Abstract

The solution for the vector plane wave spectrum scattering from multiple cylinders by Pawliuk and Yedlin [J. Opt. Soc. A 28, 1177 (2011) [CrossRef]  ] only provided the single scattering coefficients for the TM polarization case. The TE solution is similar except for the form of the single scattering coefficients. Here we describe the single scattering coefficients for both polarizations and three types of cylinders: dielectrics, perfect electric conductors, and perfect magnetic conductors.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pawliuk and M. Yedlin, “Scattering from cylinders using the two-dimensional vector plane wave spectrum,” J. Opt. Soc. Am. A 28, 1177–1184 (2011).
    [CrossRef]
  2. G. Olaofe, “Scattering of two cylinders,” Radio Sci. 5, 1351–1360 (1970).
    [CrossRef]
  3. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  4. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  5. R. Ruppin, “Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder,” J. Electromagn. Waves Appl. 20, 1853–1860 (2006).
    [CrossRef]

2011 (1)

2006 (1)

R. Ruppin, “Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder,” J. Electromagn. Waves Appl. 20, 1853–1860 (2006).
[CrossRef]

1970 (1)

G. Olaofe, “Scattering of two cylinders,” Radio Sci. 5, 1351–1360 (1970).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Olaofe, G.

G. Olaofe, “Scattering of two cylinders,” Radio Sci. 5, 1351–1360 (1970).
[CrossRef]

Pawliuk, P.

Ruppin, R.

R. Ruppin, “Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder,” J. Electromagn. Waves Appl. 20, 1853–1860 (2006).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Yedlin, M.

J. Electromagn. Waves Appl. (1)

R. Ruppin, “Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder,” J. Electromagn. Waves Appl. 20, 1853–1860 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Radio Sci. (1)

G. Olaofe, “Scattering of two cylinders,” Radio Sci. 5, 1351–1360 (1970).
[CrossRef]

Other (2)

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

The coordinate system and cylinder properties are shown.

Tables (1)

Tables Icon

Table 1. Boundary Conditions for Dielectric, PEC, and PMC Cylinders [3,4]

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

fnv=Jn(kav)Jn(ϵrvkav)ϵrvJn(kav)Jn(ϵrvkav)ϵrvHn(2)(kav)Jn(ϵrvkav)Hn(2)(kav)Jn(ϵrvkav).
fnv=ϵrvJn(kav)Jn(ϵrvkav)Jn(kav)Jn(ϵrvkav)Hn(2)(kav)Jn(ϵrvkav)ϵrvHn(2)(kav)Jn(ϵrvkav).
fnv=Jn(kav)Hn(2)(kav),
fnv=Jn(kav)Hn(2)(kav).
fnv=Jn(kav)Hn(2)(kav),
fnv=Jn(kav)Hn(2)(kav).

Metrics