Abstract

To better understand how peripheral refraction affects development of myopia in humans, specialized instruments are fundamental for precise and rapid measurements of refraction over the visual field. We compare here two prototype instruments that measure in a few seconds the peripheral refraction in the eye with high angular resolution over a range of about ±45deg. One instrument is based on the continuous recording of Hartmann–Shack (HS) images (HS scanner) and the other is based on the photorefraction (PR) principle (PR scanner). On average, good correlations were found between the refraction results provided by the two devices, although it varied across subjects. A detailed statistical analysis of the differences between both instruments was performed based on measurements in 35 young subjects. Both instruments have advantages and disadvantages. The HS scanner also provides the high-order aberration data, while the PR scanner is more compact and has a lower cost. Both instruments are current prototypes, and further optimization is possible to make them even more suitable tools for future visual optics and myopia research and also for different ophthalmic applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hoogerheide, F. Rempt, and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215 (1971).
    [CrossRef]
  2. F. Rempt, J. Hoogerheide, and W. P. H. Hoogenboom, “Peripheral retinoscopy and skiagram,” Ophthalmologica 162, 1–10 (1971).
    [CrossRef]
  3. J. Wallman, M. D. Gottlieb, V. Rajaram, and L. A. Fugate-Wentzek, “Local retinal regions control local eye growth and myopia,” Science 237, 73–77 (1987).
    [CrossRef]
  4. A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363–2373 (2002).
    [CrossRef]
  5. J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
    [CrossRef]
  6. E. L. Smith, L. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vis. Res. 49, 2389–2392 (2009).
  7. E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms,” Investig. Ophthalmol. Vis. Sci. 51, 3864–3873 (2010).
    [CrossRef]
  8. E. L. Smith, R. Ramamirtham, Y. Qiao-Grider, L. Hung, J. Huang, C. Kee, D. Coats, and E. Paysse, “Effects of foveal ablation on emmetropization and form-deprivation myopia,” Investig. Ophthalmol. Vis. Sci. 48, 3914–3922 (2007).
    [CrossRef]
  9. M. Millodot, “Effect of ametropia on peripheral refraction,” Am. J. Optom. Physiol. Opt. 58, 691–695 (1981).
  10. D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Investig. Ophthalmol. Vis. Sci. 48, 2510–2519 (2007).
    [CrossRef]
  11. J. Tabernero and F. Schaeffel, “More irregular eye shape in low myopia than in emmetropia,” Investig. Ophthalmol. Vis. Sci. 50, 4516–4522 (2009).
    [CrossRef]
  12. J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vis. Res. 49, 2176–2186 (2009).
    [CrossRef]
  13. P. Sankaridurg, L. Donovan, S. Varnas, A. Ho, X. Chen, A. Martinez, S. Fisher, Z. Lin, E. L. Smith, J. Ge, and B. Holden, “Spectacle lenses designed to reduce progression of myopia: 12-month results,” Optom. Vis. Sci. 87, 631–641 (2010).
    [CrossRef]
  14. L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 17 (2009).
    [CrossRef]
  15. W. N. Charman and H. Radhakrishnan, “Peripheral refraction and the development of refractive error: a review,” Ophthalmic Physiolog. Opt. 30, 321–338 (2010).
    [CrossRef]
  16. H. Radhakrishnan and N. Charman, “Peripheral refraction measurement: does it matter if one turns the eye or the head?” Ophthalmic Physiolog. Opt. 28, 73–82 (2008).
    [CrossRef]
  17. P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiolog. Opt. 29, 264–271 (2009).
    [CrossRef]
  18. C. Fedtke, F. Manns, and A. Ho, “The entrance pupil of the human eye: a three-dimensional model as a function of viewing angle,” Opt. Express 18, 22364–22376 (2010).
    [CrossRef]
  19. C. Fedtke, K. Ehrmann, and B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86, 429–446 (2009).
    [CrossRef]
  20. B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19, 7903–7913 (2011).
    [CrossRef]
  21. J. Tabernero and F. Schaeffel, “Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation,” J. Opt. Soc. Am. A 26, 2206–2210 (2009).
    [CrossRef]
  22. P. M. Prieto, F. Vargas-Martin, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
    [CrossRef]
  23. F. Schaeffel, L. Farkas, and H. C. Howland, “Infrared photoretinoscope,” Appl. Opt. 26, 1505–1509 (1987).
    [CrossRef]
  24. B. Jaeken, L. Lundström, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
    [CrossRef]
  25. L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
    [CrossRef]
  26. L. Lundström and P. Unsbo, “Unwrapping Hartmann–Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method,” Optom. Vis. Sci. 81, 383–388 (2004).
    [CrossRef]
  27. E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8 to 1070 nm,” Opt. Express 16, 21199–21208 (2008).
    [CrossRef]

2011 (2)

2010 (4)

C. Fedtke, F. Manns, and A. Ho, “The entrance pupil of the human eye: a three-dimensional model as a function of viewing angle,” Opt. Express 18, 22364–22376 (2010).
[CrossRef]

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms,” Investig. Ophthalmol. Vis. Sci. 51, 3864–3873 (2010).
[CrossRef]

P. Sankaridurg, L. Donovan, S. Varnas, A. Ho, X. Chen, A. Martinez, S. Fisher, Z. Lin, E. L. Smith, J. Ge, and B. Holden, “Spectacle lenses designed to reduce progression of myopia: 12-month results,” Optom. Vis. Sci. 87, 631–641 (2010).
[CrossRef]

W. N. Charman and H. Radhakrishnan, “Peripheral refraction and the development of refractive error: a review,” Ophthalmic Physiolog. Opt. 30, 321–338 (2010).
[CrossRef]

2009 (8)

P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiolog. Opt. 29, 264–271 (2009).
[CrossRef]

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 17 (2009).
[CrossRef]

J. Tabernero and F. Schaeffel, “More irregular eye shape in low myopia than in emmetropia,” Investig. Ophthalmol. Vis. Sci. 50, 4516–4522 (2009).
[CrossRef]

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vis. Res. 49, 2176–2186 (2009).
[CrossRef]

E. L. Smith, L. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vis. Res. 49, 2389–2392 (2009).

C. Fedtke, K. Ehrmann, and B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86, 429–446 (2009).
[CrossRef]

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
[CrossRef]

J. Tabernero and F. Schaeffel, “Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation,” J. Opt. Soc. Am. A 26, 2206–2210 (2009).
[CrossRef]

2008 (2)

E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8 to 1070 nm,” Opt. Express 16, 21199–21208 (2008).
[CrossRef]

H. Radhakrishnan and N. Charman, “Peripheral refraction measurement: does it matter if one turns the eye or the head?” Ophthalmic Physiolog. Opt. 28, 73–82 (2008).
[CrossRef]

2007 (2)

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Investig. Ophthalmol. Vis. Sci. 48, 2510–2519 (2007).
[CrossRef]

E. L. Smith, R. Ramamirtham, Y. Qiao-Grider, L. Hung, J. Huang, C. Kee, D. Coats, and E. Paysse, “Effects of foveal ablation on emmetropization and form-deprivation myopia,” Investig. Ophthalmol. Vis. Sci. 48, 3914–3922 (2007).
[CrossRef]

2004 (2)

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[CrossRef]

L. Lundström and P. Unsbo, “Unwrapping Hartmann–Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method,” Optom. Vis. Sci. 81, 383–388 (2004).
[CrossRef]

2002 (1)

2000 (1)

1987 (2)

F. Schaeffel, L. Farkas, and H. C. Howland, “Infrared photoretinoscope,” Appl. Opt. 26, 1505–1509 (1987).
[CrossRef]

J. Wallman, M. D. Gottlieb, V. Rajaram, and L. A. Fugate-Wentzek, “Local retinal regions control local eye growth and myopia,” Science 237, 73–77 (1987).
[CrossRef]

1981 (1)

M. Millodot, “Effect of ametropia on peripheral refraction,” Am. J. Optom. Physiol. Opt. 58, 691–695 (1981).

1971 (2)

J. Hoogerheide, F. Rempt, and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215 (1971).
[CrossRef]

F. Rempt, J. Hoogerheide, and W. P. H. Hoogenboom, “Peripheral retinoscopy and skiagram,” Ophthalmologica 162, 1–10 (1971).
[CrossRef]

Arines, J.

P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiolog. Opt. 29, 264–271 (2009).
[CrossRef]

Artal, P.

Bará, S.

P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiolog. Opt. 29, 264–271 (2009).
[CrossRef]

Blasdel, T. L.

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms,” Investig. Ophthalmol. Vis. Sci. 51, 3864–3873 (2010).
[CrossRef]

Bockhorst, K. H.

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms,” Investig. Ophthalmol. Vis. Sci. 51, 3864–3873 (2010).
[CrossRef]

Charman, N.

H. Radhakrishnan and N. Charman, “Peripheral refraction measurement: does it matter if one turns the eye or the head?” Ophthalmic Physiolog. Opt. 28, 73–82 (2008).
[CrossRef]

Charman, W. N.

W. N. Charman and H. Radhakrishnan, “Peripheral refraction and the development of refractive error: a review,” Ophthalmic Physiolog. Opt. 30, 321–338 (2010).
[CrossRef]

Chen, X.

P. Sankaridurg, L. Donovan, S. Varnas, A. Ho, X. Chen, A. Martinez, S. Fisher, Z. Lin, E. L. Smith, J. Ge, and B. Holden, “Spectacle lenses designed to reduce progression of myopia: 12-month results,” Optom. Vis. Sci. 87, 631–641 (2010).
[CrossRef]

Coats, D.

E. L. Smith, R. Ramamirtham, Y. Qiao-Grider, L. Hung, J. Huang, C. Kee, D. Coats, and E. Paysse, “Effects of foveal ablation on emmetropization and form-deprivation myopia,” Investig. Ophthalmol. Vis. Sci. 48, 3914–3922 (2007).
[CrossRef]

Donovan, L.

P. Sankaridurg, L. Donovan, S. Varnas, A. Ho, X. Chen, A. Martinez, S. Fisher, Z. Lin, E. L. Smith, J. Ge, and B. Holden, “Spectacle lenses designed to reduce progression of myopia: 12-month results,” Optom. Vis. Sci. 87, 631–641 (2010).
[CrossRef]

Ehrmann, K.

C. Fedtke, K. Ehrmann, and B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86, 429–446 (2009).
[CrossRef]

Farkas, L.

Fedtke, C.

C. Fedtke, F. Manns, and A. Ho, “The entrance pupil of the human eye: a three-dimensional model as a function of viewing angle,” Opt. Express 18, 22364–22376 (2010).
[CrossRef]

C. Fedtke, K. Ehrmann, and B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86, 429–446 (2009).
[CrossRef]

Fernández, E. J.

Fisher, S.

P. Sankaridurg, L. Donovan, S. Varnas, A. Ho, X. Chen, A. Martinez, S. Fisher, Z. Lin, E. L. Smith, J. Ge, and B. Holden, “Spectacle lenses designed to reduce progression of myopia: 12-month results,” Optom. Vis. Sci. 87, 631–641 (2010).
[CrossRef]

Fugate-Wentzek, L. A.

J. Wallman, M. D. Gottlieb, V. Rajaram, and L. A. Fugate-Wentzek, “Local retinal regions control local eye growth and myopia,” Science 237, 73–77 (1987).
[CrossRef]

Ge, J.

P. Sankaridurg, L. Donovan, S. Varnas, A. Ho, X. Chen, A. Martinez, S. Fisher, Z. Lin, E. L. Smith, J. Ge, and B. Holden, “Spectacle lenses designed to reduce progression of myopia: 12-month results,” Optom. Vis. Sci. 87, 631–641 (2010).
[CrossRef]

Goelz, S.

Gotter, S. A.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Investig. Ophthalmol. Vis. Sci. 48, 2510–2519 (2007).
[CrossRef]

Gottlieb, M. D.

J. Wallman, M. D. Gottlieb, V. Rajaram, and L. A. Fugate-Wentzek, “Local retinal regions control local eye growth and myopia,” Science 237, 73–77 (1987).
[CrossRef]

Guirao, A.

Gustafsson, J.

Hayes, J. R.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Investig. Ophthalmol. Vis. Sci. 48, 2510–2519 (2007).
[CrossRef]

Ho, A.

P. Sankaridurg, L. Donovan, S. Varnas, A. Ho, X. Chen, A. Martinez, S. Fisher, Z. Lin, E. L. Smith, J. Ge, and B. Holden, “Spectacle lenses designed to reduce progression of myopia: 12-month results,” Optom. Vis. Sci. 87, 631–641 (2010).
[CrossRef]

C. Fedtke, F. Manns, and A. Ho, “The entrance pupil of the human eye: a three-dimensional model as a function of viewing angle,” Opt. Express 18, 22364–22376 (2010).
[CrossRef]

Holden, B.

P. Sankaridurg, L. Donovan, S. Varnas, A. Ho, X. Chen, A. Martinez, S. Fisher, Z. Lin, E. L. Smith, J. Ge, and B. Holden, “Spectacle lenses designed to reduce progression of myopia: 12-month results,” Optom. Vis. Sci. 87, 631–641 (2010).
[CrossRef]

Holden, B. A.

C. Fedtke, K. Ehrmann, and B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86, 429–446 (2009).
[CrossRef]

Hoogenboom, W. P. H.

F. Rempt, J. Hoogerheide, and W. P. H. Hoogenboom, “Peripheral retinoscopy and skiagram,” Ophthalmologica 162, 1–10 (1971).
[CrossRef]

J. Hoogerheide, F. Rempt, and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215 (1971).
[CrossRef]

Hoogerheide, J.

J. Hoogerheide, F. Rempt, and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215 (1971).
[CrossRef]

F. Rempt, J. Hoogerheide, and W. P. H. Hoogenboom, “Peripheral retinoscopy and skiagram,” Ophthalmologica 162, 1–10 (1971).
[CrossRef]

Howland, H. C.

Huang, J.

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms,” Investig. Ophthalmol. Vis. Sci. 51, 3864–3873 (2010).
[CrossRef]

E. L. Smith, L. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vis. Res. 49, 2389–2392 (2009).

E. L. Smith, R. Ramamirtham, Y. Qiao-Grider, L. Hung, J. Huang, C. Kee, D. Coats, and E. Paysse, “Effects of foveal ablation on emmetropization and form-deprivation myopia,” Investig. Ophthalmol. Vis. Sci. 48, 3914–3922 (2007).
[CrossRef]

Humbird, T. L.

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms,” Investig. Ophthalmol. Vis. Sci. 51, 3864–3873 (2010).
[CrossRef]

Hung, L.

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms,” Investig. Ophthalmol. Vis. Sci. 51, 3864–3873 (2010).
[CrossRef]

E. L. Smith, L. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vis. Res. 49, 2389–2392 (2009).

E. L. Smith, R. Ramamirtham, Y. Qiao-Grider, L. Hung, J. Huang, C. Kee, D. Coats, and E. Paysse, “Effects of foveal ablation on emmetropization and form-deprivation myopia,” Investig. Ophthalmol. Vis. Sci. 48, 3914–3922 (2007).
[CrossRef]

Jaeken, B.

Jones, L. A.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Investig. Ophthalmol. Vis. Sci. 48, 2510–2519 (2007).
[CrossRef]

Kee, C.

E. L. Smith, R. Ramamirtham, Y. Qiao-Grider, L. Hung, J. Huang, C. Kee, D. Coats, and E. Paysse, “Effects of foveal ablation on emmetropization and form-deprivation myopia,” Investig. Ophthalmol. Vis. Sci. 48, 3914–3922 (2007).
[CrossRef]

Kleinstein, R. N.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Investig. Ophthalmol. Vis. Sci. 48, 2510–2519 (2007).
[CrossRef]

Lin, Z.

P. Sankaridurg, L. Donovan, S. Varnas, A. Ho, X. Chen, A. Martinez, S. Fisher, Z. Lin, E. L. Smith, J. Ge, and B. Holden, “Spectacle lenses designed to reduce progression of myopia: 12-month results,” Optom. Vis. Sci. 87, 631–641 (2010).
[CrossRef]

Lopez-Gil, N.

Lundström, L.

B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19, 7903–7913 (2011).
[CrossRef]

B. Jaeken, L. Lundström, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
[CrossRef]

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
[CrossRef]

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 17 (2009).
[CrossRef]

L. Lundström and P. Unsbo, “Unwrapping Hartmann–Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method,” Optom. Vis. Sci. 81, 383–388 (2004).
[CrossRef]

Manns, F.

Manny, R. E.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Investig. Ophthalmol. Vis. Sci. 48, 2510–2519 (2007).
[CrossRef]

Manzanera, S.

P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiolog. Opt. 29, 264–271 (2009).
[CrossRef]

Martinez, A.

P. Sankaridurg, L. Donovan, S. Varnas, A. Ho, X. Chen, A. Martinez, S. Fisher, Z. Lin, E. L. Smith, J. Ge, and B. Holden, “Spectacle lenses designed to reduce progression of myopia: 12-month results,” Optom. Vis. Sci. 87, 631–641 (2010).
[CrossRef]

Millodot, M.

M. Millodot, “Effect of ametropia on peripheral refraction,” Am. J. Optom. Physiol. Opt. 58, 691–695 (1981).

Mira-Agudelo, A.

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 17 (2009).
[CrossRef]

P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiolog. Opt. 29, 264–271 (2009).
[CrossRef]

Mitchell, G. L.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Investig. Ophthalmol. Vis. Sci. 48, 2510–2519 (2007).
[CrossRef]

Moeschberger, M. L.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Investig. Ophthalmol. Vis. Sci. 48, 2510–2519 (2007).
[CrossRef]

Mutti, D. O.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Investig. Ophthalmol. Vis. Sci. 48, 2510–2519 (2007).
[CrossRef]

Paysse, E.

E. L. Smith, R. Ramamirtham, Y. Qiao-Grider, L. Hung, J. Huang, C. Kee, D. Coats, and E. Paysse, “Effects of foveal ablation on emmetropization and form-deprivation myopia,” Investig. Ophthalmol. Vis. Sci. 48, 3914–3922 (2007).
[CrossRef]

Prado, P.

P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiolog. Opt. 29, 264–271 (2009).
[CrossRef]

Prieto, P. M.

Qiao-Grider, Y.

E. L. Smith, R. Ramamirtham, Y. Qiao-Grider, L. Hung, J. Huang, C. Kee, D. Coats, and E. Paysse, “Effects of foveal ablation on emmetropization and form-deprivation myopia,” Investig. Ophthalmol. Vis. Sci. 48, 3914–3922 (2007).
[CrossRef]

Radhakrishnan, H.

W. N. Charman and H. Radhakrishnan, “Peripheral refraction and the development of refractive error: a review,” Ophthalmic Physiolog. Opt. 30, 321–338 (2010).
[CrossRef]

H. Radhakrishnan and N. Charman, “Peripheral refraction measurement: does it matter if one turns the eye or the head?” Ophthalmic Physiolog. Opt. 28, 73–82 (2008).
[CrossRef]

Rajaram, V.

J. Wallman, M. D. Gottlieb, V. Rajaram, and L. A. Fugate-Wentzek, “Local retinal regions control local eye growth and myopia,” Science 237, 73–77 (1987).
[CrossRef]

Ramamirtham, R.

E. L. Smith, R. Ramamirtham, Y. Qiao-Grider, L. Hung, J. Huang, C. Kee, D. Coats, and E. Paysse, “Effects of foveal ablation on emmetropization and form-deprivation myopia,” Investig. Ophthalmol. Vis. Sci. 48, 3914–3922 (2007).
[CrossRef]

Rempt, F.

J. Hoogerheide, F. Rempt, and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215 (1971).
[CrossRef]

F. Rempt, J. Hoogerheide, and W. P. H. Hoogenboom, “Peripheral retinoscopy and skiagram,” Ophthalmologica 162, 1–10 (1971).
[CrossRef]

Sankaridurg, P.

P. Sankaridurg, L. Donovan, S. Varnas, A. Ho, X. Chen, A. Martinez, S. Fisher, Z. Lin, E. L. Smith, J. Ge, and B. Holden, “Spectacle lenses designed to reduce progression of myopia: 12-month results,” Optom. Vis. Sci. 87, 631–641 (2010).
[CrossRef]

Schaeffel, F.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vis. Res. 49, 2176–2186 (2009).
[CrossRef]

J. Tabernero and F. Schaeffel, “More irregular eye shape in low myopia than in emmetropia,” Investig. Ophthalmol. Vis. Sci. 50, 4516–4522 (2009).
[CrossRef]

J. Tabernero and F. Schaeffel, “Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation,” J. Opt. Soc. Am. A 26, 2206–2210 (2009).
[CrossRef]

A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363–2373 (2002).
[CrossRef]

F. Schaeffel, L. Farkas, and H. C. Howland, “Infrared photoretinoscope,” Appl. Opt. 26, 1505–1509 (1987).
[CrossRef]

Seidemann, A.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vis. Res. 49, 2176–2186 (2009).
[CrossRef]

A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363–2373 (2002).
[CrossRef]

Smith, E. L.

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms,” Investig. Ophthalmol. Vis. Sci. 51, 3864–3873 (2010).
[CrossRef]

P. Sankaridurg, L. Donovan, S. Varnas, A. Ho, X. Chen, A. Martinez, S. Fisher, Z. Lin, E. L. Smith, J. Ge, and B. Holden, “Spectacle lenses designed to reduce progression of myopia: 12-month results,” Optom. Vis. Sci. 87, 631–641 (2010).
[CrossRef]

E. L. Smith, L. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vis. Res. 49, 2389–2392 (2009).

E. L. Smith, R. Ramamirtham, Y. Qiao-Grider, L. Hung, J. Huang, C. Kee, D. Coats, and E. Paysse, “Effects of foveal ablation on emmetropization and form-deprivation myopia,” Investig. Ophthalmol. Vis. Sci. 48, 3914–3922 (2007).
[CrossRef]

Tabernero, J.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vis. Res. 49, 2176–2186 (2009).
[CrossRef]

J. Tabernero and F. Schaeffel, “More irregular eye shape in low myopia than in emmetropia,” Investig. Ophthalmol. Vis. Sci. 50, 4516–4522 (2009).
[CrossRef]

J. Tabernero and F. Schaeffel, “Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation,” J. Opt. Soc. Am. A 26, 2206–2210 (2009).
[CrossRef]

Twelker, J. D.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Investig. Ophthalmol. Vis. Sci. 48, 2510–2519 (2007).
[CrossRef]

Unsbo, P.

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
[CrossRef]

L. Lundström and P. Unsbo, “Unwrapping Hartmann–Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method,” Optom. Vis. Sci. 81, 383–388 (2004).
[CrossRef]

Uttenweiler, D.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vis. Res. 49, 2176–2186 (2009).
[CrossRef]

Vargas-Martin, F.

Varnas, S.

P. Sankaridurg, L. Donovan, S. Varnas, A. Ho, X. Chen, A. Martinez, S. Fisher, Z. Lin, E. L. Smith, J. Ge, and B. Holden, “Spectacle lenses designed to reduce progression of myopia: 12-month results,” Optom. Vis. Sci. 87, 631–641 (2010).
[CrossRef]

Vazquez, D.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vis. Res. 49, 2176–2186 (2009).
[CrossRef]

Wallman, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[CrossRef]

J. Wallman, M. D. Gottlieb, V. Rajaram, and L. A. Fugate-Wentzek, “Local retinal regions control local eye growth and myopia,” Science 237, 73–77 (1987).
[CrossRef]

Winawer, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[CrossRef]

Zadnik, K.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Investig. Ophthalmol. Vis. Sci. 48, 2510–2519 (2007).
[CrossRef]

Am. J. Optom. Physiol. Opt. (1)

M. Millodot, “Effect of ametropia on peripheral refraction,” Am. J. Optom. Physiol. Opt. 58, 691–695 (1981).

Appl. Opt. (1)

Investig. Ophthalmol. Vis. Sci. (4)

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Investig. Ophthalmol. Vis. Sci. 48, 2510–2519 (2007).
[CrossRef]

J. Tabernero and F. Schaeffel, “More irregular eye shape in low myopia than in emmetropia,” Investig. Ophthalmol. Vis. Sci. 50, 4516–4522 (2009).
[CrossRef]

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms,” Investig. Ophthalmol. Vis. Sci. 51, 3864–3873 (2010).
[CrossRef]

E. L. Smith, R. Ramamirtham, Y. Qiao-Grider, L. Hung, J. Huang, C. Kee, D. Coats, and E. Paysse, “Effects of foveal ablation on emmetropization and form-deprivation myopia,” Investig. Ophthalmol. Vis. Sci. 48, 3914–3922 (2007).
[CrossRef]

J. Opt. Soc. Am. A (5)

J. Vision (1)

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 17 (2009).
[CrossRef]

Neuron (1)

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[CrossRef]

Ophthalmic Physiolog. Opt. (3)

W. N. Charman and H. Radhakrishnan, “Peripheral refraction and the development of refractive error: a review,” Ophthalmic Physiolog. Opt. 30, 321–338 (2010).
[CrossRef]

H. Radhakrishnan and N. Charman, “Peripheral refraction measurement: does it matter if one turns the eye or the head?” Ophthalmic Physiolog. Opt. 28, 73–82 (2008).
[CrossRef]

P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiolog. Opt. 29, 264–271 (2009).
[CrossRef]

Ophthalmologica (2)

J. Hoogerheide, F. Rempt, and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215 (1971).
[CrossRef]

F. Rempt, J. Hoogerheide, and W. P. H. Hoogenboom, “Peripheral retinoscopy and skiagram,” Ophthalmologica 162, 1–10 (1971).
[CrossRef]

Opt. Express (3)

Optom. Vis. Sci. (3)

L. Lundström and P. Unsbo, “Unwrapping Hartmann–Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method,” Optom. Vis. Sci. 81, 383–388 (2004).
[CrossRef]

P. Sankaridurg, L. Donovan, S. Varnas, A. Ho, X. Chen, A. Martinez, S. Fisher, Z. Lin, E. L. Smith, J. Ge, and B. Holden, “Spectacle lenses designed to reduce progression of myopia: 12-month results,” Optom. Vis. Sci. 87, 631–641 (2010).
[CrossRef]

C. Fedtke, K. Ehrmann, and B. A. Holden, “A review of peripheral refraction techniques,” Optom. Vis. Sci. 86, 429–446 (2009).
[CrossRef]

Science (1)

J. Wallman, M. D. Gottlieb, V. Rajaram, and L. A. Fugate-Wentzek, “Local retinal regions control local eye growth and myopia,” Science 237, 73–77 (1987).
[CrossRef]

Vis. Res. (2)

E. L. Smith, L. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vis. Res. 49, 2389–2392 (2009).

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vis. Res. 49, 2176–2186 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(Left) Photo and schematic of scanning principle of the HS scanner. (Right) Same as left, but for the PR scanner.

Fig. 2.
Fig. 2.

Refractions determined with the PR scanner (ordinate) plotted against the measurements with the HS scanner measurements (abscissa) from all subjects and at all angular positions (n=1965 data points). Only data from the optic disc area are excluded.

Fig. 3.
Fig. 3.

The left graph shows the mean and standard deviation of m as measured with the HS scanner and the PR scanner (raw data). The graph on the right shows the same data after correcting the data from PR scanner according to the regression equation MPR=1.421×MHS+0.513 as determined in Fig. 2.

Fig. 4.
Fig. 4.

Means and standard deviations of the HS data and PR data for (top) the EMM subjects and (bottom) MYOP subjects.

Fig. 5.
Fig. 5.

Bland–Altman plots for M, as measured with the HS scanner and the PR scanner, using (left) raw data and (right) data that were corrected with a linear regression.

Fig. 6.
Fig. 6.

The left plot represents a correlation plot of the M RPRE calculated from the HS data versus those calculated from the PR data. Also, the mean and standard deviation are given. Blue represents the EMM subjects and red the MYOP subjects. The right plot gives the difference between the M RPRE calculated from both instrument data for each of the subjects. The stars indicate the MYOP subjects; the subjects with the diamond (hyperopic) or no symbol represent the EMM group.

Fig. 7.
Fig. 7.

The graph on the left shows measurements of both instruments in subject 25, representing a high correlation of the data (R=0.956). On the right, data are shown from subject 23, in whom even a negative correlation (R=0.501) was found.

Metrics