A. Vernes, J. Bohm, and G. Vorlaufer, “Ab initio optical properties of tribological/engineering surfaces,” Tribol. Lett. 39, 39–47 (2010).

[CrossRef]

O. Vasseur, I. Bergond, and X. Orlik, “A Gaussian transition of an optical speckle field studied by the minimal spanning tree method,” J. Eur. Opt. Soc. 5 (2010).

[CrossRef]

U. Kumar, B. Bhaduri, M. Kothiyal, and N. Mohan, “Two-wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).

[CrossRef]

A. Anand, V. Chhaniwal, P. Almoro, G. Pedrini, and W. Osten, “Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval,” Opt. Lett. 34, 1522–1524 (2009).

[CrossRef]

S. Prahl, D. Fischer, and D. Duncan, “Monte Carlo green’s function formalism for the propagation of partially coherent light,” J. Opt. Soc. Am. A 26, 1533–1543 (2009).

[CrossRef]

Q. Fang and D. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009).

[CrossRef]

J. Kuhn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).

[CrossRef]

G. Gordon, E. Heyman, and R. Mazar, “A phase-space Gaussian beam summation representation of rough surface scattering,” J Acoust. Soc. Am. 117, 1911–1921 (2005).

D. Didascalou, M. Dottling, N. Geng, and W. Wiesbeck, “An approach to include stochastic rough surface scattering into deterministic ray-optical wave propagation modeling,” IEEE Trans. Antennas Propag. 51, 1508–1515 (2003).

[CrossRef]

V. Serikov and S. Kawamoto, “Numerical experiments in Monte Carlo modeling of polarization, diffraction, and interference phenomena,” Proc. SPIE 4436, 80–88 (2001).

[CrossRef]

A. Ettemeyer, “Combination of 3-D deformation and shape measurement by electronic speckle-pattern interferometry for quantitative strain-stress analysis,” Opt. Eng. 39, 212–215 (2000).

[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).

[CrossRef]

E. R. Freniere, G. G. Gregory, and R. A. Hassler, “Edge diffraction in Monte Carlo ray tracing,” Proc. SPIE 3780, 151–157 (1999).

[CrossRef]

K. Coffey, K. Priestley, J. Mahan, and M. Sanchez, “Diffraction models of radiation entering an aperture for use in a Monte Carlo ray-trace environment,” Proc. SPIE 3429, 213–219 (1998).

[CrossRef]

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).

H. Kadono, T. Asakura, and N. Takai, “Roughness and correlation-length determination of rough-surface objects using the speckle contrast,” Appl. Phys. B 44, 167–173 (1987).

[CrossRef]

H. Kadono, T. Asakura, and N. Takai, “Roughness and correlation-length determination of rough-surface objects using the speckle contrast,” Appl. Phys. B 44, 167–173 (1987).

[CrossRef]

O. Vasseur, I. Bergond, and X. Orlik, “A Gaussian transition of an optical speckle field studied by the minimal spanning tree method,” J. Eur. Opt. Soc. 5 (2010).

[CrossRef]

U. Kumar, B. Bhaduri, M. Kothiyal, and N. Mohan, “Two-wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).

[CrossRef]

A. Vernes, J. Bohm, and G. Vorlaufer, “Ab initio optical properties of tribological/engineering surfaces,” Tribol. Lett. 39, 39–47 (2010).

[CrossRef]

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).

J. Kuhn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).

[CrossRef]

K. Coffey, K. Priestley, J. Mahan, and M. Sanchez, “Diffraction models of radiation entering an aperture for use in a Monte Carlo ray-trace environment,” Proc. SPIE 3429, 213–219 (1998).

[CrossRef]

J. Kuhn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).

[CrossRef]

J. Kuhn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).

[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).

[CrossRef]

J. Kuhn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).

[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).

[CrossRef]

D. Didascalou, M. Dottling, N. Geng, and W. Wiesbeck, “An approach to include stochastic rough surface scattering into deterministic ray-optical wave propagation modeling,” IEEE Trans. Antennas Propag. 51, 1508–1515 (2003).

[CrossRef]

D. Didascalou, M. Dottling, N. Geng, and W. Wiesbeck, “An approach to include stochastic rough surface scattering into deterministic ray-optical wave propagation modeling,” IEEE Trans. Antennas Propag. 51, 1508–1515 (2003).

[CrossRef]

J. Kuhn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).

[CrossRef]

A. Ettemeyer, “Combination of 3-D deformation and shape measurement by electronic speckle-pattern interferometry for quantitative strain-stress analysis,” Opt. Eng. 39, 212–215 (2000).

[CrossRef]

E. R. Freniere, G. G. Gregory, and R. A. Hassler, “Edge diffraction in Monte Carlo ray tracing,” Proc. SPIE 3780, 151–157 (1999).

[CrossRef]

D. Didascalou, M. Dottling, N. Geng, and W. Wiesbeck, “An approach to include stochastic rough surface scattering into deterministic ray-optical wave propagation modeling,” IEEE Trans. Antennas Propag. 51, 1508–1515 (2003).

[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (Roberts, 1988), pp. 50–53.

G. Gordon, E. Heyman, and R. Mazar, “A phase-space Gaussian beam summation representation of rough surface scattering,” J Acoust. Soc. Am. 117, 1911–1921 (2005).

E. R. Freniere, G. G. Gregory, and R. A. Hassler, “Edge diffraction in Monte Carlo ray tracing,” Proc. SPIE 3780, 151–157 (1999).

[CrossRef]

E. R. Freniere, G. G. Gregory, and R. A. Hassler, “Edge diffraction in Monte Carlo ray tracing,” Proc. SPIE 3780, 151–157 (1999).

[CrossRef]

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).

G. Gordon, E. Heyman, and R. Mazar, “A phase-space Gaussian beam summation representation of rough surface scattering,” J Acoust. Soc. Am. 117, 1911–1921 (2005).

H. Kadono, T. Asakura, and N. Takai, “Roughness and correlation-length determination of rough-surface objects using the speckle contrast,” Appl. Phys. B 44, 167–173 (1987).

[CrossRef]

V. Serikov and S. Kawamoto, “Numerical experiments in Monte Carlo modeling of polarization, diffraction, and interference phenomena,” Proc. SPIE 4436, 80–88 (2001).

[CrossRef]

U. Kumar, B. Bhaduri, M. Kothiyal, and N. Mohan, “Two-wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).

[CrossRef]

J. Kuhn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).

[CrossRef]

U. Kumar, B. Bhaduri, M. Kothiyal, and N. Mohan, “Two-wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).

[CrossRef]

K. Coffey, K. Priestley, J. Mahan, and M. Sanchez, “Diffraction models of radiation entering an aperture for use in a Monte Carlo ray-trace environment,” Proc. SPIE 3429, 213–219 (1998).

[CrossRef]

J. Kuhn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).

[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).

[CrossRef]

G. Gordon, E. Heyman, and R. Mazar, “A phase-space Gaussian beam summation representation of rough surface scattering,” J Acoust. Soc. Am. 117, 1911–1921 (2005).

U. Kumar, B. Bhaduri, M. Kothiyal, and N. Mohan, “Two-wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).

[CrossRef]

J. Kuhn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).

[CrossRef]

O. Vasseur, I. Bergond, and X. Orlik, “A Gaussian transition of an optical speckle field studied by the minimal spanning tree method,” J. Eur. Opt. Soc. 5 (2010).

[CrossRef]

K. Coffey, K. Priestley, J. Mahan, and M. Sanchez, “Diffraction models of radiation entering an aperture for use in a Monte Carlo ray-trace environment,” Proc. SPIE 3429, 213–219 (1998).

[CrossRef]

K. Coffey, K. Priestley, J. Mahan, and M. Sanchez, “Diffraction models of radiation entering an aperture for use in a Monte Carlo ray-trace environment,” Proc. SPIE 3429, 213–219 (1998).

[CrossRef]

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).

V. Serikov and S. Kawamoto, “Numerical experiments in Monte Carlo modeling of polarization, diffraction, and interference phenomena,” Proc. SPIE 4436, 80–88 (2001).

[CrossRef]

H. Kadono, T. Asakura, and N. Takai, “Roughness and correlation-length determination of rough-surface objects using the speckle contrast,” Appl. Phys. B 44, 167–173 (1987).

[CrossRef]

O. Vasseur, I. Bergond, and X. Orlik, “A Gaussian transition of an optical speckle field studied by the minimal spanning tree method,” J. Eur. Opt. Soc. 5 (2010).

[CrossRef]

A. Vernes, J. Bohm, and G. Vorlaufer, “Ab initio optical properties of tribological/engineering surfaces,” Tribol. Lett. 39, 39–47 (2010).

[CrossRef]

A. Vernes, J. Bohm, and G. Vorlaufer, “Ab initio optical properties of tribological/engineering surfaces,” Tribol. Lett. 39, 39–47 (2010).

[CrossRef]

D. Didascalou, M. Dottling, N. Geng, and W. Wiesbeck, “An approach to include stochastic rough surface scattering into deterministic ray-optical wave propagation modeling,” IEEE Trans. Antennas Propag. 51, 1508–1515 (2003).

[CrossRef]

H. Kadono, T. Asakura, and N. Takai, “Roughness and correlation-length determination of rough-surface objects using the speckle contrast,” Appl. Phys. B 44, 167–173 (1987).

[CrossRef]

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).

D. Didascalou, M. Dottling, N. Geng, and W. Wiesbeck, “An approach to include stochastic rough surface scattering into deterministic ray-optical wave propagation modeling,” IEEE Trans. Antennas Propag. 51, 1508–1515 (2003).

[CrossRef]

G. Gordon, E. Heyman, and R. Mazar, “A phase-space Gaussian beam summation representation of rough surface scattering,” J Acoust. Soc. Am. 117, 1911–1921 (2005).

O. Vasseur, I. Bergond, and X. Orlik, “A Gaussian transition of an optical speckle field studied by the minimal spanning tree method,” J. Eur. Opt. Soc. 5 (2010).

[CrossRef]

A. Ettemeyer, “Combination of 3-D deformation and shape measurement by electronic speckle-pattern interferometry for quantitative strain-stress analysis,” Opt. Eng. 39, 212–215 (2000).

[CrossRef]

J. Kuhn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).

[CrossRef]

Q. Fang and D. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009).

[CrossRef]

U. Kumar, B. Bhaduri, M. Kothiyal, and N. Mohan, “Two-wavelength micro-interferometry for 3-D surface profiling,” Opt. Lasers Eng. 47, 223–229 (2009).

[CrossRef]

K. Coffey, K. Priestley, J. Mahan, and M. Sanchez, “Diffraction models of radiation entering an aperture for use in a Monte Carlo ray-trace environment,” Proc. SPIE 3429, 213–219 (1998).

[CrossRef]

E. R. Freniere, G. G. Gregory, and R. A. Hassler, “Edge diffraction in Monte Carlo ray tracing,” Proc. SPIE 3780, 151–157 (1999).

[CrossRef]

V. Serikov and S. Kawamoto, “Numerical experiments in Monte Carlo modeling of polarization, diffraction, and interference phenomena,” Proc. SPIE 4436, 80–88 (2001).

[CrossRef]

A. Vernes, J. Bohm, and G. Vorlaufer, “Ab initio optical properties of tribological/engineering surfaces,” Tribol. Lett. 39, 39–47 (2010).

[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (Roberts, 1988), pp. 50–53.