Abstract

The mechanism and some symmetry properties of depolarization upon weak scattering of light from a class of random media were studied theoretically. Departing from the angular distribution of the degree of polarization, our derivations showed the mechanism that induces the change of polarization can be split into two parts of different nature. One is the vectorial effect that redistributes the original light components, and the other is the interaction effect of the medium that modulates the correlation properties of the incident field. We also showed that there is dependence of the angular distribution on the incident polarization state; i.e., the angular pattern and its symmetry depend on both the orientation and ellipticity of the incident polarization. Random light was analyzed in the space–frequency domain.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. F. V. James, “Change of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. A 11, 1641–1643 (1994).
    [CrossRef]
  2. M. Salem, O. Korotkova, and E. Wolf, “Can two planar sources with the same sets of Stokes parameters generate beams with different degrees of polarization?” Opt. Lett. 31, 3025–3027 (2006).
    [CrossRef]
  3. M. Salem and E. Wolf, “Coherence-induced polarization changes in light beams,” Opt. Lett. 33, 1180–1182 (2008).
    [CrossRef]
  4. Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Effect of cross-polarization of electromagnetic source on the degree of polarization of generated beam,” Opt. Commun. 281, 1954–1957 (2008).
    [CrossRef]
  5. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
    [CrossRef]
  6. M. Xu and R. R. Alfano, “Circular polarization memory of light,” Phys. Rev. E 72, 065601 (2005).
    [CrossRef]
  7. L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves, Theories and Applications, 1st ed. (Wiley Interscience, 2000).
  8. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  9. Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278, 247–252 (2007).
    [CrossRef]
  10. T. Wang and D. Zhao, “Scattering theory of stochastic electromagnetic light waves,” Opt. Lett. 35, 2412–2414 (2010).
    [CrossRef]
  11. Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A 82, 033836 (2010).
    [CrossRef]
  12. T. Wang and D. Zhao, “Polarization-induced coherence changes of an electromagnetic light wave on scattering,” Opt. Lett. 35, 3108–3110 (2010).
    [CrossRef]
  13. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  14. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
    [CrossRef]
  15. Alfredo and L., “Degree of polarization for three-dimensional fields as a distance between correlation matrices,” Opt. Commun. 253, 10–14 (2005).
    [CrossRef]
  16. J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
    [CrossRef]
  17. T. Setälä, K. Lindfors, M. Kaivola, J. Tervo, and A. T. Friberg, “Intensity fluctuations and degree of polarization in three-dimensional thermal light fields,” Opt. Lett. 29, 2587–2589 (2004).
    [CrossRef]

2010 (3)

2008 (2)

M. Salem and E. Wolf, “Coherence-induced polarization changes in light beams,” Opt. Lett. 33, 1180–1182 (2008).
[CrossRef]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Effect of cross-polarization of electromagnetic source on the degree of polarization of generated beam,” Opt. Commun. 281, 1954–1957 (2008).
[CrossRef]

2007 (1)

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278, 247–252 (2007).
[CrossRef]

2006 (1)

2005 (3)

M. Xu and R. R. Alfano, “Circular polarization memory of light,” Phys. Rev. E 72, 065601 (2005).
[CrossRef]

Alfredo and L., “Degree of polarization for three-dimensional fields as a distance between correlation matrices,” Opt. Commun. 253, 10–14 (2005).
[CrossRef]

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

2004 (1)

2002 (1)

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[CrossRef]

1994 (1)

1989 (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Alfano, R. R.

M. Xu and R. R. Alfano, “Circular polarization memory of light,” Phys. Rev. E 72, 065601 (2005).
[CrossRef]

Alfredo,

Alfredo and L., “Degree of polarization for three-dimensional fields as a distance between correlation matrices,” Opt. Commun. 253, 10–14 (2005).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Chen, Y.

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Effect of cross-polarization of electromagnetic source on the degree of polarization of generated beam,” Opt. Commun. 281, 1954–1957 (2008).
[CrossRef]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278, 247–252 (2007).
[CrossRef]

Ding, K.-H.

L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves, Theories and Applications, 1st ed. (Wiley Interscience, 2000).

Dogariu, A.

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

Ellis, J.

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

Friberg, A. T.

James, D. F. V.

Kaivola, M.

Kong, J. A.

L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves, Theories and Applications, 1st ed. (Wiley Interscience, 2000).

Korotkova, O.

Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A 82, 033836 (2010).
[CrossRef]

M. Salem, O. Korotkova, and E. Wolf, “Can two planar sources with the same sets of Stokes parameters generate beams with different degrees of polarization?” Opt. Lett. 31, 3025–3027 (2006).
[CrossRef]

L.,

Alfredo and L., “Degree of polarization for three-dimensional fields as a distance between correlation matrices,” Opt. Commun. 253, 10–14 (2005).
[CrossRef]

Lindfors, K.

MacKintosh, F. C.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Pine, D. J.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Ponomarenko, S.

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

Salem, M.

Setälä, T.

Shevchenko, A.

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Tervo, J.

Tong, Z.

Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A 82, 033836 (2010).
[CrossRef]

Tsang, L.

L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves, Theories and Applications, 1st ed. (Wiley Interscience, 2000).

Wang, T.

Weitz, D. A.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Wolf, E.

M. Salem and E. Wolf, “Coherence-induced polarization changes in light beams,” Opt. Lett. 33, 1180–1182 (2008).
[CrossRef]

M. Salem, O. Korotkova, and E. Wolf, “Can two planar sources with the same sets of Stokes parameters generate beams with different degrees of polarization?” Opt. Lett. 31, 3025–3027 (2006).
[CrossRef]

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Xin, Y.

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Effect of cross-polarization of electromagnetic source on the degree of polarization of generated beam,” Opt. Commun. 281, 1954–1957 (2008).
[CrossRef]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278, 247–252 (2007).
[CrossRef]

Xu, M.

M. Xu and R. R. Alfano, “Circular polarization memory of light,” Phys. Rev. E 72, 065601 (2005).
[CrossRef]

Zhao, D.

Zhao, Q.

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Effect of cross-polarization of electromagnetic source on the degree of polarization of generated beam,” Opt. Commun. 281, 1954–1957 (2008).
[CrossRef]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278, 247–252 (2007).
[CrossRef]

Zhou, M.

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Effect of cross-polarization of electromagnetic source on the degree of polarization of generated beam,” Opt. Commun. 281, 1954–1957 (2008).
[CrossRef]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278, 247–252 (2007).
[CrossRef]

Zhu, J. X.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (4)

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Effect of cross-polarization of electromagnetic source on the degree of polarization of generated beam,” Opt. Commun. 281, 1954–1957 (2008).
[CrossRef]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278, 247–252 (2007).
[CrossRef]

Alfredo and L., “Degree of polarization for three-dimensional fields as a distance between correlation matrices,” Opt. Commun. 253, 10–14 (2005).
[CrossRef]

J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (1)

Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A 82, 033836 (2010).
[CrossRef]

Phys. Rev. B (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40, 9342–9345 (1989).
[CrossRef]

Phys. Rev. E (2)

M. Xu and R. R. Alfano, “Circular polarization memory of light,” Phys. Rev. E 72, 065601 (2005).
[CrossRef]

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Other (3)

L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves, Theories and Applications, 1st ed. (Wiley Interscience, 2000).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Global coordinate system used in derivation.

Fig. 2.
Fig. 2.

Polar plot of the angular distribution of P(s) (θ, φ) (radius for θ and azimuthal direction for φ) for incident waves with different polarization states but all fully polarized. Superposed are contour lines with step 0.2. a, AT=[1,1], b, AT=[1,exp(iπ/6)], c, AT=[1,exp(iπ/3)], and d, AT=[1,i]. Ranges of θ and φ are (0, π/2) and (0, 2π), respectively.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E(s)(rs)=s×[s×DF(r)E(i)(r)G(rs,r)d3r].
G(rs,r)=exp(ikr)rexp(iks·r).
s=[sinθcosφ,sinθsinφ,cosθ]T.
A=[Ax,Ay,0]T.
s×(s×A)=(s·s)A(s·A)s=[(1sin2θcos2φ)Axsin2θsinφcosφAysin2θsinφcosφAx+(1sin2θsin2φ)Ay-sinθcosθcosφAxsinθcosθsinφAy].
E(s)(rs)=M(s)·DF(r)E(i)(r)G(rs,r)d3r.
M(s)=M(θ,φ)=[1sin2θcos2φsin2θsinφcosφsin2θsinφcosφ1sin2θsin2φsinθcosθcosφsinθcosθsinφ],
W(s)(rs)=W(s)(rs,rs)=E(s)*(rs)E(s)T(rs).
W(s)(rs)=M(s)·Ω(rs)·MT(s),
Ω(rs)=DF*(r)F(r)FG*(rs,r)G(rs,r)×E(i)*(r)E(i)T(r)d3rd3r.
CF(r1,r2)=F*(r1)F(r2)F=SF(r1+r22)μF(r1r2),
W(i)(r,r)=[axxμxx(rr)axyμxy(rr)ayxμyx(rr)ayyμyy(rr)].
Ω(rs)=1r2DSF(r+r2)μF(r-r)[axxμxx(rr)axyμxy(rr)ayxμyx(rr)ayyμyy(rr)]×exp[ik(s0s)·(rr)]d3rd3r.
r+r=2R+,rr=R.
Ω(rs)=s˜F(r)W(M)(s),
s˜F(r)=1r2DSF(R+)d3R+,W(M)(s)=DμF(R)[axxμxx(R)axyμxy(R)ayxμyx(R)ayyμyy(R)]exp[ik(s0s)·R]d3R.
P(s)(s)=P(s)(θ,φ)=32(Tr[W(s)2(s)]{Tr[W(s)(s)]}213),

Metrics