
Fig. 2.

Calculated intensity distribution behind an axicon illuminated by a Gaussian beam with λ0=1310nm and a beam waist width w0=350μm. The axicon had an aperture radius of 0.5 mm, a refractive index of na=1.43, and an angle of γ=10°. The inset at the left shows the axial variation of power in the Bessel beam, normalized by the power of the Gaussian input beam; it is seen that at most about 5% of the input power is focused into the central maximum. The inset at the right shows the radial profile of the beam, in which the periodic oscillations predicted by the Bessel function intensity distribution are clearly seen.

Fig. 3.
Fig. 3.

Radial intensity distribution behind an axicon at three axial positions: 0.5, 2, and 4 mm. The axicon characteristics were the same as those in Fig. 2. The overall intensity changes with axial position, but the radius of the central maximum, RB, is invariant.

Fig. 4.
Fig. 4.

Schematic diagram of a multi-micro-axicon system implemented in an endoscope. The measurement volume of interest is typically several millimeters from the last axicon surface, due to requirements for scanning mirrors and windows in the endoscope housing. The triple-axicon system shifts the maximum of the Bessel beam in the axial direction, permitting optimization of the field distribution in the volume of interest.

Fig. 5.
Fig. 5.

Telescopic triple-axicon system for generating a lateral shift of the Bessel beam maximum beyond the apex of the last optical element. The use of one concave and two convex axicons and optimization of the axicon angles allows realization of a highly compact microsystem.

Fig. 6.
Fig. 6.

Ray-tracing simulations, calculated using Zemax, of single- and triple-axicon systems, showing that the extended depth of focus can be displaced from the last optical element using a telescopic lens arrangement. A single-axicon system top can use two standard convex lenses to displace the focal position, but at the cost of a system length exceeding 1 cm. Using one concave and two convex axicons (middle and bottom), the same optical function can be realized with an overall system length of 2 mm (middle) or, with increased axicon angles γI=γII=22°, 1.3 mm (bottom). The former case (middle) yields LB=3.67mm and a shift in the Bessel beam of ΔLB=1.59mm. The simulations were performed at λ=1310nm for epoxy axicons, with axicon angles (unless otherwise stated) of γ=10°.

Fig. 7.
Fig. 7.

(a) Schematic diagram and (b) photo of the assembled microbench using the three-axicon arrangement.

Fig. 8.
Fig. 8.

Measured axial intensity profile of a triple-axicon system, showing the depth of focus (intensity greater than 1/e2 of the maximum value) LB=3.15mm and the axial translation from the last axicon apex ΔLB=1.7mm. Note that the sketch of the axicon system on the left and the graph are not to scale.

Fig. 9.
Fig. 9.

Lateral scan across a test target with groups of 10 Cr lines on glass, with line widths ranging from 30 to 1 μm, using a triple-axicon system. The group with 10 μm lines is still resolved, indicating a system resolution of about 10 μm. The small insets zoom into the last resolvable line group of 10 μm line width.

Fig. 10.
Fig. 10.

OCT measurement of a patterned test target (14 μm Cr lines on a 500 μm thick glass plate) using a triple-axicon system at two different axial positions: (a) 1.9 and (b) 4.0 mm. Both the Cr surface features and the back side of the glass substrate are clearly seen at both positions, indicating again that the depth of focus (3.15 mm) is considerably larger than the target is deep.

Fig. 11.
Fig. 11.

OCT images of an onion skin over which an array of 100 μm diameter copper wires has been strung. (a) Image was generated using standard refractive lens optics; the shadowing of the opaque wires is clearly seen. (b) A triple-axicon imager was used; the shadowing is virtually eliminated, due to the self-reconstructing nature of the Bessel-like beams generated by the axicon.

Tables (1)

Tables Icon

Table 1. System Dimensions, Including Material, Refractive Index at 1300 nm, Axicon Angles (γI=γII and γIII), the Spacing between Axicons I and II (LIII), and the Overall Optical System Length (LS) of Triple-Axicon Systems Assembled onto the Optical Bench

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Sq(r,ϕ,z)=S0ej2kzze±j2qϕJq2(krr),
S0(r,z)=S0ej2kzzJ02(krr),
SA(r,z)=2πk0I0ρ02z2Φ(2)(ρ0,z)exp(2ρ02w02)J02(k0ρ0rz).
ρ0=z·tan[arcsin(nasinγ)γ],
LB=w0·[(tanβ)1tanγ],
β=arcsin(nasinγ)γ.
LBw0(na1)γ,
RB=2.4048k0tanβ2.4048k0β
ΔLB=Ri(1tanβIIItanγIII),
Ri=tanβI1+tanβItanγIILIII.
LIII(max)=Ri(max)1tanγIItanβItanβI,
Ri(max)=Raw0.

Metrics