Abstract

A theoretical model for light emission from a homogeneous volume source, such as an optically active layer, within a multilayer is demonstrated. The role of an external linearly polarized optical pump is taken into account. The resulting formulas for the radiated powers are fully analytical. They are applied to investigate the effect of a plane-wave pump in a basic λ/2 cavity and to calculate the photoluminescence polar diagrams of color centers from three resonating thin-film lithium-fluoride-based microstructures.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Milonni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
    [CrossRef]
  2. F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
    [CrossRef]
  3. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
    [CrossRef]
  4. F. De Martini, F. Cairo, P. Mataloni, and F. Verzegnassi, “Thresholdless microlaser,” Phys. Rev. A 46, 4220–4233 (1992).
    [CrossRef]
  5. S. M. Dutra, Cavity Quantum Electrodynamics—The Strange Theory of Light in a Box (Wiley, 2005).
  6. P. Meystre and M. Sargent, Elements of Quantum Optics, 4th ed. (Springer-Verlag, 2007).
  7. H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 101–108 (1970).
    [CrossRef]
  8. K. H. Tews, “On the variation of luminescence lifetimes. the approximations of the approximative methods,” J. Lumin. 9, 223–239 (1974).
    [CrossRef]
  9. J. Dowling, M. Scully, and F. De Martini, “Radiation pattern of a classical dipole in a cavity,” Opt. Commun. 82, 415–419 (1991).
    [CrossRef]
  10. H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
    [CrossRef]
  11. S. Ciancaleoni, P. Mataloni, O. Jedrkiewicz, and F. De Martini, “Angular distribution of the spontaneous emission in a planar dielectric dye microcavity,” J. Opt. Soc. Am. B 14, 1556–1563 (1997).
    [CrossRef]
  12. H. Benisty, R. Stanley, and M. Mayer, “Method of source terms for dipole emission modification in modes of arbitrary planar structures,” J. Opt. Soc. Am. A 15, 1192–1201 (1998).
    [CrossRef]
  13. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction—part i: Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998).
    [CrossRef]
  14. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction—part ii: Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
    [CrossRef]
  15. N. Danz, J. Heber, and A. Brauer, “Fluorescence lifetimes of molecular dye ensembles near interfaces,” Phys. Rev. A 66, 063809 (2002).
    [CrossRef]
  16. H. Benisty, “Spontaneous emission and coupled-mode theory in multimode 1-D systems with contradirectional coupling,” IEEE J. Quantum Electron. 47, 204–212 (2011).
    [CrossRef]
  17. E. Nichelatti, “Cooperative spontaneous emission from volume sources in layered media,” Tech. Rep. RT/2009/4/FIM (ENEA, 2009).
  18. M. Marrocco and E. Nichelatti, “Coherent anti-Stokes Raman scattering microscopy within a microcavity with parallel mirrors,” J. Raman Spectrosc. 40, 732–740 (2009).
    [CrossRef]
  19. E. Nichelatti, M. Marrocco, and R. M. Montereali, “Cooperative optical effects in volumes embedded in layered media,” J. Raman Spectrosc. 41, 859–865 (2010).
    [CrossRef]
  20. E. Nichelatti, F. Bonfigli, M. A. Vincenti, and R. M. Montereali, “Optical modelling of an Alq3-based organic light-emitting diode,” J. Opt. Technol. 78, 424–429 (2011).
    [CrossRef]
  21. P. Bertrand, C. Hermann, G. Lampel, J. Peretti, and V. I. Safarov, “General analytical treatment of optics in layered structures: Application to magneto-optics,” Phys. Rev. B 64, 235421 (2001).
    [CrossRef]
  22. J. Nahum and D. A. Wiegand, “Optical properties of some F-aggregate centers in LiF,” Phys. Rev. 154, 817–830 (1967).
    [CrossRef]
  23. R. M. Montereali, “Point defects in thin insulating films of lithium fluoride for optical microsystems in ferroelectric and dielectric thin films,” vol. 3 of Handbook of Thin Film Materials, H. S. Nalwa, ed. (Academic, 2002), pp. 399–431.
  24. F. Bonfigli, M. Cathelinaud, B. Jacquier, R. M. Montereali, P. Moretti, E. Nichelatti, M. Piccinini, H. Rigneault, and F. Somma, “Design and fabrication of optical microcavities based on F2colour centres in lithium fluoride films,” Opt. Commun. 233, 389–396 (2004).
    [CrossRef]
  25. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. II. Enhanced fluorescence in optical waveguide sensors,” J. Opt. Soc. Am. B 14, 1160–1166 (1997).
    [CrossRef]
  26. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Macmillan, 1986).
  27. A. E. Siegman, Lasers (University Science, 1986).

2011 (2)

H. Benisty, “Spontaneous emission and coupled-mode theory in multimode 1-D systems with contradirectional coupling,” IEEE J. Quantum Electron. 47, 204–212 (2011).
[CrossRef]

E. Nichelatti, F. Bonfigli, M. A. Vincenti, and R. M. Montereali, “Optical modelling of an Alq3-based organic light-emitting diode,” J. Opt. Technol. 78, 424–429 (2011).
[CrossRef]

2010 (1)

E. Nichelatti, M. Marrocco, and R. M. Montereali, “Cooperative optical effects in volumes embedded in layered media,” J. Raman Spectrosc. 41, 859–865 (2010).
[CrossRef]

2009 (1)

M. Marrocco and E. Nichelatti, “Coherent anti-Stokes Raman scattering microscopy within a microcavity with parallel mirrors,” J. Raman Spectrosc. 40, 732–740 (2009).
[CrossRef]

2004 (1)

F. Bonfigli, M. Cathelinaud, B. Jacquier, R. M. Montereali, P. Moretti, E. Nichelatti, M. Piccinini, H. Rigneault, and F. Somma, “Design and fabrication of optical microcavities based on F2colour centres in lithium fluoride films,” Opt. Commun. 233, 389–396 (2004).
[CrossRef]

2002 (1)

N. Danz, J. Heber, and A. Brauer, “Fluorescence lifetimes of molecular dye ensembles near interfaces,” Phys. Rev. A 66, 063809 (2002).
[CrossRef]

2001 (1)

P. Bertrand, C. Hermann, G. Lampel, J. Peretti, and V. I. Safarov, “General analytical treatment of optics in layered structures: Application to magneto-optics,” Phys. Rev. B 64, 235421 (2001).
[CrossRef]

1998 (3)

H. Benisty, R. Stanley, and M. Mayer, “Method of source terms for dipole emission modification in modes of arbitrary planar structures,” J. Opt. Soc. Am. A 15, 1192–1201 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction—part i: Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction—part ii: Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

1997 (2)

1996 (1)

H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
[CrossRef]

1992 (1)

F. De Martini, F. Cairo, P. Mataloni, and F. Verzegnassi, “Thresholdless microlaser,” Phys. Rev. A 46, 4220–4233 (1992).
[CrossRef]

1991 (3)

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef]

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

J. Dowling, M. Scully, and F. De Martini, “Radiation pattern of a classical dipole in a cavity,” Opt. Commun. 82, 415–419 (1991).
[CrossRef]

1974 (1)

K. H. Tews, “On the variation of luminescence lifetimes. the approximations of the approximative methods,” J. Lumin. 9, 223–239 (1974).
[CrossRef]

1973 (1)

P. W. Milonni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
[CrossRef]

1970 (1)

H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 101–108 (1970).
[CrossRef]

1967 (1)

J. Nahum and D. A. Wiegand, “Optical properties of some F-aggregate centers in LiF,” Phys. Rev. 154, 817–830 (1967).
[CrossRef]

Benisty, H.

H. Benisty, “Spontaneous emission and coupled-mode theory in multimode 1-D systems with contradirectional coupling,” IEEE J. Quantum Electron. 47, 204–212 (2011).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction—part i: Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998).
[CrossRef]

H. Benisty, R. Stanley, and M. Mayer, “Method of source terms for dipole emission modification in modes of arbitrary planar structures,” J. Opt. Soc. Am. A 15, 1192–1201 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction—part ii: Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

Bertrand, P.

P. Bertrand, C. Hermann, G. Lampel, J. Peretti, and V. I. Safarov, “General analytical treatment of optics in layered structures: Application to magneto-optics,” Phys. Rev. B 64, 235421 (2001).
[CrossRef]

Björk, G.

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

Bonfigli, F.

E. Nichelatti, F. Bonfigli, M. A. Vincenti, and R. M. Montereali, “Optical modelling of an Alq3-based organic light-emitting diode,” J. Opt. Technol. 78, 424–429 (2011).
[CrossRef]

F. Bonfigli, M. Cathelinaud, B. Jacquier, R. M. Montereali, P. Moretti, E. Nichelatti, M. Piccinini, H. Rigneault, and F. Somma, “Design and fabrication of optical microcavities based on F2colour centres in lithium fluoride films,” Opt. Commun. 233, 389–396 (2004).
[CrossRef]

Brauer, A.

N. Danz, J. Heber, and A. Brauer, “Fluorescence lifetimes of molecular dye ensembles near interfaces,” Phys. Rev. A 66, 063809 (2002).
[CrossRef]

Cairo, F.

F. De Martini, F. Cairo, P. Mataloni, and F. Verzegnassi, “Thresholdless microlaser,” Phys. Rev. A 46, 4220–4233 (1992).
[CrossRef]

Cathelinaud, M.

F. Bonfigli, M. Cathelinaud, B. Jacquier, R. M. Montereali, P. Moretti, E. Nichelatti, M. Piccinini, H. Rigneault, and F. Somma, “Design and fabrication of optical microcavities based on F2colour centres in lithium fluoride films,” Opt. Commun. 233, 389–396 (2004).
[CrossRef]

Ciancaleoni, S.

Crescentini, L.

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef]

Danz, N.

N. Danz, J. Heber, and A. Brauer, “Fluorescence lifetimes of molecular dye ensembles near interfaces,” Phys. Rev. A 66, 063809 (2002).
[CrossRef]

De Martini, F.

S. Ciancaleoni, P. Mataloni, O. Jedrkiewicz, and F. De Martini, “Angular distribution of the spontaneous emission in a planar dielectric dye microcavity,” J. Opt. Soc. Am. B 14, 1556–1563 (1997).
[CrossRef]

F. De Martini, F. Cairo, P. Mataloni, and F. Verzegnassi, “Thresholdless microlaser,” Phys. Rev. A 46, 4220–4233 (1992).
[CrossRef]

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef]

J. Dowling, M. Scully, and F. De Martini, “Radiation pattern of a classical dipole in a cavity,” Opt. Commun. 82, 415–419 (1991).
[CrossRef]

De Neve, H.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction—part i: Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction—part ii: Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

Dowling, J.

J. Dowling, M. Scully, and F. De Martini, “Radiation pattern of a classical dipole in a cavity,” Opt. Commun. 82, 415–419 (1991).
[CrossRef]

Dutra, S. M.

S. M. Dutra, Cavity Quantum Electrodynamics—The Strange Theory of Light in a Box (Wiley, 2005).

Hall, D. G.

Heber, J.

N. Danz, J. Heber, and A. Brauer, “Fluorescence lifetimes of molecular dye ensembles near interfaces,” Phys. Rev. A 66, 063809 (2002).
[CrossRef]

Hermann, C.

P. Bertrand, C. Hermann, G. Lampel, J. Peretti, and V. I. Safarov, “General analytical treatment of optics in layered structures: Application to magneto-optics,” Phys. Rev. B 64, 235421 (2001).
[CrossRef]

Igeta, K.

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

Jacquier, B.

F. Bonfigli, M. Cathelinaud, B. Jacquier, R. M. Montereali, P. Moretti, E. Nichelatti, M. Piccinini, H. Rigneault, and F. Somma, “Design and fabrication of optical microcavities based on F2colour centres in lithium fluoride films,” Opt. Commun. 233, 389–396 (2004).
[CrossRef]

Jedrkiewicz, O.

Knight, P. L.

P. W. Milonni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
[CrossRef]

Kuhn, H.

H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 101–108 (1970).
[CrossRef]

Lampel, G.

P. Bertrand, C. Hermann, G. Lampel, J. Peretti, and V. I. Safarov, “General analytical treatment of optics in layered structures: Application to magneto-optics,” Phys. Rev. B 64, 235421 (2001).
[CrossRef]

Loudon, R.

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef]

Machida, S.

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Macmillan, 1986).

Marrocco, M.

E. Nichelatti, M. Marrocco, and R. M. Montereali, “Cooperative optical effects in volumes embedded in layered media,” J. Raman Spectrosc. 41, 859–865 (2010).
[CrossRef]

M. Marrocco and E. Nichelatti, “Coherent anti-Stokes Raman scattering microscopy within a microcavity with parallel mirrors,” J. Raman Spectrosc. 40, 732–740 (2009).
[CrossRef]

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef]

Mataloni, P.

S. Ciancaleoni, P. Mataloni, O. Jedrkiewicz, and F. De Martini, “Angular distribution of the spontaneous emission in a planar dielectric dye microcavity,” J. Opt. Soc. Am. B 14, 1556–1563 (1997).
[CrossRef]

F. De Martini, F. Cairo, P. Mataloni, and F. Verzegnassi, “Thresholdless microlaser,” Phys. Rev. A 46, 4220–4233 (1992).
[CrossRef]

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef]

Mayer, M.

Meystre, P.

P. Meystre and M. Sargent, Elements of Quantum Optics, 4th ed. (Springer-Verlag, 2007).

Milonni, P. W.

P. W. Milonni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
[CrossRef]

Monneret, S.

H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
[CrossRef]

Montereali, R. M.

E. Nichelatti, F. Bonfigli, M. A. Vincenti, and R. M. Montereali, “Optical modelling of an Alq3-based organic light-emitting diode,” J. Opt. Technol. 78, 424–429 (2011).
[CrossRef]

E. Nichelatti, M. Marrocco, and R. M. Montereali, “Cooperative optical effects in volumes embedded in layered media,” J. Raman Spectrosc. 41, 859–865 (2010).
[CrossRef]

F. Bonfigli, M. Cathelinaud, B. Jacquier, R. M. Montereali, P. Moretti, E. Nichelatti, M. Piccinini, H. Rigneault, and F. Somma, “Design and fabrication of optical microcavities based on F2colour centres in lithium fluoride films,” Opt. Commun. 233, 389–396 (2004).
[CrossRef]

R. M. Montereali, “Point defects in thin insulating films of lithium fluoride for optical microsystems in ferroelectric and dielectric thin films,” vol. 3 of Handbook of Thin Film Materials, H. S. Nalwa, ed. (Academic, 2002), pp. 399–431.

Moretti, P.

F. Bonfigli, M. Cathelinaud, B. Jacquier, R. M. Montereali, P. Moretti, E. Nichelatti, M. Piccinini, H. Rigneault, and F. Somma, “Design and fabrication of optical microcavities based on F2colour centres in lithium fluoride films,” Opt. Commun. 233, 389–396 (2004).
[CrossRef]

Nahum, J.

J. Nahum and D. A. Wiegand, “Optical properties of some F-aggregate centers in LiF,” Phys. Rev. 154, 817–830 (1967).
[CrossRef]

Nichelatti, E.

E. Nichelatti, F. Bonfigli, M. A. Vincenti, and R. M. Montereali, “Optical modelling of an Alq3-based organic light-emitting diode,” J. Opt. Technol. 78, 424–429 (2011).
[CrossRef]

E. Nichelatti, M. Marrocco, and R. M. Montereali, “Cooperative optical effects in volumes embedded in layered media,” J. Raman Spectrosc. 41, 859–865 (2010).
[CrossRef]

M. Marrocco and E. Nichelatti, “Coherent anti-Stokes Raman scattering microscopy within a microcavity with parallel mirrors,” J. Raman Spectrosc. 40, 732–740 (2009).
[CrossRef]

F. Bonfigli, M. Cathelinaud, B. Jacquier, R. M. Montereali, P. Moretti, E. Nichelatti, M. Piccinini, H. Rigneault, and F. Somma, “Design and fabrication of optical microcavities based on F2colour centres in lithium fluoride films,” Opt. Commun. 233, 389–396 (2004).
[CrossRef]

E. Nichelatti, “Cooperative spontaneous emission from volume sources in layered media,” Tech. Rep. RT/2009/4/FIM (ENEA, 2009).

Peretti, J.

P. Bertrand, C. Hermann, G. Lampel, J. Peretti, and V. I. Safarov, “General analytical treatment of optics in layered structures: Application to magneto-optics,” Phys. Rev. B 64, 235421 (2001).
[CrossRef]

Piccinini, M.

F. Bonfigli, M. Cathelinaud, B. Jacquier, R. M. Montereali, P. Moretti, E. Nichelatti, M. Piccinini, H. Rigneault, and F. Somma, “Design and fabrication of optical microcavities based on F2colour centres in lithium fluoride films,” Opt. Commun. 233, 389–396 (2004).
[CrossRef]

Rigneault, H.

F. Bonfigli, M. Cathelinaud, B. Jacquier, R. M. Montereali, P. Moretti, E. Nichelatti, M. Piccinini, H. Rigneault, and F. Somma, “Design and fabrication of optical microcavities based on F2colour centres in lithium fluoride films,” Opt. Commun. 233, 389–396 (2004).
[CrossRef]

H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
[CrossRef]

Safarov, V. I.

P. Bertrand, C. Hermann, G. Lampel, J. Peretti, and V. I. Safarov, “General analytical treatment of optics in layered structures: Application to magneto-optics,” Phys. Rev. B 64, 235421 (2001).
[CrossRef]

Sargent, M.

P. Meystre and M. Sargent, Elements of Quantum Optics, 4th ed. (Springer-Verlag, 2007).

Scully, M.

J. Dowling, M. Scully, and F. De Martini, “Radiation pattern of a classical dipole in a cavity,” Opt. Commun. 82, 415–419 (1991).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Somma, F.

F. Bonfigli, M. Cathelinaud, B. Jacquier, R. M. Montereali, P. Moretti, E. Nichelatti, M. Piccinini, H. Rigneault, and F. Somma, “Design and fabrication of optical microcavities based on F2colour centres in lithium fluoride films,” Opt. Commun. 233, 389–396 (2004).
[CrossRef]

Stanley, R.

Sullivan, K. G.

Tews, K. H.

K. H. Tews, “On the variation of luminescence lifetimes. the approximations of the approximative methods,” J. Lumin. 9, 223–239 (1974).
[CrossRef]

Verzegnassi, F.

F. De Martini, F. Cairo, P. Mataloni, and F. Verzegnassi, “Thresholdless microlaser,” Phys. Rev. A 46, 4220–4233 (1992).
[CrossRef]

Vincenti, M. A.

Weisbuch, C.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction—part i: Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction—part ii: Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

Wiegand, D. A.

J. Nahum and D. A. Wiegand, “Optical properties of some F-aggregate centers in LiF,” Phys. Rev. 154, 817–830 (1967).
[CrossRef]

Yamamoto, Y.

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

IEEE J. Quantum Electron. (3)

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction—part i: Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction—part ii: Selected exact simulations and role of photon recycling,” IEEE J. Quantum Electron. 34, 1632–1643 (1998).
[CrossRef]

H. Benisty, “Spontaneous emission and coupled-mode theory in multimode 1-D systems with contradirectional coupling,” IEEE J. Quantum Electron. 47, 204–212 (2011).
[CrossRef]

J. Chem. Phys. (1)

H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53, 101–108 (1970).
[CrossRef]

J. Lumin. (1)

K. H. Tews, “On the variation of luminescence lifetimes. the approximations of the approximative methods,” J. Lumin. 9, 223–239 (1974).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Opt. Technol. (1)

J. Raman Spectrosc. (2)

M. Marrocco and E. Nichelatti, “Coherent anti-Stokes Raman scattering microscopy within a microcavity with parallel mirrors,” J. Raman Spectrosc. 40, 732–740 (2009).
[CrossRef]

E. Nichelatti, M. Marrocco, and R. M. Montereali, “Cooperative optical effects in volumes embedded in layered media,” J. Raman Spectrosc. 41, 859–865 (2010).
[CrossRef]

Opt. Commun. (3)

J. Dowling, M. Scully, and F. De Martini, “Radiation pattern of a classical dipole in a cavity,” Opt. Commun. 82, 415–419 (1991).
[CrossRef]

P. W. Milonni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
[CrossRef]

F. Bonfigli, M. Cathelinaud, B. Jacquier, R. M. Montereali, P. Moretti, E. Nichelatti, M. Piccinini, H. Rigneault, and F. Somma, “Design and fabrication of optical microcavities based on F2colour centres in lithium fluoride films,” Opt. Commun. 233, 389–396 (2004).
[CrossRef]

Phys. Rev. (1)

J. Nahum and D. A. Wiegand, “Optical properties of some F-aggregate centers in LiF,” Phys. Rev. 154, 817–830 (1967).
[CrossRef]

Phys. Rev. A (5)

N. Danz, J. Heber, and A. Brauer, “Fluorescence lifetimes of molecular dye ensembles near interfaces,” Phys. Rev. A 66, 063809 (2002).
[CrossRef]

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, “Spontaneous emission in the optical microscopic cavity,” Phys. Rev. A 43, 2480–2497 (1991).
[CrossRef]

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microcavity structures,” Phys. Rev. A 44, 669–681 (1991).
[CrossRef]

F. De Martini, F. Cairo, P. Mataloni, and F. Verzegnassi, “Thresholdless microlaser,” Phys. Rev. A 46, 4220–4233 (1992).
[CrossRef]

H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
[CrossRef]

Phys. Rev. B (1)

P. Bertrand, C. Hermann, G. Lampel, J. Peretti, and V. I. Safarov, “General analytical treatment of optics in layered structures: Application to magneto-optics,” Phys. Rev. B 64, 235421 (2001).
[CrossRef]

Other (6)

R. M. Montereali, “Point defects in thin insulating films of lithium fluoride for optical microsystems in ferroelectric and dielectric thin films,” vol. 3 of Handbook of Thin Film Materials, H. S. Nalwa, ed. (Academic, 2002), pp. 399–431.

E. Nichelatti, “Cooperative spontaneous emission from volume sources in layered media,” Tech. Rep. RT/2009/4/FIM (ENEA, 2009).

S. M. Dutra, Cavity Quantum Electrodynamics—The Strange Theory of Light in a Box (Wiley, 2005).

P. Meystre and M. Sargent, Elements of Quantum Optics, 4th ed. (Springer-Verlag, 2007).

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Macmillan, 1986).

A. E. Siegman, Lasers (University Science, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Calculated angular powers (s+p polarizations) radiated by a single randomly oriented dipole placed within an ideal cavity of order one. The three curves represent different positions of the dipole within the cavity: FR, edge of the cavity (i.e., λ/4 off-center); AR, center of the cavity; MR, halfway between FR and AR (i.e., λ/8 off-center).

Fig. 2.
Fig. 2.

Calculated angular distributions of PL (s+p polarizations) radiated by a homogeneous active medium in an order-one microcavity, excited by a normally impinging external plane-wave pump of wavelength: (a) λp=λe; (b) λp=56λe; (c) λp=23λe; (d) λp=12λe; (e) λp=13λe; (f) λp=215λe. For a quantitative comparison, the PL intensity emerging from the same medium without mirrors would be an isotropic distribution amounting to 19.9 in the same units. The insets display the pump intensity profiles existing between the cavity mirrors for each of the six above cases. The z axis corresponds to the symmetry axis of the cavity, along which the plane-wave pump impinges; z=0 represents the central point, labeled as AR in Fig. 1, between the mirrors. The pump source is located in the z>0 half space.

Fig. 3.
Fig. 3.

Density distribution of excited color centers (a.u.) within the LiF layer for the single LiF layer, the half cavity, and the full cavity. The z axis corresponds to the symmetry axis of the cavity, along which the plane-wave pump impinges; z=0 represents the central point, labeled as AR in Fig. 1, between the mirrors. The pump source is located in the z>0 half space. The two vertical gray bars, placed at z=±251.15nm, indicate the borders of the LiF layer. The substrate is positioned on the left-hand side of the plot. The LiF layer surface (LiF|ZnS top interface, for the full-cavity case—see Fig. 1 of [24]) coincides with z=251.15nm.

Fig. 4.
Fig. 4.

Experimental and theoretical polar diagrams of the PL intensity (vertical axes, arbitrary units) radiated by F2 color centers from inside (a) the single LiF layer, (b) the half cavity, (c) the full cavity. From (a) to (c), the dashed lines are the theoretical angular distributions displayed in Figs. 3–5 of [24].

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

W=μ(r)w(z)d3r,
W=n2cosθn0cosθ0F{[|A|2+R|A|2]N+2AARe[rexp(ikn0dcosθ0)μ(r)exp(i2kn0zcosθ0)d3r]},
N=μ(r)d3r
F=T|1rrexp(i2kn0dcosθ0)|2
Ws=23Wh,sandWp=23Wh,p+13Wv,p,
(ξ,η,ζ)=(0,0,±2n0λcosθ0),
N^(z)={N^0,if|zz0|h2,0,elsewhere,
μ(r)=N^(z)Isat|FH,S|2ncosθ(kp)cosθ0(kp)F˜S(kp){1+RS(kp)+2RS(kp)cos[kpn0(kp)(d+2z)cosθ0(kp)+ϕS(kp)]}+N^(z)Isat|FH,P|2ncosθ0(kp)cosθ(kp)F˜P(kp){1+RP(kp)+2RP(kp)cos[kpn0(kp)(d+2z)cosθ0(kp)+ϕP(kp)]}+N^(z)Isat|FV,P|2tan2θ0(kp)tan2θ(kp)ncosθ0(kp)cosθ(kp)F˜P(kp){1+RP(kp)2RP(kp)cos[kpn0(kp)(d+2z)cosθ0(kp)+ϕP(kp)]},
F˜σ(kp)=T˜σ(kp)|1rσ(kp)rσ(kp)exp[i2kpn0(kp)dcosθ0(kp)]|2
N=μ(r)d3r=NH,S+NH,P+NV,P,
NH,S=N0Isat|FH,S|2n(kp)cosθ(kp)cosθ0(kp)F˜S(kp){1+RS(kp)+2RS(kp)cos[kpn0(kp)(d+2z0)cosθ0(kp)+ϕS(kp)]×sinc[2n0(kp)hcosθ0(kp)λp]},
NH,P=N0Isat|FH,P|2n(kp)cosθ0(kp)cosθ(kp)F˜P(kp){1+RP(kp)+2RP(kp)cos[kpn0(kp)(d+2z0)cosθ0(kp)+ϕP(kp)]×sinc[2n0(kp)hcosθ0(kp)λp]},
NV,P=N0Isat|FV,P|2tan2θ0(kp)tan2θ(kp)n(kp)cosθ0(kp)cosθ(kp)F˜P(kp){1+RP(kp)2RP(kp)cos[kpn0(kp)(d+2z0)cosθ0(kp)+ϕP(kp)]×sinc[2n0(kp)hcosθ0(kp)λp]},
N0=N^(z)d3r=N^0δ2(0)h
exp[iken0(ke)dcosθ0(ke)]μ(r)exp[i2ken0(ke)zcosθ0(ke)]d3r=(Γ±H,SNH,S+Γ±H,PNH,P+Γ±V,PNV,P)exp[iken0(ke)(d±2z0)cosθ0(ke)],
Γ±H,S={[1+RS(kp)]sinc[2n0(ke)hcosθ0(ke)λe]+2RS(kp)H±S}×{1+RS(kp)+2RS(kp)cos[kpn0(kp)(d+2z0)cosθ0(kp)+ϕS(kp)]×sinc[2n0(kp)hcosθ0(kp)λp]}1,
Γ±H,P={[1+RP(kp)]sinc[2n0(ke)hcosθ0(ke)λe]+2RP(kp)H±P}×{1+RP(kp)+2RP(kp)cos[kpn0(kp)(d+2z0)cosθ0(kp)+ϕP(kp)]×sinc[2n0(kp)hcosθ0(kp)λp]}1,
Γ±V,P={[1+RP(kp)]sinc[2n0(ke)hcosθ0(ke)λe]2RP(kp)H±P}×{1+RP(kp)2RP(kp)cos[kpn0(kp)(d+2z0)cosθ0(kp)+ϕP(kp)]×sinc[2n0(kp)hcosθ0(kp)λp]}1,
H±σ=i2h[ke2n02(ke)cos2θ0(ke)kp2n02(kp)cos2θ0(kp)]×{ken0(ke)cosθ0(ke)[exp(iΦ)cosΨ±σexp(iΦ)cosΨσ]±ikpn0(kp)cosθ0(kp)[exp(iΦ)sinΨ±σexp(iΦ)sinΨσ]},
Φ=ken0(ke)hcosθ0(ke),Ψ±σ=kpn0(kp)(d±h+2z0)cosθ0(kp)+ϕσ(kp),
limh0H±σ=cos[kpn0(kp)(d+2z0)cosθ0(kp)+ϕσ(kp)].
Wh,s=3N16πn2(ke)cosθ(ke)n0(ke)cosθ0(ke)Fs(ke){[1+Rs(ke)]+2Γ±Rscos[ken0(ke)(d±2z0)cosθ0(ke)+ϕs(ke)]},
Wh,p=3N16πn2(ke)cosθ(ke)cosθ0(ke)n0(ke)Fp(ke){[1+Rp(ke)]+2Γ±Rpcos[ken0(ke)(d±2z0)cosθ0(ke)+ϕp(ke)]},
Wv,p=3N8πn2(ke)cosθ(ke)sin2θ0(ke)n0(ke)cosθ0(ke)Fp(ke){[1+Rp(ke)]2Γ±Rpcos[ken0(ke)(d±2z0)cosθ0(ke)+ϕp(ke)]},
Γ±=NH,SΓ±H,S+NH,PΓ±H,P+NV,PΓ±V,PN.
Ws=W0n2(ke)cosθ(ke)n0(ke)cosθ0(ke)Fs(ke){[1+Rs(ke)]+2Γ±Rscos[ken0(ke)(d±2z0)cosθ0(ke)+ϕs(ke)]},
Wp=W0n2(ke)cosθ(ke)n0(ke)cosθ0(ke)Fp(ke){[1+Rp(ke)]+2Γ±Rpcos[2θ0(ke)]cos[ken0(ke)(d±2z0)cosθ0(ke)+ϕp(ke)]},
EH,S=τ˜S1+ρS1ρSρSFH,S,
EH,P=τ˜P1+ρP1ρPρPFH,P,
EV,P=τ˜Ptanθ0tanθ1ρP1ρPρPFV,P,
I(z)=n0(|EH,S|2+|EH,P|2+|EV,P|2)=ncosθcosθ0F˜S{1+RS+2RScos[kn0(d±2z)cosθ0+ϕS]}|FH,S|2+ncosθ0cosθF˜P{1+RP+2RPcos[kn0(d±2z)cosθ0+ϕP]}|FH,P|2+ncosθ0cosθF˜Ptan2θ0tan2θ×{1+RP2RPcos[kn0(d±2z)cosθ0+ϕP]}|FV,P|2,
F˜σ=T˜σ|1rσrσexp(i2kn0dcosθ0)|2
U(z)=σI(z)ωp,
μ(r)=U(z)tsp1+U(z)tspN^(r),
μ(r)U(z)tspN^(r)=σtspωpN^(r)I(z)=N^(r)I(z)Isat

Metrics