Abstract

A coherent perfect absorber is essentially a specially designed Fabry–Perot interferometer, which completely extinguishes the incident coherent light. The one- and two-beam coherent perfect absorbers have been analyzed using classical electrodynamics by considering index matching in layered structures to totally suppress reflections. This approach presents a clear and physically intuitive picture for the principle of operation of a perfect absorber. The results show that the incident beam(s) must have correct phases and amplitudes, and the real and imaginary parts of the refractive indices of the media in the interferometer must satisfy a well-defined relation. Our results are in agreement with those obtained using the S-matrix analysis. However, the results were obtained solely based on the superposition of waves from multiple reflections without invoking the concept of time reversal as does the S-matrix approach. Further analysis shows that the two-beam device can be configured to function as a phase-controlled three-state switch.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Gmachl, “Laser science: suckers for light,” Nature 467, 37–39 (2010).
    [CrossRef]
  2. S. Longhi, “Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
    [CrossRef]
  3. Y. Chong, L. Ge, H. Cao, and A. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
    [CrossRef]
  4. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
    [CrossRef]
  5. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
    [CrossRef]
  6. E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
    [CrossRef]
  7. I. D. Abella, N. A. Kurnit, and S. R. Hartmann, “Photo echos,” Phys. Rev. 141, 391–406 (1966).
    [CrossRef]
  8. H. S. Tsien, Engineering Cybernetics (McGraw-Hill, 1954).
  9. M. Born and E. Wolf, Principle of Optics, 7th ed. (Cambridge University, 1999), pp. 360–362.
  10. K. Kishino, S. Unlu, J. Chyi, J. Reed, L. Arsenault, and H. Morkoc, IEEE J. Quantum Electron. 27, 2025–2034 (1991).
    [CrossRef]
  11. J. F. Heffnan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical high contrast absorptive modulation in asymmetric Fabry-Perot etalon,” Appl. Phys. Lett. 58, 2877 (1991).
    [CrossRef]

2011

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

2010

C. F. Gmachl, “Laser science: suckers for light,” Nature 467, 37–39 (2010).
[CrossRef]

S. Longhi, “Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
[CrossRef]

Y. Chong, L. Ge, H. Cao, and A. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[CrossRef]

1991

K. Kishino, S. Unlu, J. Chyi, J. Reed, L. Arsenault, and H. Morkoc, IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

J. F. Heffnan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical high contrast absorptive modulation in asymmetric Fabry-Perot etalon,” Appl. Phys. Lett. 58, 2877 (1991).
[CrossRef]

1966

I. D. Abella, N. A. Kurnit, and S. R. Hartmann, “Photo echos,” Phys. Rev. 141, 391–406 (1966).
[CrossRef]

1960

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

1950

E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
[CrossRef]

Abella, I. D.

I. D. Abella, N. A. Kurnit, and S. R. Hartmann, “Photo echos,” Phys. Rev. 141, 391–406 (1966).
[CrossRef]

Arsenault, L.

K. Kishino, S. Unlu, J. Chyi, J. Reed, L. Arsenault, and H. Morkoc, IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principle of Optics, 7th ed. (Cambridge University, 1999), pp. 360–362.

Cao, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

Y. Chong, L. Ge, H. Cao, and A. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[CrossRef]

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

Y. Chong, L. Ge, H. Cao, and A. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[CrossRef]

Chyi, J.

K. Kishino, S. Unlu, J. Chyi, J. Reed, L. Arsenault, and H. Morkoc, IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

Y. Chong, L. Ge, H. Cao, and A. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[CrossRef]

Gmachl, C. F.

C. F. Gmachl, “Laser science: suckers for light,” Nature 467, 37–39 (2010).
[CrossRef]

Hahn, E. L.

E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
[CrossRef]

Hartmann, S. R.

I. D. Abella, N. A. Kurnit, and S. R. Hartmann, “Photo echos,” Phys. Rev. 141, 391–406 (1966).
[CrossRef]

Heffnan, J. F.

J. F. Heffnan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical high contrast absorptive modulation in asymmetric Fabry-Perot etalon,” Appl. Phys. Lett. 58, 2877 (1991).
[CrossRef]

Hegarty, J.

J. F. Heffnan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical high contrast absorptive modulation in asymmetric Fabry-Perot etalon,” Appl. Phys. Lett. 58, 2877 (1991).
[CrossRef]

Kishino, K.

K. Kishino, S. Unlu, J. Chyi, J. Reed, L. Arsenault, and H. Morkoc, IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

Kurnit, N. A.

I. D. Abella, N. A. Kurnit, and S. R. Hartmann, “Photo echos,” Phys. Rev. 141, 391–406 (1966).
[CrossRef]

Longhi, S.

S. Longhi, “Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
[CrossRef]

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Moloney, M. H.

J. F. Heffnan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical high contrast absorptive modulation in asymmetric Fabry-Perot etalon,” Appl. Phys. Lett. 58, 2877 (1991).
[CrossRef]

Morkoc, H.

K. Kishino, S. Unlu, J. Chyi, J. Reed, L. Arsenault, and H. Morkoc, IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

Reed, J.

K. Kishino, S. Unlu, J. Chyi, J. Reed, L. Arsenault, and H. Morkoc, IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

Roberts, J. S.

J. F. Heffnan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical high contrast absorptive modulation in asymmetric Fabry-Perot etalon,” Appl. Phys. Lett. 58, 2877 (1991).
[CrossRef]

Stone, A.

Y. Chong, L. Ge, H. Cao, and A. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[CrossRef]

Stone, A. D.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

Tsien, H. S.

H. S. Tsien, Engineering Cybernetics (McGraw-Hill, 1954).

Unlu, S.

K. Kishino, S. Unlu, J. Chyi, J. Reed, L. Arsenault, and H. Morkoc, IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

Whitehead, M.

J. F. Heffnan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical high contrast absorptive modulation in asymmetric Fabry-Perot etalon,” Appl. Phys. Lett. 58, 2877 (1991).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principle of Optics, 7th ed. (Cambridge University, 1999), pp. 360–362.

Appl. Phys. Lett.

J. F. Heffnan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical high contrast absorptive modulation in asymmetric Fabry-Perot etalon,” Appl. Phys. Lett. 58, 2877 (1991).
[CrossRef]

IEEE J. Quantum Electron.

K. Kishino, S. Unlu, J. Chyi, J. Reed, L. Arsenault, and H. Morkoc, IEEE J. Quantum Electron. 27, 2025–2034 (1991).
[CrossRef]

Nature

C. F. Gmachl, “Laser science: suckers for light,” Nature 467, 37–39 (2010).
[CrossRef]

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Phys. Rev.

E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).
[CrossRef]

I. D. Abella, N. A. Kurnit, and S. R. Hartmann, “Photo echos,” Phys. Rev. 141, 391–406 (1966).
[CrossRef]

Phys. Rev. Lett.

Y. Chong, L. Ge, H. Cao, and A. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[CrossRef]

Physics

S. Longhi, “Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
[CrossRef]

Science

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef]

Other

H. S. Tsien, Engineering Cybernetics (McGraw-Hill, 1954).

M. Born and E. Wolf, Principle of Optics, 7th ed. (Cambridge University, 1999), pp. 360–362.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics