Abstract

This work demonstrates the angular dependence of dual-band negative-index materials implemented by elliptical nanohole arrays (ENAs) consisting of an Al2O3 dielectric layer between two Au films. This article, it is believed for the first time, analyzes the scattering coefficients and displacement current of the ENA at different angles of plane-wave incidence to show that the ENA is double negative (showing both a negative effective permeability μeff and a negative effective permittivity εeff) at multiple wavelengths (1095 and 1680 nm) for p polarization over a broad range of incident angles.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
    [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2002).
    [CrossRef]
  3. S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
    [CrossRef]
  4. V. G. Veselago, “The electromagnetics of substances with simultaneously negative ε and μ,” Sov. Phys. Usp. 10, 509–514(1968).
    [CrossRef]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef]
  6. C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
    [CrossRef]
  7. W. Cai and V. Shalaev, Optical Metamaterials Fundamentals and Applications (Springer, 2009).
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [CrossRef]
  9. C. Garcia-Meca, R. Ortuno, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Negative refractive index metamaterials aided by extraordinary optical transmission,” Opt. Express 17, 6026–6031 (2009).
    [CrossRef]
  10. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
    [CrossRef]
  11. C. Garcia-Meca, J. Hurtado, J. Maru, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
    [CrossRef]
  12. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Paniou, and R. M. Osgood, “Demonstration of metal–dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434–438 (2006).
    [CrossRef]
  13. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15, 11536–11541 (2007).
    [CrossRef]
  14. Z. Ku and S. R. J. Brueck, “Comparison of negative refractive index materials with circular, elliptical and rectangular holes,” Opt. Express 15, 4515–4522 (2007).
    [CrossRef]
  15. C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance, and negative refraction,” Phys. Rev. B 75, 155120 (2007).
    [CrossRef]
  16. C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
    [CrossRef]
  17. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
    [CrossRef]
  18. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  19. M. G. Silveirinha, “Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters,” Phys. Rev. B 75, 115104 (2007).
    [CrossRef]
  20. M. A. Shapiro, G. Shvets, J. R. Sirigiri, and R. J. Temkin, “Spatial dispersion in metamaterials with negative dielectric permittivity and its effect on surface waves,” Opt. Lett. 31, 2051–2053 (2006).
    [CrossRef]
  21. Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16, 15439–15448 (2008).
    [CrossRef]
  22. Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett. 93, 184103 (2008).
    [CrossRef]
  23. http://www.emexplorer.net/index.php
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  25. J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).
    [CrossRef]
  26. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358(2005).
    [CrossRef]
  27. L. Lin, “Optical manipulation using planar/patterned metallo-dielectric multilayer structures,” Ph.D. dissertation (University of Canterbury, 2008).
  28. S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
    [CrossRef]
  29. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental dеmonstration of near-infrared negative-index metamaterial,” Phys. Rev. Lett. 95, 137404 (2005).
    [CrossRef]
  30. G. Dolling, M. Wegener, C. Enkrich, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31, 1800–1802 (2006).
    [CrossRef]
  31. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
    [CrossRef]
  32. R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antennas Propag. 51, 1516–1529 (2003).
    [CrossRef]
  33. A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).
    [CrossRef]
  34. C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62–80 (2007).
    [CrossRef]
  35. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
    [CrossRef]
  36. L. Jelinek, R. Marques, and J. Machac, “Fishnet metamaterials—Rules for refraction and limits of homogenization,” Opt. Express 18, 17940–17949 (2010).
    [CrossRef]
  37. M. Beruete, M. Navarro, and M. Sorolla, “Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial,” New J. Phys. 12, 063037 (2010).
    [CrossRef]
  38. C.-W. Qiu and L. Gao, “Resonant light scattering by small coated nonmagnetic spheres: magnetic resonances, negative refraction and prediction,” J. Opt. Soc. Am. B 25, 1728–1737 (2008).
    [CrossRef]
  39. J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
    [CrossRef]
  40. A. Marry, S. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative -refractive index response of double fishnet structures,” Phys. Rev. Lett. 101, 103902 (2008).
    [CrossRef]

2011 (2)

C. Garcia-Meca, J. Hurtado, J. Maru, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[CrossRef]

J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[CrossRef]

2010 (3)

L. Jelinek, R. Marques, and J. Machac, “Fishnet metamaterials—Rules for refraction and limits of homogenization,” Opt. Express 18, 17940–17949 (2010).
[CrossRef]

M. Beruete, M. Navarro, and M. Sorolla, “Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial,” New J. Phys. 12, 063037 (2010).
[CrossRef]

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[CrossRef]

2009 (2)

2008 (5)

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
[CrossRef]

Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16, 15439–15448 (2008).
[CrossRef]

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett. 93, 184103 (2008).
[CrossRef]

C.-W. Qiu and L. Gao, “Resonant light scattering by small coated nonmagnetic spheres: magnetic resonances, negative refraction and prediction,” J. Opt. Soc. Am. B 25, 1728–1737 (2008).
[CrossRef]

A. Marry, S. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative -refractive index response of double fishnet structures,” Phys. Rev. Lett. 101, 103902 (2008).
[CrossRef]

2007 (6)

C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62–80 (2007).
[CrossRef]

M. G. Silveirinha, “Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters,” Phys. Rev. B 75, 115104 (2007).
[CrossRef]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15, 11536–11541 (2007).
[CrossRef]

Z. Ku and S. R. J. Brueck, “Comparison of negative refractive index materials with circular, elliptical and rectangular holes,” Opt. Express 15, 4515–4522 (2007).
[CrossRef]

C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance, and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[CrossRef]

C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[CrossRef]

2006 (3)

2005 (5)

2004 (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[CrossRef]

2003 (2)

R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antennas Propag. 51, 1516–1529 (2003).
[CrossRef]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

2002 (2)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2002).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

1996 (1)

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1970 (1)

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).
[CrossRef]

1968 (1)

V. G. Veselago, “The electromagnetics of substances with simultaneously negative ε and μ,” Sov. Phys. Usp. 10, 509–514(1968).
[CrossRef]

Atwater, H. A.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[CrossRef]

Bartal, G.

Belov, P. A.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Berenger, J. P.

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).
[CrossRef]

Beruete, M.

M. Beruete, M. Navarro, and M. Sorolla, “Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial,” New J. Phys. 12, 063037 (2010).
[CrossRef]

Brueck, S. R.

Brueck, S. R. J.

Z. Ku and S. R. J. Brueck, “Comparison of negative refractive index materials with circular, elliptical and rectangular holes,” Opt. Express 15, 4515–4522 (2007).
[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Paniou, and R. M. Osgood, “Demonstration of metal–dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434–438 (2006).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental dеmonstration of near-infrared negative-index metamaterial,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef]

Burgos, S. P.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[CrossRef]

Cai, W.

Cai, W. S.

Chen, X.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Chettiar, U. K.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

de Waele, R.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[CrossRef]

Dickson, W.

C. Garcia-Meca, J. Hurtado, J. Maru, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[CrossRef]

Dolling, G.

Drachev, V. P.

Enkrich, C.

Fan, W.

Fan, W. J.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef]

Fang, A.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

Gao, L.

Garcia-Meca, C.

C. Garcia-Meca, J. Hurtado, J. Maru, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[CrossRef]

C. Garcia-Meca, R. Ortuno, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Negative refractive index metamaterials aided by extraordinary optical transmission,” Opt. Express 17, 6026–6031 (2009).
[CrossRef]

Garcia-Vidal, F.

A. Marry, S. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative -refractive index response of double fishnet structures,” Phys. Rev. Lett. 101, 103902 (2008).
[CrossRef]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Hao, J. M.

J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Hurtado, J.

C. Garcia-Meca, J. Hurtado, J. Maru, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[CrossRef]

Jelinek, L.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kildishev, A. V.

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Koschny, T.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

Ku, Z.

Lederer, F.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
[CrossRef]

Li, L.-W.

C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance, and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[CrossRef]

C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[CrossRef]

Lin, L.

L. Lin, “Optical manipulation using planar/patterned metallo-dielectric multilayer structures,” Ph.D. dissertation (University of Canterbury, 2008).

Linden, S.

Liu, Y.

Ma, Y. G.

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett. 93, 184103 (2008).
[CrossRef]

Machac, J.

Malloy, K. J.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Paniou, and R. M. Osgood, “Demonstration of metal–dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434–438 (2006).
[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental dеmonstration of near-infrared negative-index metamaterial,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Marques, R.

L. Jelinek, R. Marques, and J. Machac, “Fishnet metamaterials—Rules for refraction and limits of homogenization,” Opt. Express 18, 17940–17949 (2010).
[CrossRef]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Marry, A.

A. Marry, S. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative -refractive index response of double fishnet structures,” Phys. Rev. Lett. 101, 103902 (2008).
[CrossRef]

Marti, J.

Martinez, A.

C. Garcia-Meca, J. Hurtado, J. Maru, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[CrossRef]

C. Garcia-Meca, R. Ortuno, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Negative refractive index metamaterials aided by extraordinary optical transmission,” Opt. Express 17, 6026–6031 (2009).
[CrossRef]

Martin-Moreno, L.

A. Marry, S. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative -refractive index response of double fishnet structures,” Phys. Rev. Lett. 101, 103902 (2008).
[CrossRef]

Maru, J.

C. Garcia-Meca, J. Hurtado, J. Maru, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[CrossRef]

Maslovski, S. I.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Menzel, C.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
[CrossRef]

Navarro, M.

M. Beruete, M. Navarro, and M. Sorolla, “Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial,” New J. Phys. 12, 063037 (2010).
[CrossRef]

Nefedov, I. S.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Nicolson, A. M.

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).
[CrossRef]

Ong, C. K.

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett. 93, 184103 (2008).
[CrossRef]

Ortuno, R.

Osgood, R. M.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Paniou, and R. M. Osgood, “Demonstration of metal–dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434–438 (2006).
[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental dеmonstration of near-infrared negative-index metamaterial,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Paniou, N. C.

Panoiu, N. C.

S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
[CrossRef]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental dеmonstration of near-infrared negative-index metamaterial,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef]

Paul, T.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Pertsch, T.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
[CrossRef]

Polman, A.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[CrossRef]

Qiu, C.-W.

C.-W. Qiu and L. Gao, “Resonant light scattering by small coated nonmagnetic spheres: magnetic resonances, negative refraction and prediction,” J. Opt. Soc. Am. B 25, 1728–1737 (2008).
[CrossRef]

C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[CrossRef]

C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance, and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[CrossRef]

Qiu, M.

J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
[CrossRef]

Rodrigo, S.

A. Marry, S. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative -refractive index response of double fishnet structures,” Phys. Rev. Lett. 101, 103902 (2008).
[CrossRef]

Rodriguez-Fortuno, F. J.

Ross, G. F.

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).
[CrossRef]

Sarychev, A. K.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2002).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Shalaev, V.

W. Cai and V. Shalaev, Optical Metamaterials Fundamentals and Applications (Springer, 2009).

Shalaev, V. M.

Shapiro, M. A.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2002).
[CrossRef]

Shvets, G.

Silveirinha, M.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Silveirinha, M. G.

M. G. Silveirinha, “Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters,” Phys. Rev. B 75, 115104 (2007).
[CrossRef]

Simovski, C. R.

C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62–80 (2007).
[CrossRef]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Sirigiri, J. R.

Smith, D. R.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2002).
[CrossRef]

Sorolla, M.

M. Beruete, M. Navarro, and M. Sorolla, “Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial,” New J. Phys. 12, 063037 (2010).
[CrossRef]

Soukoulis, C. M.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15, 11536–11541 (2007).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Temkin, R. J.

Tretyakov, S. A.

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electromagnetics of substances with simultaneously negative ε and μ,” Sov. Phys. Usp. 10, 509–514(1968).
[CrossRef]

Wang, P.

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett. 93, 184103 (2008).
[CrossRef]

Wegener, M.

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Yao, H.-Y.

C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance, and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[CrossRef]

C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[CrossRef]

Yeo, T.-S.

C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance, and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[CrossRef]

C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[CrossRef]

Yuan, H.

Yuan, H. K.

Zayats, A. V.

C. Garcia-Meca, J. Hurtado, J. Maru, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[CrossRef]

Zhang, S.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Paniou, and R. M. Osgood, “Demonstration of metal–dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434–438 (2006).
[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).
[CrossRef]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental dеmonstration of near-infrared negative-index metamaterial,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef]

Zhang, X.

Zhao, L.

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett. 93, 184103 (2008).
[CrossRef]

Zhou, L.

J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[CrossRef]

Ziolkowski, R. W.

R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antennas Propag. 51, 1516–1529 (2003).
[CrossRef]

Zouhdi, S.

C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[CrossRef]

C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance, and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett. 93, 184103 (2008).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antennas Propag. 51, 1516–1529 (2003).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced non-linear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).
[CrossRef]

J. Opt. Soc. Am. B (2)

Metamaterials (1)

C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62–80 (2007).
[CrossRef]

Nat. Mater. (1)

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010).
[CrossRef]

New J. Phys. (1)

M. Beruete, M. Navarro, and M. Sorolla, “Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial,” New J. Phys. 12, 063037 (2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. B (9)

J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83, 165107 (2011).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B 77, 195328 (2008).
[CrossRef]

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009).
[CrossRef]

C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Backward waves in magnetoelectrically chiral media: propagation, impedance, and negative refraction,” Phys. Rev. B 75, 155120 (2007).
[CrossRef]

C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S. Yeo, “Routes to left-handed materials by magnetoelectric couplings,” Phys. Rev. B 75, 245214 (2007).
[CrossRef]

P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[CrossRef]

M. G. Silveirinha, “Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters,” Phys. Rev. B 75, 115104 (2007).
[CrossRef]

Phys. Rev. E (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Phys. Rev. Lett. (5)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental dеmonstration of near-infrared negative-index metamaterial,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef]

C. Garcia-Meca, J. Hurtado, J. Maru, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[CrossRef]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef]

A. Marry, S. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative -refractive index response of double fishnet structures,” Phys. Rev. Lett. 101, 103902 (2008).
[CrossRef]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2002).
[CrossRef]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electromagnetics of substances with simultaneously negative ε and μ,” Sov. Phys. Usp. 10, 509–514(1968).
[CrossRef]

Other (3)

W. Cai and V. Shalaev, Optical Metamaterials Fundamentals and Applications (Springer, 2009).

http://www.emexplorer.net/index.php

L. Lin, “Optical manipulation using planar/patterned metallo-dielectric multilayer structures,” Ph.D. dissertation (University of Canterbury, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of the MIM structure consisting of an Al2O3 dielectric layer between two Au films perforated with a square array of elliptical holes suspended in the air. The lattice constant is L=687nm and hole diameters are d1=470nm and d2=332nm. The oblique incident angle θ is defined by the angle between wave vector k and the z axis. φ is the angle between the parallel (to the xy plane) component of the wave vector and x axis. The displacement current is demonstrated in the β plane. (b) Illustration of the square lattice of the ENA.

Fig. 2.
Fig. 2.

3D FDTD simulation of the transmission of the ENA for both p polarization and s polarization at normal incidence angle.

Fig. 3.
Fig. 3.

3D FDTD simulation of (a) spectrum of transmission and reflection, (b) phase of the transmission and reflection for p polarization at normal incident angle, and (c) comparison of the transmission between the Drude1 Au layer and the lossless Au layer.

Fig. 4.
Fig. 4.

3D FDTD simulation of (a) real and imaginary parts of neff for the ENA. (b) FOM for the ENA.

Fig. 5.
Fig. 5.

3D FDTD simulation of (a) real and imaginary parts of effective impedance η, (b) real and imaginary parts of effective permeability μeff, (c) real and imaginary part of effective permittivity εeff, and (d) zoom-in picture of the real and imaginary parts of effective permittivity εeff for the ENA.

Fig. 6.
Fig. 6.

(a) Displacement currents inside the ENA at λ=1095nm and (b) the surface current at λ=1095nm. (c) Displacement currents inside the ENA at λ=1680nm and (d) the surface current at λ=1680nm.

Fig. 7.
Fig. 7.

(a) 3D FDTD simulation of the transmission for the ENA at different angles θ. (b) 3D FDTD simulation of the transmission for the ENA at different angles φ.

Fig. 8.
Fig. 8.

Displacement currents inside the ENA for the differently oblique angles of incidence at λ=1095nm and λ=1680nm: (a) θ=15°, (b) θ=30°, and (c) θ=45°.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=1ωp2[ω(ω+iωc)],
η=(1+R)2T2(1R)2T2,
n=1kD[arccos[1R2+T22T]+2πm],
ε=n/η,μ=nη.

Metrics