Abstract

In this work we use a phase-only spatial light modulator (SLM) to mimic a ring-slit aperture, containing multiple azimuthally varying phases at different radial positions. The optical Fourier transform of such an aperture is currently known and its intensity profile has been shown to rotate along its propagation axis. Here we investigate the near-field of the ring-slit aperture and show, both experimentally and theoretically, that although the near-field possesses similar attributes to its Fourier transform, its intensity profile exhibits no rotation as it propagates.

© 2012 Optical Society of America

Full Article  |  PDF Article
Related Articles
Light beams with fractional orbital angular momentum and their vortex structure

Jörg B. Götte, Kevin O’Holleran, Daryl Preece, Florian Flossmann, Sonja Franke-Arnold, Stephen M. Barnett, and Miles J. Padgett
Opt. Express 16(2) 993-1006 (2008)

Generating superpositions of higher–order Bessel beams

Ruslan Vasilyeu, Angela Dudley, Nikolai Khilo, and Andrew Forbes
Opt. Express 17(26) 23389-23395 (2009)

Fraunhofer diffraction of light with orbital angular momentum by a slit

Queila S. Ferreira, Alcenísio J. Jesus-Silva, Eduardo J. S. Fonseca, and Jandir M. Hickmann
Opt. Lett. 36(16) 3106-3108 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

» Media 1: AVI (620 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription