Abstract

We propose a design for an optical resonator suited to using large-bore active media. The resonator consists of a pair of waxicons, so we call it a “wwaxicon optical resonator.” The resonator is considered a conventional (solid) resonator surrounded by coaxial annular resonators. A numerical simulation of the resonator designed for use in a commercial CO2 laser is performed. It is found that parasitic oscillation modes can be suppressed by the use of an spatial-frequency filter. The resonator exhibits oscillation in the TEM01* transverse mode and produces twice as much output power as a sevenfold multipass stable optical resonator.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, “Unstable optical resonators for laser applications,” Proc. IEEE 53, 277–287 (1965).
    [CrossRef]
  2. Y. A. Anan’ev, N. A. Sventsitskaya, and V. E. Sherstobitov, “Properties of a laser with an unstable resonator,” Sov. Phys. JETP 28, 69–74 (1969).
    [CrossRef]
  3. M. Endo, M. Kawakami, K. Nanri, S. Takeda, and T. Fujioka, “Two-dimensional simulation of an unstable resonator with a stable core,” Appl. Opt. 38, 3298–3307 (1999).
    [CrossRef]
  4. T. Hall, F. Duschek, K. M. Grünewald, and J. Handke, “Modified negative-branch confocal unstable resonator,” Appl. Opt. 45, 8777–8780 (2006).
    [CrossRef]
  5. N. Hodgson and H. Weber, Optical Resonators (Springer, 1997), p. 546.
  6. N. Hodgson and H. Weber, Optical Resonators (Springer, 1997), p. 168.
  7. M. Endo, “Sheet metal cutting with a 2 kW radially polarized CO2 laser,” Proc. SPIE 7751, 77511B (2010).
    [CrossRef]
  8. D. Fink, “Polarization effects of axicons,” Appl. Opt. 18, 581–582 (1979).
    [CrossRef]
  9. M. Endo, “Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett. 33, 1771–1773 (2008).
    [CrossRef]
  10. M. Endo, “Numerical simulation of an optical resonator for generation of a doughnut-like laser beam,” Opt. Express 12, 1959–1965 (2004).
    [CrossRef]
  11. D. Ehrlichmann, U. Habich, and H. D. Plum, “Diffusion-cooled CO2 laser with coaxial high frequency excitation and internal axicon,” J. Phys. D 26, 183–191 (1993).
    [CrossRef]
  12. A. Bhowmik, “Closed-cavity solutions with partially coherent fields in the space-frequency domain,” Appl. Opt. 22, 3338–3346 (1983).
    [CrossRef]

2010 (1)

M. Endo, “Sheet metal cutting with a 2 kW radially polarized CO2 laser,” Proc. SPIE 7751, 77511B (2010).
[CrossRef]

2008 (1)

2006 (1)

2004 (1)

1999 (1)

1993 (1)

D. Ehrlichmann, U. Habich, and H. D. Plum, “Diffusion-cooled CO2 laser with coaxial high frequency excitation and internal axicon,” J. Phys. D 26, 183–191 (1993).
[CrossRef]

1983 (1)

1979 (1)

1969 (1)

Y. A. Anan’ev, N. A. Sventsitskaya, and V. E. Sherstobitov, “Properties of a laser with an unstable resonator,” Sov. Phys. JETP 28, 69–74 (1969).
[CrossRef]

1965 (1)

A. E. Siegman, “Unstable optical resonators for laser applications,” Proc. IEEE 53, 277–287 (1965).
[CrossRef]

Anan’ev, Y. A.

Y. A. Anan’ev, N. A. Sventsitskaya, and V. E. Sherstobitov, “Properties of a laser with an unstable resonator,” Sov. Phys. JETP 28, 69–74 (1969).
[CrossRef]

Bhowmik, A.

Duschek, F.

Ehrlichmann, D.

D. Ehrlichmann, U. Habich, and H. D. Plum, “Diffusion-cooled CO2 laser with coaxial high frequency excitation and internal axicon,” J. Phys. D 26, 183–191 (1993).
[CrossRef]

Endo, M.

Fink, D.

Fujioka, T.

Grünewald, K. M.

Habich, U.

D. Ehrlichmann, U. Habich, and H. D. Plum, “Diffusion-cooled CO2 laser with coaxial high frequency excitation and internal axicon,” J. Phys. D 26, 183–191 (1993).
[CrossRef]

Hall, T.

Handke, J.

Hodgson, N.

N. Hodgson and H. Weber, Optical Resonators (Springer, 1997), p. 168.

N. Hodgson and H. Weber, Optical Resonators (Springer, 1997), p. 546.

Kawakami, M.

Nanri, K.

Plum, H. D.

D. Ehrlichmann, U. Habich, and H. D. Plum, “Diffusion-cooled CO2 laser with coaxial high frequency excitation and internal axicon,” J. Phys. D 26, 183–191 (1993).
[CrossRef]

Sherstobitov, V. E.

Y. A. Anan’ev, N. A. Sventsitskaya, and V. E. Sherstobitov, “Properties of a laser with an unstable resonator,” Sov. Phys. JETP 28, 69–74 (1969).
[CrossRef]

Siegman, A. E.

A. E. Siegman, “Unstable optical resonators for laser applications,” Proc. IEEE 53, 277–287 (1965).
[CrossRef]

Sventsitskaya, N. A.

Y. A. Anan’ev, N. A. Sventsitskaya, and V. E. Sherstobitov, “Properties of a laser with an unstable resonator,” Sov. Phys. JETP 28, 69–74 (1969).
[CrossRef]

Takeda, S.

Weber, H.

N. Hodgson and H. Weber, Optical Resonators (Springer, 1997), p. 546.

N. Hodgson and H. Weber, Optical Resonators (Springer, 1997), p. 168.

Appl. Opt. (4)

J. Phys. D (1)

D. Ehrlichmann, U. Habich, and H. D. Plum, “Diffusion-cooled CO2 laser with coaxial high frequency excitation and internal axicon,” J. Phys. D 26, 183–191 (1993).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. IEEE (1)

A. E. Siegman, “Unstable optical resonators for laser applications,” Proc. IEEE 53, 277–287 (1965).
[CrossRef]

Proc. SPIE (1)

M. Endo, “Sheet metal cutting with a 2 kW radially polarized CO2 laser,” Proc. SPIE 7751, 77511B (2010).
[CrossRef]

Sov. Phys. JETP (1)

Y. A. Anan’ev, N. A. Sventsitskaya, and V. E. Sherstobitov, “Properties of a laser with an unstable resonator,” Sov. Phys. JETP 28, 69–74 (1969).
[CrossRef]

Other (2)

N. Hodgson and H. Weber, Optical Resonators (Springer, 1997), p. 546.

N. Hodgson and H. Weber, Optical Resonators (Springer, 1997), p. 168.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic drawing of the wwaxicon optical resonator.

Fig. 2.
Fig. 2.

Transverse mode selection mechanism at the waxicon reflector.

Fig. 3.
Fig. 3.

Geometric situation of the reflection at the waxicon reflector.

Fig. 4.
Fig. 4.

(a) SOL20V large-bore CO2 laser and (b) sevenfold stable optical resonator.

Fig. 5.
Fig. 5.

Schematic drawing of the wwaxicon resonator simulation model.

Fig. 6.
Fig. 6.

Modeled seven-pass folded resonator. Four mirrors are defined in the single calculation field.

Fig. 7.
Fig. 7.

Output power of the seven-pass stable resonator as a function of the iteration step.

Fig. 8.
Fig. 8.

Sevenfold stable resonator: (a) intensity profile at the M1 station and (b) complex Fourier transform of the electric field at the M1 station.

Fig. 9.
Fig. 9.

Wwaxicon resonator without spatial-frequency restrictor: (a) intensity profile at the M1 station and (b) complex Fourier transform of the electric field at the M1 station.

Fig. 10.
Fig. 10.

Wwaxicon resonator: ray propagation of the desired and undesired modes.

Fig. 11.
Fig. 11.

(a) Schematic drawing of the spatial-frequency restrictor (blinder). (b) Output power and beam quality as a function of restrictor length.

Fig. 12.
Fig. 12.

Wwaxicon resonator with spatial-frequency restrictor: (a) intensity profile at the M1 station (b) complex Fourier transform of the electric field at the M1 station.

Fig. 13.
Fig. 13.

Wwaxicon resonator: intensity distributions at the M1 and M2, and in the OC planes. The profiles show the intensity distribution immediately before the rays hit the mirrors.

Fig. 14.
Fig. 14.

Output power as a function of the misalignment angle: dashed lines, sevenfold resonator; solid lines, wwaxicon resonator.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E0l(r,ϕ)1rexp[(rr0)2w02]exp[±ilϕ],
Epl(r,ϕ)[2rw0]|l|Lp|l|[2r2w02]exp[r2w02]exp[ilϕ],
E2(r2,φ2)=exp(ikLcc)rφE1(r1,φ1)r1r2δ(r1+r2Lcc)δ(φ2φ1)dr1dφ1,
E0(x,y)=ψ0exp[i2π{R(x,y)1/2)}],
θ=4λM2πD,

Metrics