Abstract

The concept of three-dimensional (3D) resolvability of an integral imaging system is thoroughly investigated in this research. The general concept of 3D resolution fails to describe the 3D discrimination completely. Then the concepts of the depth-resolution plane and lateral-resolution plane are introduced to show the difference between the conventional 3D spatial resolution and the newly introduced 3D resolvability. Therefore, the different properties of these planes for differentiating lateral spatial variations and axial variations are analyzed in this paper. The theoretical statements are demonstrated experimentally.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).
  2. S. M. Faris, “Novel 3D stereoscopic imaging technology,” Proc. SPIE 2177, 180–195 (1994).
    [CrossRef]
  3. S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays 23, 191–201 (2002).
    [CrossRef]
  4. N. A. Dodgson, “Autostereo displays: 3D without glasses,” presented at EID ’97: Electronic Information Displays, Esher, Surrey, November18–201997.
  5. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
    [CrossRef]
  6. R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T.-C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” J. Opt. Eng. 49, 025801 (2010).
    [CrossRef]
  7. B. G. Blundell, A. J. Schwarz, and D. K. Horrell, “Volumetric three-dimensional display systems: their past, present and future,” Eng. Sci. Educ. J. 2, 196–200 (1993).
  8. M. G. Lippmann, “La photographie intégrale,” C.R. Acad. Sci. 146, 446–551 (1908).
  9. W. Ijsselsteijn, H. de Ridder, and J. Vliegen, “Effects of stereoscopic filming parameters and display duration on the subjective assessment of eye strain,” Proc. SPIE 3957, 12–22(2000).
    [CrossRef]
  10. M. Martinez-Corral, B. Javidi, R. Martinez-Cuenca, and G. Saavedra, “Integral imaging with improved depth of field by use of amplitude modulated microlens array,” Appl. Opt. 43, 5806–5813 (2004).
    [CrossRef]
  11. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Enhanced depth of field integral imaging with sensor resolution constraints,” Opt. Express 12, 5237–5242 (2004).
    [CrossRef]
  12. A. Castro, Y. Frauel, and B. Javidi, “Integral imaging with large depth of field using an asymmetric phase mask,” Opt. Express 15, 10266–10273 (2007).
    [CrossRef]
  13. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
    [CrossRef]
  14. A. Stern and B. Javidi, “Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging,” Appl. Opt. 42, 7036–7042 (2003).
    [CrossRef]
  15. Z. Kavehvash, Kh. Mehrany, and S. Bagheri, “Spatial frequency multiple access technique in three-dimensional integral imaging,” J. Display Technol., 8, 138–144 (2012).
    [CrossRef]
  16. Z. Kavehvash, Kh. Mehrany, and S. Bagheri, “Field of view extension using frequency division multiple access technique: numerical analysis,” Proc. SPIE 8043, 80430F(2011).
    [CrossRef]
  17. Y. Kim, J. Kim, J. M. Kang, J. H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007).
    [CrossRef]
  18. J. S. Jang, Y. S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector large-scale high-resolution three-dimensional display,” Opt. Express 12, 557–563(2004).
    [CrossRef]
  19. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004).
    [CrossRef]
  20. H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15, 4814–4822 (2007).
    [CrossRef]
  21. M. Martinez-Corral and G. Saavedra, “The resolution challenge in 3D optical microscopy,” Progress in Optics, Vol. 53, E. Wolf, ed. (Elsevier, 2009), pp. 1–67.
    [CrossRef]
  22. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
    [CrossRef]
  23. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. A 58, 71–76 (1968).
    [CrossRef]
  24. T. Okoshi, “Optimum design and depth resolution of lens-sheet and projection-type three-dimensional displays,” Appl. Opt. 10, 2284–2291 (1971).
    [CrossRef]
  25. R. Kingslake, Lenses in Photography: The Practical Guide to Optics for Photographers (Garden City, 1951).
  26. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(Cambridge University, 1997).
  27. S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004).
    [CrossRef]

2012 (1)

2011 (1)

Z. Kavehvash, Kh. Mehrany, and S. Bagheri, “Field of view extension using frequency division multiple access technique: numerical analysis,” Proc. SPIE 8043, 80430F(2011).
[CrossRef]

2010 (1)

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T.-C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” J. Opt. Eng. 49, 025801 (2010).
[CrossRef]

2007 (3)

2005 (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[CrossRef]

2004 (5)

2003 (1)

2002 (2)

J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
[CrossRef]

S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays 23, 191–201 (2002).
[CrossRef]

2000 (1)

W. Ijsselsteijn, H. de Ridder, and J. Vliegen, “Effects of stereoscopic filming parameters and display duration on the subjective assessment of eye strain,” Proc. SPIE 3957, 12–22(2000).
[CrossRef]

1998 (1)

1994 (1)

S. M. Faris, “Novel 3D stereoscopic imaging technology,” Proc. SPIE 2177, 180–195 (1994).
[CrossRef]

1993 (1)

B. G. Blundell, A. J. Schwarz, and D. K. Horrell, “Volumetric three-dimensional display systems: their past, present and future,” Eng. Sci. Educ. J. 2, 196–200 (1993).

1971 (1)

1968 (1)

C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. A 58, 71–76 (1968).
[CrossRef]

1908 (1)

M. G. Lippmann, “La photographie intégrale,” C.R. Acad. Sci. 146, 446–551 (1908).

Bagheri, S.

Z. Kavehvash, Kh. Mehrany, and S. Bagheri, “Spatial frequency multiple access technique in three-dimensional integral imaging,” J. Display Technol., 8, 138–144 (2012).
[CrossRef]

Z. Kavehvash, Kh. Mehrany, and S. Bagheri, “Field of view extension using frequency division multiple access technique: numerical analysis,” Proc. SPIE 8043, 80430F(2011).
[CrossRef]

Blundell, B. G.

B. G. Blundell, A. J. Schwarz, and D. K. Horrell, “Volumetric three-dimensional display systems: their past, present and future,” Eng. Sci. Educ. J. 2, 196–200 (1993).

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(Cambridge University, 1997).

Burckhardt, C. B.

C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. A 58, 71–76 (1968).
[CrossRef]

Cameron, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[CrossRef]

Castro, A.

Choi, H.

Chong, T.-C.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T.-C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” J. Opt. Eng. 49, 025801 (2010).
[CrossRef]

de Ridder, H.

W. Ijsselsteijn, H. de Ridder, and J. Vliegen, “Effects of stereoscopic filming parameters and display duration on the subjective assessment of eye strain,” Proc. SPIE 3957, 12–22(2000).
[CrossRef]

Dodgson, N. A.

N. A. Dodgson, “Autostereo displays: 3D without glasses,” presented at EID ’97: Electronic Information Displays, Esher, Surrey, November18–201997.

Dohi, T.

Farbiz, F.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T.-C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” J. Opt. Eng. 49, 025801 (2010).
[CrossRef]

Faris, S. M.

S. M. Faris, “Novel 3D stereoscopic imaging technology,” Proc. SPIE 2177, 180–195 (1994).
[CrossRef]

Frauel, Y.

Hata, N.

Hong, S. H.

Horrell, D. K.

B. G. Blundell, A. J. Schwarz, and D. K. Horrell, “Volumetric three-dimensional display systems: their past, present and future,” Eng. Sci. Educ. J. 2, 196–200 (1993).

Hoshino, H.

Ide, S.

S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays 23, 191–201 (2002).
[CrossRef]

Ijsselsteijn, W.

W. Ijsselsteijn, H. de Ridder, and J. Vliegen, “Effects of stereoscopic filming parameters and display duration on the subjective assessment of eye strain,” Proc. SPIE 3957, 12–22(2000).
[CrossRef]

Isono, H.

Iwahara, M.

Jang, J. S.

Jang, J.-S.

Javidi, B.

Jung, J. H.

Kang, J. M.

Kavehvash, Z.

Z. Kavehvash, Kh. Mehrany, and S. Bagheri, “Spatial frequency multiple access technique in three-dimensional integral imaging,” J. Display Technol., 8, 138–144 (2012).
[CrossRef]

Z. Kavehvash, Kh. Mehrany, and S. Bagheri, “Field of view extension using frequency division multiple access technique: numerical analysis,” Proc. SPIE 8043, 80430F(2011).
[CrossRef]

Kim, J.

Kim, Y.

Kingslake, R.

R. Kingslake, Lenses in Photography: The Practical Guide to Optics for Photographers (Garden City, 1951).

Lee, B.

Liang, X.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T.-C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” J. Opt. Eng. 49, 025801 (2010).
[CrossRef]

Liao, H.

Lippmann, M. G.

M. G. Lippmann, “La photographie intégrale,” C.R. Acad. Sci. 146, 446–551 (1908).

Martinez-Corral, M.

Martinez-Cuenca, R.

Mehrany, Kh.

Z. Kavehvash, Kh. Mehrany, and S. Bagheri, “Spatial frequency multiple access technique in three-dimensional integral imaging,” J. Display Technol., 8, 138–144 (2012).
[CrossRef]

Z. Kavehvash, Kh. Mehrany, and S. Bagheri, “Field of view extension using frequency division multiple access technique: numerical analysis,” Proc. SPIE 8043, 80430F(2011).
[CrossRef]

Mitsuhashi, T.

S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays 23, 191–201 (2002).
[CrossRef]

Oh, Y. S.

Okano, F.

Okoshi, T.

Pan, Y.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T.-C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” J. Opt. Eng. 49, 025801 (2010).
[CrossRef]

Saavedra, G.

Schwarz, A. J.

B. G. Blundell, A. J. Schwarz, and D. K. Horrell, “Volumetric three-dimensional display systems: their past, present and future,” Eng. Sci. Educ. J. 2, 196–200 (1993).

Slinger, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[CrossRef]

Solanki, S.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T.-C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” J. Opt. Eng. 49, 025801 (2010).
[CrossRef]

Stanley, M.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[CrossRef]

Stern, A.

Tanjung, R. B. A.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T.-C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” J. Opt. Eng. 49, 025801 (2010).
[CrossRef]

Thwaites, H.

S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays 23, 191–201 (2002).
[CrossRef]

Vliegen, J.

W. Ijsselsteijn, H. de Ridder, and J. Vliegen, “Effects of stereoscopic filming parameters and display duration on the subjective assessment of eye strain,” Proc. SPIE 3957, 12–22(2000).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(Cambridge University, 1997).

Xu, B.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T.-C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” J. Opt. Eng. 49, 025801 (2010).
[CrossRef]

Xu, X.

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T.-C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” J. Opt. Eng. 49, 025801 (2010).
[CrossRef]

Yano, S.

S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays 23, 191–201 (2002).
[CrossRef]

Yuyama, I.

Appl. Opt. (3)

C.R. Acad. Sci. (1)

M. G. Lippmann, “La photographie intégrale,” C.R. Acad. Sci. 146, 446–551 (1908).

Computer (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[CrossRef]

Displays (1)

S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, “A study of visual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays 23, 191–201 (2002).
[CrossRef]

Eng. Sci. Educ. J. (1)

B. G. Blundell, A. J. Schwarz, and D. K. Horrell, “Volumetric three-dimensional display systems: their past, present and future,” Eng. Sci. Educ. J. 2, 196–200 (1993).

J. Display Technol. (1)

J. Opt. Eng. (1)

R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz, B. Xu, and T.-C. Chong, “Digital holographic three-dimensional display of 50-Mpixel holograms using a two-axis scanning mirror device,” J. Opt. Eng. 49, 025801 (2010).
[CrossRef]

J. Opt. Soc. Am. A (2)

C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. A 58, 71–76 (1968).
[CrossRef]

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Proc. SPIE (3)

S. M. Faris, “Novel 3D stereoscopic imaging technology,” Proc. SPIE 2177, 180–195 (1994).
[CrossRef]

W. Ijsselsteijn, H. de Ridder, and J. Vliegen, “Effects of stereoscopic filming parameters and display duration on the subjective assessment of eye strain,” Proc. SPIE 3957, 12–22(2000).
[CrossRef]

Z. Kavehvash, Kh. Mehrany, and S. Bagheri, “Field of view extension using frequency division multiple access technique: numerical analysis,” Proc. SPIE 8043, 80430F(2011).
[CrossRef]

Other (5)

M. Martinez-Corral and G. Saavedra, “The resolution challenge in 3D optical microscopy,” Progress in Optics, Vol. 53, E. Wolf, ed. (Elsevier, 2009), pp. 1–67.
[CrossRef]

T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).

N. A. Dodgson, “Autostereo displays: 3D without glasses,” presented at EID ’97: Electronic Information Displays, Esher, Surrey, November18–201997.

R. Kingslake, Lenses in Photography: The Practical Guide to Optics for Photographers (Garden City, 1951).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(Cambridge University, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Principal ray pattern in InI together with the first-order sampling points marked by circles.

Fig. 2.
Fig. 2.

Enlarged part of ray patterns with the specified location of the depth- and lateral-resolution planes.

Fig. 3.
Fig. 3.

(a) Experimental setup used in the first experiment and (b) the resulting EI array.

Fig. 4.
Fig. 4.

Reconstructed image of the resolution charts in the (a) depth plane and (b) resolution plane.

Fig. 5.
Fig. 5.

Enlarged high-frequency parts of the reconstructed image of resolution charts in the (a) depth plane and (b) resolution plane.

Fig. 6.
Fig. 6.

(a) Setup used in the second experiment and (b) resulting EI array.

Fig. 7.
Fig. 7.

Reconstructed images of optometrist while the board is in the (a) depth plane and (b) resolution plane.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

z+gg=xxixpxi=yyjyqyj,
tan1(xpxig)αxtan1(yqyjg)αy,
(x0,y0,z0)=((zi+g)(xpxi)g+xi,(zi+g)(yqyj)g+yj,zi).
{xxixpxi=xxixpxiyyjyqyj=yyjyqyjxpxig(z+g)+xi=xpxig(z+g)+xi,

Metrics