Abstract

Few studies have investigated the possible role of higher-level cognitive mechanisms in color constancy. Following up on previous work with successive color constancy [J. Exper. Psychol. Learn. Mem. Cogn. 37, 1014 (2011) [CrossRef]  ], the current study examined the relation between simultaneous color constancy and working memory—the ability to maintain a desired representation while suppressing irrelevant information. Higher working memory was associated with poorer simultaneous color constancy of a chromatically complex stimulus. Ways in which the executive attention mechanism of working memory may account for this are discussed. This finding supports a role for higher-level cognitive mechanisms in color constancy and is the first to demonstrate a relation between simultaneous color constancy and a complex cognitive ability.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Helmholtz, Treatise on Physiological Optics, J. P. C. Southall, trans. (Dover, 1962).
  2. J. N. Yang and L. T. Maloney, “Illuminant cues in surface color perception: tests of three candidate theories,” Vis. Res. 41, 2581–2600 (2001).
    [CrossRef]
  3. M. D’Zmura, “Color constancy: surface color from changing illumination,” J. Opt. Soc. Am. A 9, 490–493 (1992).
    [CrossRef]
  4. E. H. Land, “Color vision and the natural image,” Proc. Natl. Acad. Sci. USA 45, 115–129 (1959).
    [CrossRef]
  5. K. J. Linnell and D. H. Foster, “Scene articulation: dependence of illuminant estimates on number of surfaces,” Perception 31, 151–159 (2002).
    [CrossRef]
  6. L. T. Maloney, “Illuminant estimation as cue combination,” J. Vis. 2, 493–504 (2002).
    [CrossRef]
  7. L. Arend and A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
    [CrossRef]
  8. F. W. Cornelissen and E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vis. Res. 35, 2431–2448 (1995).
  9. E. C. Allen, S. L. Beilock, and S. K. Shevell, “Working memory is related to perceptual processing: a case from color perception,” J. Exper. Psychol. Learn. Mem. Cogn. 37, 1014–1021 (2011).
    [CrossRef]
  10. E. W. Jin and S. K. Shevell, “Color memory and color constancy,” J. Opt. Soc. Am. A 13, 1981–1991 (1996).
    [CrossRef]
  11. Y. Ling and A. C. Hurlbert, “Role of color memory in successive color constancy,” J. Opt. Soc. Am. A 25, 1215–1225 (2008).
    [CrossRef]
  12. R. W. Engle, “Working memory capacity as executive attention,” Curr. Dir. Psychol. Sci. 11, 19–23 (2002).
    [CrossRef]
  13. L. F. Barrett, M. M. Tugade, and R. W. Engle, “Individual differences in working memory capacity and dual-process theories of the mind,” Psychol. Bull. 130, 553–573 (2004).
    [CrossRef]
  14. M. S. DeCaro, M. Wieth, and S. L. Beilock, “Methodologies for examining problem solving success and failure,” Methods 42, 58–67 (2007).
    [CrossRef]
  15. M. S. DeCaro, R. D. Thomas, and S. L. Beilock, “Individual differences in category learning: sometimes less working memory capacity is better than more,” Cognition 107, 284–294 (2008).
    [CrossRef]
  16. M. Daneman and P. A. Carpenter, “Individual differences in working memory and reading,” J. Verbal Learn. Verbal Behav. 19, 450–466 (1980).
    [CrossRef]
  17. A. R. A. Conway, M. J. Kane, M. F. Bunting, D. Z. Hambrick, O. Wilhelm, and R. W. Engle, “Working memory span tasks: a methodological review and user’s guide,” Psychon. Bull. Rev. 12, 769–786 (2005).
    [CrossRef]
  18. L. Rayleigh, “Experiments on colour,” Nature 25, 64–66(1881).
    [CrossRef]
  19. J. W. Jenness and S. K. Shevell, “Color appearance with sparse chromatic context,” Vis. Res. 35, 797–805 (1995).
    [CrossRef]
  20. D. B. Judd, “Colorimetry and artificial daylight,” in Technical Committee No. 7 Report of Secretariat United States Commission (International Commission on Illumination, 1951), pp. 1–60.
  21. K. L. Kelly, K. S. Gibson, and D. Nickerson, “Tristimulus specification of the Munsell Book of Color from spectrophotometric measurements,” J. Opt. Soc. Am. 33, 355–376 (1943).
    [CrossRef]
  22. D. Nickerson, Spectrophotometric Data For A Collection Of Munsell Samples (U. S. Department of Agriculture, 1953).
  23. A. H. Munsell, A Color Notation (G. H. Ellis, 1905).
  24. A. J. Reeves, K. Amano, and D. H. Foster, “Color constancy: phenomenal or projective?” Percept. Psychophys. 70, 219–228 (2008).
    [CrossRef]
  25. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef]
  26. J. W. Tukey, Exploratory Data Analysis (Addison-Wesley, 1977).
  27. S. L. Beilock, C. A. Kulp, L. E. Holt, and T. H. Carr, “More on the fragility of performance: choking under pressure in mathematical problem solving,” J. Exp. Psychol. Gen. 133, 584–600 (2004).
    [CrossRef]

2011 (1)

E. C. Allen, S. L. Beilock, and S. K. Shevell, “Working memory is related to perceptual processing: a case from color perception,” J. Exper. Psychol. Learn. Mem. Cogn. 37, 1014–1021 (2011).
[CrossRef]

2008 (3)

Y. Ling and A. C. Hurlbert, “Role of color memory in successive color constancy,” J. Opt. Soc. Am. A 25, 1215–1225 (2008).
[CrossRef]

M. S. DeCaro, R. D. Thomas, and S. L. Beilock, “Individual differences in category learning: sometimes less working memory capacity is better than more,” Cognition 107, 284–294 (2008).
[CrossRef]

A. J. Reeves, K. Amano, and D. H. Foster, “Color constancy: phenomenal or projective?” Percept. Psychophys. 70, 219–228 (2008).
[CrossRef]

2007 (1)

M. S. DeCaro, M. Wieth, and S. L. Beilock, “Methodologies for examining problem solving success and failure,” Methods 42, 58–67 (2007).
[CrossRef]

2005 (1)

A. R. A. Conway, M. J. Kane, M. F. Bunting, D. Z. Hambrick, O. Wilhelm, and R. W. Engle, “Working memory span tasks: a methodological review and user’s guide,” Psychon. Bull. Rev. 12, 769–786 (2005).
[CrossRef]

2004 (2)

L. F. Barrett, M. M. Tugade, and R. W. Engle, “Individual differences in working memory capacity and dual-process theories of the mind,” Psychol. Bull. 130, 553–573 (2004).
[CrossRef]

S. L. Beilock, C. A. Kulp, L. E. Holt, and T. H. Carr, “More on the fragility of performance: choking under pressure in mathematical problem solving,” J. Exp. Psychol. Gen. 133, 584–600 (2004).
[CrossRef]

2002 (3)

R. W. Engle, “Working memory capacity as executive attention,” Curr. Dir. Psychol. Sci. 11, 19–23 (2002).
[CrossRef]

K. J. Linnell and D. H. Foster, “Scene articulation: dependence of illuminant estimates on number of surfaces,” Perception 31, 151–159 (2002).
[CrossRef]

L. T. Maloney, “Illuminant estimation as cue combination,” J. Vis. 2, 493–504 (2002).
[CrossRef]

2001 (1)

J. N. Yang and L. T. Maloney, “Illuminant cues in surface color perception: tests of three candidate theories,” Vis. Res. 41, 2581–2600 (2001).
[CrossRef]

1996 (1)

1995 (2)

F. W. Cornelissen and E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vis. Res. 35, 2431–2448 (1995).

J. W. Jenness and S. K. Shevell, “Color appearance with sparse chromatic context,” Vis. Res. 35, 797–805 (1995).
[CrossRef]

1992 (1)

1986 (1)

1980 (1)

M. Daneman and P. A. Carpenter, “Individual differences in working memory and reading,” J. Verbal Learn. Verbal Behav. 19, 450–466 (1980).
[CrossRef]

1979 (1)

1959 (1)

E. H. Land, “Color vision and the natural image,” Proc. Natl. Acad. Sci. USA 45, 115–129 (1959).
[CrossRef]

1943 (1)

1881 (1)

L. Rayleigh, “Experiments on colour,” Nature 25, 64–66(1881).
[CrossRef]

Allen, E. C.

E. C. Allen, S. L. Beilock, and S. K. Shevell, “Working memory is related to perceptual processing: a case from color perception,” J. Exper. Psychol. Learn. Mem. Cogn. 37, 1014–1021 (2011).
[CrossRef]

Amano, K.

A. J. Reeves, K. Amano, and D. H. Foster, “Color constancy: phenomenal or projective?” Percept. Psychophys. 70, 219–228 (2008).
[CrossRef]

Arend, L.

Barrett, L. F.

L. F. Barrett, M. M. Tugade, and R. W. Engle, “Individual differences in working memory capacity and dual-process theories of the mind,” Psychol. Bull. 130, 553–573 (2004).
[CrossRef]

Beilock, S. L.

E. C. Allen, S. L. Beilock, and S. K. Shevell, “Working memory is related to perceptual processing: a case from color perception,” J. Exper. Psychol. Learn. Mem. Cogn. 37, 1014–1021 (2011).
[CrossRef]

M. S. DeCaro, R. D. Thomas, and S. L. Beilock, “Individual differences in category learning: sometimes less working memory capacity is better than more,” Cognition 107, 284–294 (2008).
[CrossRef]

M. S. DeCaro, M. Wieth, and S. L. Beilock, “Methodologies for examining problem solving success and failure,” Methods 42, 58–67 (2007).
[CrossRef]

S. L. Beilock, C. A. Kulp, L. E. Holt, and T. H. Carr, “More on the fragility of performance: choking under pressure in mathematical problem solving,” J. Exp. Psychol. Gen. 133, 584–600 (2004).
[CrossRef]

Boynton, R. M.

Brenner, E.

F. W. Cornelissen and E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vis. Res. 35, 2431–2448 (1995).

Bunting, M. F.

A. R. A. Conway, M. J. Kane, M. F. Bunting, D. Z. Hambrick, O. Wilhelm, and R. W. Engle, “Working memory span tasks: a methodological review and user’s guide,” Psychon. Bull. Rev. 12, 769–786 (2005).
[CrossRef]

Carpenter, P. A.

M. Daneman and P. A. Carpenter, “Individual differences in working memory and reading,” J. Verbal Learn. Verbal Behav. 19, 450–466 (1980).
[CrossRef]

Carr, T. H.

S. L. Beilock, C. A. Kulp, L. E. Holt, and T. H. Carr, “More on the fragility of performance: choking under pressure in mathematical problem solving,” J. Exp. Psychol. Gen. 133, 584–600 (2004).
[CrossRef]

Conway, A. R. A.

A. R. A. Conway, M. J. Kane, M. F. Bunting, D. Z. Hambrick, O. Wilhelm, and R. W. Engle, “Working memory span tasks: a methodological review and user’s guide,” Psychon. Bull. Rev. 12, 769–786 (2005).
[CrossRef]

Cornelissen, F. W.

F. W. Cornelissen and E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vis. Res. 35, 2431–2448 (1995).

D’Zmura, M.

Daneman, M.

M. Daneman and P. A. Carpenter, “Individual differences in working memory and reading,” J. Verbal Learn. Verbal Behav. 19, 450–466 (1980).
[CrossRef]

DeCaro, M. S.

M. S. DeCaro, R. D. Thomas, and S. L. Beilock, “Individual differences in category learning: sometimes less working memory capacity is better than more,” Cognition 107, 284–294 (2008).
[CrossRef]

M. S. DeCaro, M. Wieth, and S. L. Beilock, “Methodologies for examining problem solving success and failure,” Methods 42, 58–67 (2007).
[CrossRef]

Engle, R. W.

A. R. A. Conway, M. J. Kane, M. F. Bunting, D. Z. Hambrick, O. Wilhelm, and R. W. Engle, “Working memory span tasks: a methodological review and user’s guide,” Psychon. Bull. Rev. 12, 769–786 (2005).
[CrossRef]

L. F. Barrett, M. M. Tugade, and R. W. Engle, “Individual differences in working memory capacity and dual-process theories of the mind,” Psychol. Bull. 130, 553–573 (2004).
[CrossRef]

R. W. Engle, “Working memory capacity as executive attention,” Curr. Dir. Psychol. Sci. 11, 19–23 (2002).
[CrossRef]

Foster, D. H.

A. J. Reeves, K. Amano, and D. H. Foster, “Color constancy: phenomenal or projective?” Percept. Psychophys. 70, 219–228 (2008).
[CrossRef]

K. J. Linnell and D. H. Foster, “Scene articulation: dependence of illuminant estimates on number of surfaces,” Perception 31, 151–159 (2002).
[CrossRef]

Gibson, K. S.

Hambrick, D. Z.

A. R. A. Conway, M. J. Kane, M. F. Bunting, D. Z. Hambrick, O. Wilhelm, and R. W. Engle, “Working memory span tasks: a methodological review and user’s guide,” Psychon. Bull. Rev. 12, 769–786 (2005).
[CrossRef]

Helmholtz, H.

H. Helmholtz, Treatise on Physiological Optics, J. P. C. Southall, trans. (Dover, 1962).

Holt, L. E.

S. L. Beilock, C. A. Kulp, L. E. Holt, and T. H. Carr, “More on the fragility of performance: choking under pressure in mathematical problem solving,” J. Exp. Psychol. Gen. 133, 584–600 (2004).
[CrossRef]

Hurlbert, A. C.

Jenness, J. W.

J. W. Jenness and S. K. Shevell, “Color appearance with sparse chromatic context,” Vis. Res. 35, 797–805 (1995).
[CrossRef]

Jin, E. W.

Judd, D. B.

D. B. Judd, “Colorimetry and artificial daylight,” in Technical Committee No. 7 Report of Secretariat United States Commission (International Commission on Illumination, 1951), pp. 1–60.

Kane, M. J.

A. R. A. Conway, M. J. Kane, M. F. Bunting, D. Z. Hambrick, O. Wilhelm, and R. W. Engle, “Working memory span tasks: a methodological review and user’s guide,” Psychon. Bull. Rev. 12, 769–786 (2005).
[CrossRef]

Kelly, K. L.

Kulp, C. A.

S. L. Beilock, C. A. Kulp, L. E. Holt, and T. H. Carr, “More on the fragility of performance: choking under pressure in mathematical problem solving,” J. Exp. Psychol. Gen. 133, 584–600 (2004).
[CrossRef]

Land, E. H.

E. H. Land, “Color vision and the natural image,” Proc. Natl. Acad. Sci. USA 45, 115–129 (1959).
[CrossRef]

Ling, Y.

Linnell, K. J.

K. J. Linnell and D. H. Foster, “Scene articulation: dependence of illuminant estimates on number of surfaces,” Perception 31, 151–159 (2002).
[CrossRef]

MacLeod, D. I. A.

Maloney, L. T.

L. T. Maloney, “Illuminant estimation as cue combination,” J. Vis. 2, 493–504 (2002).
[CrossRef]

J. N. Yang and L. T. Maloney, “Illuminant cues in surface color perception: tests of three candidate theories,” Vis. Res. 41, 2581–2600 (2001).
[CrossRef]

Munsell, A. H.

A. H. Munsell, A Color Notation (G. H. Ellis, 1905).

Nickerson, D.

Rayleigh, L.

L. Rayleigh, “Experiments on colour,” Nature 25, 64–66(1881).
[CrossRef]

Reeves, A.

Reeves, A. J.

A. J. Reeves, K. Amano, and D. H. Foster, “Color constancy: phenomenal or projective?” Percept. Psychophys. 70, 219–228 (2008).
[CrossRef]

Shevell, S. K.

E. C. Allen, S. L. Beilock, and S. K. Shevell, “Working memory is related to perceptual processing: a case from color perception,” J. Exper. Psychol. Learn. Mem. Cogn. 37, 1014–1021 (2011).
[CrossRef]

E. W. Jin and S. K. Shevell, “Color memory and color constancy,” J. Opt. Soc. Am. A 13, 1981–1991 (1996).
[CrossRef]

J. W. Jenness and S. K. Shevell, “Color appearance with sparse chromatic context,” Vis. Res. 35, 797–805 (1995).
[CrossRef]

Thomas, R. D.

M. S. DeCaro, R. D. Thomas, and S. L. Beilock, “Individual differences in category learning: sometimes less working memory capacity is better than more,” Cognition 107, 284–294 (2008).
[CrossRef]

Tugade, M. M.

L. F. Barrett, M. M. Tugade, and R. W. Engle, “Individual differences in working memory capacity and dual-process theories of the mind,” Psychol. Bull. 130, 553–573 (2004).
[CrossRef]

Tukey, J. W.

J. W. Tukey, Exploratory Data Analysis (Addison-Wesley, 1977).

Wieth, M.

M. S. DeCaro, M. Wieth, and S. L. Beilock, “Methodologies for examining problem solving success and failure,” Methods 42, 58–67 (2007).
[CrossRef]

Wilhelm, O.

A. R. A. Conway, M. J. Kane, M. F. Bunting, D. Z. Hambrick, O. Wilhelm, and R. W. Engle, “Working memory span tasks: a methodological review and user’s guide,” Psychon. Bull. Rev. 12, 769–786 (2005).
[CrossRef]

Yang, J. N.

J. N. Yang and L. T. Maloney, “Illuminant cues in surface color perception: tests of three candidate theories,” Vis. Res. 41, 2581–2600 (2001).
[CrossRef]

Cognition (1)

M. S. DeCaro, R. D. Thomas, and S. L. Beilock, “Individual differences in category learning: sometimes less working memory capacity is better than more,” Cognition 107, 284–294 (2008).
[CrossRef]

Curr. Dir. Psychol. Sci. (1)

R. W. Engle, “Working memory capacity as executive attention,” Curr. Dir. Psychol. Sci. 11, 19–23 (2002).
[CrossRef]

J. Exp. Psychol. Gen. (1)

S. L. Beilock, C. A. Kulp, L. E. Holt, and T. H. Carr, “More on the fragility of performance: choking under pressure in mathematical problem solving,” J. Exp. Psychol. Gen. 133, 584–600 (2004).
[CrossRef]

J. Exper. Psychol. Learn. Mem. Cogn. (1)

E. C. Allen, S. L. Beilock, and S. K. Shevell, “Working memory is related to perceptual processing: a case from color perception,” J. Exper. Psychol. Learn. Mem. Cogn. 37, 1014–1021 (2011).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

J. Verbal Learn. Verbal Behav. (1)

M. Daneman and P. A. Carpenter, “Individual differences in working memory and reading,” J. Verbal Learn. Verbal Behav. 19, 450–466 (1980).
[CrossRef]

J. Vis. (1)

L. T. Maloney, “Illuminant estimation as cue combination,” J. Vis. 2, 493–504 (2002).
[CrossRef]

Methods (1)

M. S. DeCaro, M. Wieth, and S. L. Beilock, “Methodologies for examining problem solving success and failure,” Methods 42, 58–67 (2007).
[CrossRef]

Nature (1)

L. Rayleigh, “Experiments on colour,” Nature 25, 64–66(1881).
[CrossRef]

Percept. Psychophys. (1)

A. J. Reeves, K. Amano, and D. H. Foster, “Color constancy: phenomenal or projective?” Percept. Psychophys. 70, 219–228 (2008).
[CrossRef]

Perception (1)

K. J. Linnell and D. H. Foster, “Scene articulation: dependence of illuminant estimates on number of surfaces,” Perception 31, 151–159 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

E. H. Land, “Color vision and the natural image,” Proc. Natl. Acad. Sci. USA 45, 115–129 (1959).
[CrossRef]

Psychol. Bull. (1)

L. F. Barrett, M. M. Tugade, and R. W. Engle, “Individual differences in working memory capacity and dual-process theories of the mind,” Psychol. Bull. 130, 553–573 (2004).
[CrossRef]

Psychon. Bull. Rev. (1)

A. R. A. Conway, M. J. Kane, M. F. Bunting, D. Z. Hambrick, O. Wilhelm, and R. W. Engle, “Working memory span tasks: a methodological review and user’s guide,” Psychon. Bull. Rev. 12, 769–786 (2005).
[CrossRef]

Vis. Res. (3)

J. W. Jenness and S. K. Shevell, “Color appearance with sparse chromatic context,” Vis. Res. 35, 797–805 (1995).
[CrossRef]

J. N. Yang and L. T. Maloney, “Illuminant cues in surface color perception: tests of three candidate theories,” Vis. Res. 41, 2581–2600 (2001).
[CrossRef]

F. W. Cornelissen and E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vis. Res. 35, 2431–2448 (1995).

Other (5)

H. Helmholtz, Treatise on Physiological Optics, J. P. C. Southall, trans. (Dover, 1962).

D. B. Judd, “Colorimetry and artificial daylight,” in Technical Committee No. 7 Report of Secretariat United States Commission (International Commission on Illumination, 1951), pp. 1–60.

D. Nickerson, Spectrophotometric Data For A Collection Of Munsell Samples (U. S. Department of Agriculture, 1953).

A. H. Munsell, A Color Notation (G. H. Ellis, 1905).

J. W. Tukey, Exploratory Data Analysis (Addison-Wesley, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Examples of the four combinations of illuminant and background using the “red” central Reference Color. Note that, in the complex-background condition, the colored sectors embedded within the surround were randomly generated every time a new stimulus was displayed (and thus differ in the left- and right-hand columns of this example). Also note that the color appearance of the stimuli in the figure may be different from their appearance on the fully calibrated computer monitor used in the study. (b) Example of a reference and test display using the complex background, Reference Illuminant A, and “blue” Reference Color. The reference display was always on the left; the test display was always on the right. The central patch in the test display was initially set to a random chromaticity (as pictured here); observers set the chromaticity of this patch to look like the central patch in the reference display. (i) The Test Illuminant is different from the Reference Illuminant; this is a test of simultaneous color constancy. (ii) The Test Illuminant is the same as the Reference Illuminant; this is a test of color-matching ability.

Fig. 2.
Fig. 2.

Observers’ color matches averaged across Reference Colors and Test Illuminants for (a), (b) the l axis and (c), (d) the s axis. Results for the uniform [complex] background condition are shown in plots (a) and (c) [(b) and (d)]. Gray [white] bars indicate values for HighWM [LowWM] observers. Bars labeled “A” [“C”] show averaged color matches made by observers who were assigned Reference Illuminant A [C]. The vertical axis indicates the chromaticity of the averaged color match. The difference in height between each pair of same-colored adjacent bars indicates the degree of color constancy; worse color constancy is indicated by a greater difference in height between the bars (as the averaged color match shows a greater change as a function of Reference Illuminant). Error bars indicate standard errors of the mean. An asterisk indicates significance at the p<0.05 level; LowWM observers showed significantly better simultaneous color constancy (that is, a smaller difference between Reference Illuminants A and C) than HighWM observers in the complex-background condition on the l axis.

Fig. 3.
Fig. 3.

CCI values averaged across Reference Colors and Test Illuminants for (a) the l axis and (b) the s axis. Results are separated by background condition (uniform and complex). Gray [white] bars indicate values for HighWM [LowWM] observers. The vertical axis indicates the value of the CCI. A larger value indicates better color constancy. “Perfect constancy” refers to a CCI of 1; “no constancy” refers to a CCI of 0 (see text). Error bars indicate standard errors of the mean.

Fig. 4.
Fig. 4.

Color-matching measurements (for trials where the reference and Test Illuminants were the same) averaged across Reference Colors and Illuminants for (a) the l axis and (b) the s axis. Results are separated by background condition (uniform and complex). Gray [white] bars indicate values for HighWM [LowWM] observers. The vertical axis indicates the color-matching error, calculated as the absolute value of the difference between the observer’s match and the true Reference Color chromaticity. A smaller value indicates better color-matching ability. “Perfect match” refers to a color-matching error of 0. Error bars indicate standard errors of the mean. No difference between HighWM and LowWM observers was significant.

Tables (1)

Tables Icon

Table 1. Comparison of Values for the CCI for the l Axis for Simultaneous Color Constancy (“Simultaneous”), from Observers in the Current Study, and for Successive Color Constancy (“Successive”), from Different Observers Reported by [9], for the Two Background Conditions

Metrics