Abstract

A percept of motion results when a chromatic grating, formed from a spatial alternation between two isoluminant hues, drifts across the visual field. With hue pairs chosen to be equally subjectively dissimilar, the motion is greater for alternation along some directions in color space (orange/blue) than others (green/purple), suggesting a specific interaction between the (L-M) and S0 chromatic opponent channels. This phenomenon was explored systematically by choosing 24 pairs of hues across the color circle and using the method of paired comparisons to scale their movement-inducing contrast. The flicker-inducing contrast observed from rapid alternation between the pairs was measured in the same way. Both phenomena consistently drew upon both chromatic channels, though in different proportions, as if chromatic and temporal variation information are multiplexed along motion-processing pathways. Border-distinctness data were also collected to isolate the (L-M) channel.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Cavanagh, “Vision at equiluminance,” Limits of Vision (Vision and Visual Dysfunction), J. J. Kulikowski, I. J. Murray, and V. Walsh, eds. (CRC Press, 1991), Vol. V, pp. 234–250.
  2. P. Cavanagh and S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vis. Res. 31, 2109–2148 (1991).
    [CrossRef]
  3. Z.-L. Lu, L. A. Lesmes, and G. Sperling, “The mechanism of isoluminant chromatic motion perception,” Proc. Natl. Acad. Sci. USA 96, 8289–8294 (1999).
    [CrossRef]
  4. K. R. Dobkins and T. D. Albright, “Merging processing streams: color cues for motion detection and interpretation” in The Visual Neurosciences, L. Chalupa and J. Werner eds. (MIT Press, 2004), pp. 1217–1228.
  5. K. R. Dobkins and T. D. Albright, “What happens if it changes color when it moves?: psychophysical experiments on the nature of chromatic input to motion detectors,” Vis. Res. 33, 1019–1036 (1993).
    [CrossRef]
  6. S. J. Cropper and S. M. Wuerger, “The perception of motion in chromatic stimuli,” Behav. Cogn. Neurosci. Rev. 4, 192–217 (2005).
    [CrossRef]
  7. D. Bimler, “Flicker between equal-luminance colors examined with multidimensional scaling,” J. Opt. Soc. Am. A 27, 523–531 (2010).
    [CrossRef]
  8. B. W. Tansley and R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vis. Res. 18, 683–697 (1978).
    [CrossRef]
  9. B. B. Lee and T. Yeh, “Tritan pairs estimated by modulation photometry of red, green and blue lights,” in Colour Vision Deficiencies XII, B. Drum, ed. (Kluwer, 1994), pp. 177–184.
  10. D. T. Lindsey and D. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vis. Res. 30, 1751–1761 (1990).
    [CrossRef]
  11. D. Bimler, “The chromatic parameters of isoluminant chromatic motion examined with dissimilarity judgements,” Ophthalmol. Physiol. Opt. 30, 578–582 (2010).
    [CrossRef]
  12. H. M. Paulson, “Comparison of color vision tests used by the armed forces,” in Color Vision, D. B. Judd, ed. (National Academy Press, 1973), pp. 34–64.
  13. D. Bimler, J. Kirkland, and S. Pichler, “Escher in color space: individual-differences multidimensional scaling of color dissimilarities collected with a gestalt formation task,” Behav. Res. Methods Instrum. Comput. 36, 69–76 (2004).
  14. W. B. Cowan, “An inexpensive scheme for calibration of a colour monitor in terms of CIE standard coordinates,” Comput. Graph. 17, 315–321 (1983).
    [CrossRef]
  15. D. H. Kelly, “Luminous and chromatic flickering patterns have opposite effects,” Science 188, 371–372 (1975).
    [CrossRef]
  16. P. Cavanagh, D. I. A. MacLeod, and S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438(1987).
    [CrossRef]
  17. M. A. Webster and J. D. Mollon, “Motion minima for different directions in color space,” Vis. Res. 37, 1479–1498 (1997).
    [CrossRef]
  18. B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.
  19. Y. Nakano and P. K. Kaiser, “Color fusion and flicker fusion frequencies using tritanopic pairs,” Vis. Res. 32, 1417–1423 (1992).
    [CrossRef]
  20. N. Cottaris and R. L. De Valois, “Temporal dynamics of chromatic tuning in macaque primary visual cortex,” Nature 395, 896–900 (1998).
    [CrossRef]

2010

D. Bimler, “The chromatic parameters of isoluminant chromatic motion examined with dissimilarity judgements,” Ophthalmol. Physiol. Opt. 30, 578–582 (2010).
[CrossRef]

D. Bimler, “Flicker between equal-luminance colors examined with multidimensional scaling,” J. Opt. Soc. Am. A 27, 523–531 (2010).
[CrossRef]

2005

S. J. Cropper and S. M. Wuerger, “The perception of motion in chromatic stimuli,” Behav. Cogn. Neurosci. Rev. 4, 192–217 (2005).
[CrossRef]

2004

D. Bimler, J. Kirkland, and S. Pichler, “Escher in color space: individual-differences multidimensional scaling of color dissimilarities collected with a gestalt formation task,” Behav. Res. Methods Instrum. Comput. 36, 69–76 (2004).

1999

Z.-L. Lu, L. A. Lesmes, and G. Sperling, “The mechanism of isoluminant chromatic motion perception,” Proc. Natl. Acad. Sci. USA 96, 8289–8294 (1999).
[CrossRef]

1998

N. Cottaris and R. L. De Valois, “Temporal dynamics of chromatic tuning in macaque primary visual cortex,” Nature 395, 896–900 (1998).
[CrossRef]

1997

M. A. Webster and J. D. Mollon, “Motion minima for different directions in color space,” Vis. Res. 37, 1479–1498 (1997).
[CrossRef]

1993

K. R. Dobkins and T. D. Albright, “What happens if it changes color when it moves?: psychophysical experiments on the nature of chromatic input to motion detectors,” Vis. Res. 33, 1019–1036 (1993).
[CrossRef]

1992

Y. Nakano and P. K. Kaiser, “Color fusion and flicker fusion frequencies using tritanopic pairs,” Vis. Res. 32, 1417–1423 (1992).
[CrossRef]

1991

P. Cavanagh and S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vis. Res. 31, 2109–2148 (1991).
[CrossRef]

1990

D. T. Lindsey and D. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vis. Res. 30, 1751–1761 (1990).
[CrossRef]

1987

1983

W. B. Cowan, “An inexpensive scheme for calibration of a colour monitor in terms of CIE standard coordinates,” Comput. Graph. 17, 315–321 (1983).
[CrossRef]

1978

B. W. Tansley and R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vis. Res. 18, 683–697 (1978).
[CrossRef]

1975

D. H. Kelly, “Luminous and chromatic flickering patterns have opposite effects,” Science 188, 371–372 (1975).
[CrossRef]

Albright, T. D.

K. R. Dobkins and T. D. Albright, “What happens if it changes color when it moves?: psychophysical experiments on the nature of chromatic input to motion detectors,” Vis. Res. 33, 1019–1036 (1993).
[CrossRef]

K. R. Dobkins and T. D. Albright, “Merging processing streams: color cues for motion detection and interpretation” in The Visual Neurosciences, L. Chalupa and J. Werner eds. (MIT Press, 2004), pp. 1217–1228.

Anstis, S.

P. Cavanagh and S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vis. Res. 31, 2109–2148 (1991).
[CrossRef]

Anstis, S. M.

Bimler, D.

D. Bimler, “The chromatic parameters of isoluminant chromatic motion examined with dissimilarity judgements,” Ophthalmol. Physiol. Opt. 30, 578–582 (2010).
[CrossRef]

D. Bimler, “Flicker between equal-luminance colors examined with multidimensional scaling,” J. Opt. Soc. Am. A 27, 523–531 (2010).
[CrossRef]

D. Bimler, J. Kirkland, and S. Pichler, “Escher in color space: individual-differences multidimensional scaling of color dissimilarities collected with a gestalt formation task,” Behav. Res. Methods Instrum. Comput. 36, 69–76 (2004).

Boynton, R. M.

B. W. Tansley and R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vis. Res. 18, 683–697 (1978).
[CrossRef]

Cavanagh, P.

P. Cavanagh and S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vis. Res. 31, 2109–2148 (1991).
[CrossRef]

P. Cavanagh, D. I. A. MacLeod, and S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428–1438(1987).
[CrossRef]

P. Cavanagh, “Vision at equiluminance,” Limits of Vision (Vision and Visual Dysfunction), J. J. Kulikowski, I. J. Murray, and V. Walsh, eds. (CRC Press, 1991), Vol. V, pp. 234–250.

Cottaris, N.

N. Cottaris and R. L. De Valois, “Temporal dynamics of chromatic tuning in macaque primary visual cortex,” Nature 395, 896–900 (1998).
[CrossRef]

Cowan, W. B.

W. B. Cowan, “An inexpensive scheme for calibration of a colour monitor in terms of CIE standard coordinates,” Comput. Graph. 17, 315–321 (1983).
[CrossRef]

Cropper, S. J.

S. J. Cropper and S. M. Wuerger, “The perception of motion in chromatic stimuli,” Behav. Cogn. Neurosci. Rev. 4, 192–217 (2005).
[CrossRef]

De Valois, R. L.

N. Cottaris and R. L. De Valois, “Temporal dynamics of chromatic tuning in macaque primary visual cortex,” Nature 395, 896–900 (1998).
[CrossRef]

Dobkins, K. R.

K. R. Dobkins and T. D. Albright, “What happens if it changes color when it moves?: psychophysical experiments on the nature of chromatic input to motion detectors,” Vis. Res. 33, 1019–1036 (1993).
[CrossRef]

K. R. Dobkins and T. D. Albright, “Merging processing streams: color cues for motion detection and interpretation” in The Visual Neurosciences, L. Chalupa and J. Werner eds. (MIT Press, 2004), pp. 1217–1228.

Kaiser, P. K.

Y. Nakano and P. K. Kaiser, “Color fusion and flicker fusion frequencies using tritanopic pairs,” Vis. Res. 32, 1417–1423 (1992).
[CrossRef]

Kelly, D. H.

D. H. Kelly, “Luminous and chromatic flickering patterns have opposite effects,” Science 188, 371–372 (1975).
[CrossRef]

Kirkland, J.

D. Bimler, J. Kirkland, and S. Pichler, “Escher in color space: individual-differences multidimensional scaling of color dissimilarities collected with a gestalt formation task,” Behav. Res. Methods Instrum. Comput. 36, 69–76 (2004).

Lee, B. B.

B. B. Lee and T. Yeh, “Tritan pairs estimated by modulation photometry of red, green and blue lights,” in Colour Vision Deficiencies XII, B. Drum, ed. (Kluwer, 1994), pp. 177–184.

Lesmes, L. A.

Z.-L. Lu, L. A. Lesmes, and G. Sperling, “The mechanism of isoluminant chromatic motion perception,” Proc. Natl. Acad. Sci. USA 96, 8289–8294 (1999).
[CrossRef]

Lindsey, D. T.

D. T. Lindsey and D. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vis. Res. 30, 1751–1761 (1990).
[CrossRef]

Lu, Z.-L.

Z.-L. Lu, L. A. Lesmes, and G. Sperling, “The mechanism of isoluminant chromatic motion perception,” Proc. Natl. Acad. Sci. USA 96, 8289–8294 (1999).
[CrossRef]

MacLeod, D. I. A.

Mollon, J. D.

M. A. Webster and J. D. Mollon, “Motion minima for different directions in color space,” Vis. Res. 37, 1479–1498 (1997).
[CrossRef]

B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.

Nakano, Y.

Y. Nakano and P. K. Kaiser, “Color fusion and flicker fusion frequencies using tritanopic pairs,” Vis. Res. 32, 1417–1423 (1992).
[CrossRef]

Paulson, H. M.

H. M. Paulson, “Comparison of color vision tests used by the armed forces,” in Color Vision, D. B. Judd, ed. (National Academy Press, 1973), pp. 34–64.

Pichler, S.

D. Bimler, J. Kirkland, and S. Pichler, “Escher in color space: individual-differences multidimensional scaling of color dissimilarities collected with a gestalt formation task,” Behav. Res. Methods Instrum. Comput. 36, 69–76 (2004).

Regan, B. C.

B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.

Sperling, G.

Z.-L. Lu, L. A. Lesmes, and G. Sperling, “The mechanism of isoluminant chromatic motion perception,” Proc. Natl. Acad. Sci. USA 96, 8289–8294 (1999).
[CrossRef]

Tansley, B. W.

B. W. Tansley and R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vis. Res. 18, 683–697 (1978).
[CrossRef]

Teller, D.

D. T. Lindsey and D. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vis. Res. 30, 1751–1761 (1990).
[CrossRef]

Webster, M. A.

M. A. Webster and J. D. Mollon, “Motion minima for different directions in color space,” Vis. Res. 37, 1479–1498 (1997).
[CrossRef]

Wuerger, S. M.

S. J. Cropper and S. M. Wuerger, “The perception of motion in chromatic stimuli,” Behav. Cogn. Neurosci. Rev. 4, 192–217 (2005).
[CrossRef]

Yeh, T.

B. B. Lee and T. Yeh, “Tritan pairs estimated by modulation photometry of red, green and blue lights,” in Colour Vision Deficiencies XII, B. Drum, ed. (Kluwer, 1994), pp. 177–184.

Behav. Cogn. Neurosci. Rev.

S. J. Cropper and S. M. Wuerger, “The perception of motion in chromatic stimuli,” Behav. Cogn. Neurosci. Rev. 4, 192–217 (2005).
[CrossRef]

Behav. Res. Methods Instrum. Comput.

D. Bimler, J. Kirkland, and S. Pichler, “Escher in color space: individual-differences multidimensional scaling of color dissimilarities collected with a gestalt formation task,” Behav. Res. Methods Instrum. Comput. 36, 69–76 (2004).

Comput. Graph.

W. B. Cowan, “An inexpensive scheme for calibration of a colour monitor in terms of CIE standard coordinates,” Comput. Graph. 17, 315–321 (1983).
[CrossRef]

J. Opt. Soc. Am. A

Nature

N. Cottaris and R. L. De Valois, “Temporal dynamics of chromatic tuning in macaque primary visual cortex,” Nature 395, 896–900 (1998).
[CrossRef]

Ophthalmol. Physiol. Opt.

D. Bimler, “The chromatic parameters of isoluminant chromatic motion examined with dissimilarity judgements,” Ophthalmol. Physiol. Opt. 30, 578–582 (2010).
[CrossRef]

Proc. Natl. Acad. Sci. USA

Z.-L. Lu, L. A. Lesmes, and G. Sperling, “The mechanism of isoluminant chromatic motion perception,” Proc. Natl. Acad. Sci. USA 96, 8289–8294 (1999).
[CrossRef]

Science

D. H. Kelly, “Luminous and chromatic flickering patterns have opposite effects,” Science 188, 371–372 (1975).
[CrossRef]

Vis. Res.

M. A. Webster and J. D. Mollon, “Motion minima for different directions in color space,” Vis. Res. 37, 1479–1498 (1997).
[CrossRef]

K. R. Dobkins and T. D. Albright, “What happens if it changes color when it moves?: psychophysical experiments on the nature of chromatic input to motion detectors,” Vis. Res. 33, 1019–1036 (1993).
[CrossRef]

D. T. Lindsey and D. Teller, “Motion at isoluminance: discrimination/detection ratios for moving isoluminant gratings,” Vis. Res. 30, 1751–1761 (1990).
[CrossRef]

P. Cavanagh and S. Anstis, “The contribution of color to motion in normal and color-deficient observers,” Vis. Res. 31, 2109–2148 (1991).
[CrossRef]

B. W. Tansley and R. M. Boynton, “Chromatic border perception: the role of red- and green-sensitive cones,” Vis. Res. 18, 683–697 (1978).
[CrossRef]

Y. Nakano and P. K. Kaiser, “Color fusion and flicker fusion frequencies using tritanopic pairs,” Vis. Res. 32, 1417–1423 (1992).
[CrossRef]

Other

B. B. Lee and T. Yeh, “Tritan pairs estimated by modulation photometry of red, green and blue lights,” in Colour Vision Deficiencies XII, B. Drum, ed. (Kluwer, 1994), pp. 177–184.

P. Cavanagh, “Vision at equiluminance,” Limits of Vision (Vision and Visual Dysfunction), J. J. Kulikowski, I. J. Murray, and V. Walsh, eds. (CRC Press, 1991), Vol. V, pp. 234–250.

K. R. Dobkins and T. D. Albright, “Merging processing streams: color cues for motion detection and interpretation” in The Visual Neurosciences, L. Chalupa and J. Werner eds. (MIT Press, 2004), pp. 1217–1228.

H. M. Paulson, “Comparison of color vision tests used by the armed forces,” in Color Vision, D. B. Judd, ed. (National Academy Press, 1973), pp. 34–64.

B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Pairs of hues in the CIE-LUV color plane. (a) Eight pairs of diametrical opposites used in stage 1. (b) Sixteen pairs of near-opposites used in stage 2.

Fig. 2.
Fig. 2.

Example of the display for flicker-intensity comparisons.

Fig. 3.
Fig. 3.

One frame of the display of superimposed counterdrifting gratings.

Fig. 4.
Fig. 4.

Measures of mean (a) flicker intensity, (b) motion salience, and (c) border distinctness for 24 hue pairs, plotted as length in the color plane to display reductions of percepted intensity for specific directions; each line segment aligned with same direction that separates the corresponding hue pair. Black lines, eight hue pairs from Stage 1. Gray lines, 16 pairs from Stage 2. The superimposed arrows show the best-fit axes of compression.

Fig. 5.
Fig. 5.

Factor loadings for two-factor PCA solutions for percept-intensity estimates, from separate sessions of flicker, motion, and border tasks (small open symbols) as well as mean estimates (large solid symbols). (a) Stage 1 data. (b) Stage 2 data. Squares, flicker; circles, motion; triangles, border distinctness (results for subject PB shown by rhombi, asterisks, and inverted triangles, respectively).

Fig. 6.
Fig. 6.

Color-plane compression parameters θ, w for dissimilarity-comparison data from Stage 1 (black) and Stage 2 (gray; or red in the online version), plotted in polar coordinates 2θ and 1w. Open symbols, separate sessions; larger solid symbols, tasks averaged across sessions. Circles, flicker-intensity task (asterisks for subject PB); triangle, border-distinctness task (inverted for PB); squares, motion task (rhombuses for PB). The small rhombus at 90° shows the motion session with a poor fit to the compressed-geometry model (r=0.22).

Fig. 7.
Fig. 7.

Approximate locations of the 16 hues in cone-excitation space (transforming chromaticities from [12] into LMS terms with the CMCCAT97 Bradford matrix). The appropriate scales to use for the chromatic cardinal axes are poorly determined. Here the vertical units in the figure are smaller than the horizontal units by a factor of 0.2, the salience ratio reported by Regan and Mollon [18].

Metrics