Abstract

We present a device that is designed with varying permittivity ε(r) such that an electromagnetic wave in the K-band of the microwave regime entering it will bend inward towards the core. The core is made of silicon composites. We follow the distribution formula of the permittivity for the device derived by Narimanov and Kildishev using the optical-mechanical analogy. The diameter of the device is 14 cm, and it is constructed out of 21 rings of two different types of etched printed circuit boards, as well as dielectric powders as adding filling materials. The experimental wave intensity profile, based on parallel plate measurements for the cases where the incident plane wave is slightly displaced to the top of the center of the device and the case of on center incidence, are presented and discussed. In spite of some mismatch of the core and metamaterial structures of the device found, approximately 80% of the wave still manages to reach the core of the device and gets trapped and absorbed. Broadband properties of the device are also investigated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009).
    [CrossRef]
  2. E. E. Narimanov and A. V. Kildishe, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
    [CrossRef]
  3. A. V. Kildishe, L. J. Prokopeva, and E. E. Narimanov, “Cylinder light concentrator and absorber: theoretical description,” Opt. Express 18, 16646–16662 (2010).
    [CrossRef]
  4. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
    [CrossRef]
  5. Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8, 639 (2009).
    [CrossRef]
  6. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
    [CrossRef]
  7. J. B. Pendry and D. Smith, “The quest for the superlens,” Sci. Am. 295, 60–67 (2006).
    [CrossRef]
  8. N. Kundtz, “Advances in complex artificial electromagnetic media,” Ph.D. thesis (Duke University, 2010).
  9. J. Zhou, X. B. Cai, Z. Chang, and G. K. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber,” J. Opt. 13, 085103 (2011).
    [CrossRef]
  10. C. Argyropoulos, E. Kallos, and Y. Hao, “FDTD analysis of the optical black hole,” J. Opt. Soc. Am. B 27, 2020 (2010).
    [CrossRef]
  11. W. L. Lu, J. F. Jin, Z. F. Lin, and H. Y. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys. 108, 064517 (2010).
    [CrossRef]
  12. L. Zhao, X. Chen, and C. K. Ong, “Visual observation and quantitative measurement of the microwave absorbing effect at X band,” Rev. Sci. Instrum. 79, 124701 (2008).
    [CrossRef]
  13. Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Evidence for subwavelength imaging with positive refraction,” New J. Phys. 13, 303016 (2011).
  14. Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Subwavelength imaging with materials of in-principle arbitrarily low index,” New J. Phys.14, 0250012012.

2011 (2)

J. Zhou, X. B. Cai, Z. Chang, and G. K. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber,” J. Opt. 13, 085103 (2011).
[CrossRef]

Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Evidence for subwavelength imaging with positive refraction,” New J. Phys. 13, 303016 (2011).

2010 (4)

C. Argyropoulos, E. Kallos, and Y. Hao, “FDTD analysis of the optical black hole,” J. Opt. Soc. Am. B 27, 2020 (2010).
[CrossRef]

W. L. Lu, J. F. Jin, Z. F. Lin, and H. Y. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys. 108, 064517 (2010).
[CrossRef]

A. V. Kildishe, L. J. Prokopeva, and E. E. Narimanov, “Cylinder light concentrator and absorber: theoretical description,” Opt. Express 18, 16646–16662 (2010).
[CrossRef]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[CrossRef]

2009 (4)

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8, 639 (2009).
[CrossRef]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009).
[CrossRef]

E. E. Narimanov and A. V. Kildishe, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

2008 (1)

L. Zhao, X. Chen, and C. K. Ong, “Visual observation and quantitative measurement of the microwave absorbing effect at X band,” Rev. Sci. Instrum. 79, 124701 (2008).
[CrossRef]

2006 (1)

J. B. Pendry and D. Smith, “The quest for the superlens,” Sci. Am. 295, 60–67 (2006).
[CrossRef]

Argyropoulos, C.

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Cai, B. G.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[CrossRef]

Cai, X. B.

J. Zhou, X. B. Cai, Z. Chang, and G. K. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber,” J. Opt. 13, 085103 (2011).
[CrossRef]

Chang, Z.

J. Zhou, X. B. Cai, Z. Chang, and G. K. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber,” J. Opt. 13, 085103 (2011).
[CrossRef]

Chen, H. Y.

W. L. Lu, J. F. Jin, Z. F. Lin, and H. Y. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys. 108, 064517 (2010).
[CrossRef]

Chen, X.

L. Zhao, X. Chen, and C. K. Ong, “Visual observation and quantitative measurement of the microwave absorbing effect at X band,” Rev. Sci. Instrum. 79, 124701 (2008).
[CrossRef]

Cheng, Q.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[CrossRef]

Cui, T. J.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[CrossRef]

Hao, Y.

Hu, G. K.

J. Zhou, X. B. Cai, Z. Chang, and G. K. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber,” J. Opt. 13, 085103 (2011).
[CrossRef]

Jiang, W. X.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[CrossRef]

Jin, J. F.

W. L. Lu, J. F. Jin, Z. F. Lin, and H. Y. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys. 108, 064517 (2010).
[CrossRef]

Kallos, E.

Kildishe, A. V.

A. V. Kildishe, L. J. Prokopeva, and E. E. Narimanov, “Cylinder light concentrator and absorber: theoretical description,” Opt. Express 18, 16646–16662 (2010).
[CrossRef]

E. E. Narimanov and A. V. Kildishe, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

Kundtz, N.

N. Kundtz, “Advances in complex artificial electromagnetic media,” Ph.D. thesis (Duke University, 2010).

Leonhardt, U.

Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Evidence for subwavelength imaging with positive refraction,” New J. Phys. 13, 303016 (2011).

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009).
[CrossRef]

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8, 639 (2009).
[CrossRef]

Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Subwavelength imaging with materials of in-principle arbitrarily low index,” New J. Phys.14, 0250012012.

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Lin, Z. F.

W. L. Lu, J. F. Jin, Z. F. Lin, and H. Y. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys. 108, 064517 (2010).
[CrossRef]

Lu, W. L.

W. L. Lu, J. F. Jin, Z. F. Lin, and H. Y. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys. 108, 064517 (2010).
[CrossRef]

Ma, Y. G.

Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Evidence for subwavelength imaging with positive refraction,” New J. Phys. 13, 303016 (2011).

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8, 639 (2009).
[CrossRef]

Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Subwavelength imaging with materials of in-principle arbitrarily low index,” New J. Phys.14, 0250012012.

Narimanov, E. E.

A. V. Kildishe, L. J. Prokopeva, and E. E. Narimanov, “Cylinder light concentrator and absorber: theoretical description,” Opt. Express 18, 16646–16662 (2010).
[CrossRef]

E. E. Narimanov and A. V. Kildishe, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

Ong, C. K.

Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Evidence for subwavelength imaging with positive refraction,” New J. Phys. 13, 303016 (2011).

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8, 639 (2009).
[CrossRef]

L. Zhao, X. Chen, and C. K. Ong, “Visual observation and quantitative measurement of the microwave absorbing effect at X band,” Rev. Sci. Instrum. 79, 124701 (2008).
[CrossRef]

Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Subwavelength imaging with materials of in-principle arbitrarily low index,” New J. Phys.14, 0250012012.

Pendry, J. B.

J. B. Pendry and D. Smith, “The quest for the superlens,” Sci. Am. 295, 60–67 (2006).
[CrossRef]

Philbin, T. G.

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009).
[CrossRef]

Prokopeva, L. J.

Sahebdivan, S.

Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Evidence for subwavelength imaging with positive refraction,” New J. Phys. 13, 303016 (2011).

Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Subwavelength imaging with materials of in-principle arbitrarily low index,” New J. Phys.14, 0250012012.

Smith, D.

J. B. Pendry and D. Smith, “The quest for the superlens,” Sci. Am. 295, 60–67 (2006).
[CrossRef]

Tyc, T.

Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Evidence for subwavelength imaging with positive refraction,” New J. Phys. 13, 303016 (2011).

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8, 639 (2009).
[CrossRef]

Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Subwavelength imaging with materials of in-principle arbitrarily low index,” New J. Phys.14, 0250012012.

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

Zhao, L.

L. Zhao, X. Chen, and C. K. Ong, “Visual observation and quantitative measurement of the microwave absorbing effect at X band,” Rev. Sci. Instrum. 79, 124701 (2008).
[CrossRef]

Zhou, J.

J. Zhou, X. B. Cai, Z. Chang, and G. K. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber,” J. Opt. 13, 085103 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

E. E. Narimanov and A. V. Kildishe, “Optical black hole: broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

J. Appl. Phys. (1)

W. L. Lu, J. F. Jin, Z. F. Lin, and H. Y. Chen, “A simple design of an artificial electromagnetic black hole,” J. Appl. Phys. 108, 064517 (2010).
[CrossRef]

J. Opt. (1)

J. Zhou, X. B. Cai, Z. Chang, and G. K. Hu, “Experimental study on a broadband omnidirectional electromagnetic absorber,” J. Opt. 13, 085103 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Mater. (2)

Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8, 639 (2009).
[CrossRef]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef]

New J. Phys. (2)

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12, 063006 (2010).
[CrossRef]

Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Evidence for subwavelength imaging with positive refraction,” New J. Phys. 13, 303016 (2011).

Opt. Express (1)

Prog. Opt. (1)

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009).
[CrossRef]

Rev. Sci. Instrum. (1)

L. Zhao, X. Chen, and C. K. Ong, “Visual observation and quantitative measurement of the microwave absorbing effect at X band,” Rev. Sci. Instrum. 79, 124701 (2008).
[CrossRef]

Sci. Am. (1)

J. B. Pendry and D. Smith, “The quest for the superlens,” Sci. Am. 295, 60–67 (2006).
[CrossRef]

Other (2)

N. Kundtz, “Advances in complex artificial electromagnetic media,” Ph.D. thesis (Duke University, 2010).

Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt, “Subwavelength imaging with materials of in-principle arbitrarily low index,” New J. Phys.14, 0250012012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Implemented device. (a) A photograph of the device. The numbers indicate the location dielectric fillers at different inner layers. (b) The dielectric profile along the radius r. The insets in (a) show the cartoon figures for the “I” and square shaped elements used in the device.

Fig. 2.
Fig. 2.

Measurement and simulation results at 20 GHz. (a) and (c) are for an off-centered wave illumination; (b) and (d) are for a centered wave illumination. The beam size is controlled at about 3 cm. (a) and (b) are measurement results; (c) and (d) are simulation results.

Fig. 3.
Fig. 3.

Measurement results. In columns (a) field intensity and (b) real part of the field at frequencies (i) 18 GHz, (ii) 20 GHz, and (iii) 22 GHz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε(r)={1,rR,(Rr)2,Rc<r<R,εcoreiεcore,rRc,
Rc=R1εcore.

Metrics