Abstract

A coherent perfect absorber is essentially a specially designed Fabry–Perot interferometer, which completely extinguishes the incident coherent light. The one- and two-beam coherent perfect absorbers have been analyzed using classical electrodynamics by considering index matching in layered structures to totally suppress reflections. This approach presents a clear and physically intuitive picture for the principle of operation of a perfect absorber. The results show that the incident beam(s) must have correct phases and amplitudes, and the real and imaginary parts of the refractive indices of the media in the interferometer must satisfy a well-defined relation. Our results are in agreement with those obtained using the S-matrix analysis. However, the results were obtained solely based on the superposition of waves from multiple reflections without invoking the concept of time reversal as does the S-matrix approach. Further analysis shows that the two-beam device can be configured to function as a phase-controlled three-state switch.

© 2012 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription