Abstract

The Farnsworth Lantern has been accepted in many occupational applications. Modern instruments purporting to be equivalent were inevitable given the ubiquity of its use. The OPTEC900® (Stereo Optical) has been validated and adopted as an acceptable substitute, although the fail rate is slightly higher. The Farnsworth Flashlight (Gulden Ophthalmics) has been marketed without validation. The color and luminous intensities of the three lanterns’ stimuli were measured using a Topcon SR-3 telespectroradiometer and compared with Farnsworth’s recommendations. The OPTEC900® chromaticities comply with Farnsworth’s recommendations, but the luminous intensities are rather different. The Farnsworth Flashlight differs from the Farnsworth Lantern in both chromaticity and luminous intensities. A cheap and portable equivalent to the Farnsworth Lantern is a highly attractive product. However, the Farnsworth Flashlight is significantly different in construction from the Farnsworth Lantern.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Vingrys and B. L. Cole, “Validation of the Holmes–Wright lanterns for testing colour vision,” Ophthalmic Physiol. Opt. 3, 137–152 (1986).
  2. H. Schmidgen, “The Donders machine: matter, signs, and time in a physiological experiment, ca. 1865,” Configurations 13, 211–216 (2005).
  3. W. Thomson, “A lantern for detecting color-blindness in railroad employees,” Trans. Am. Ophthalmol. Soc. 9, 189–192 (1900).
  4. C. H. Williams, “An improved lantern for testing color-perception,” Trans. Am. Ophthalmol. Soc. 9, 192–196 (1900).
  5. D. Farnsworth and P. Foreman, Development and Trial of New London Navy Lantern as a Selection Test for Serviceable Color Vision (Naval Submarine Medical Research Laboratory, 1946).
  6. B. L. Cole, K. Y. Lian, and C. Lakkis, “Color vision assessment: fail rates of two versions of the Farnsworth lantern test,” Aviat. Space Environ. Med. 77, 624–630 (2006).
  7. Commission Internationale de l’Éclairage and I. S. Organisation, “CIE Standard Colorimetric Observers” (CIE, 2008).
  8. J. M. Stelman, Encyclopaedia of Occupational Health and Safety (International Labour Office, 1999), Vol. 1.
  9. T. Fujine, T. Kanda, Y. Yoshida, M. Sugino, M. Teragawa, Y. Yamamoto, and N. Ohta, “Bit depth needed for high image quality TV-evaluation using color distribution index,” J. Disp. Technol. 4, 340–347 (2008).
    [CrossRef]
  10. W. D. Wright, Researches on Normal and Defective Colour Vision (Henry Kimpton, 1946).
  11. K. V. Laxar, S. L. Wagner, and T. C. C., “Evaluation of the Stereo Optical Farnsworth Co. Lantern (FALANT) color perception test: A specification and performance comparison with the original FALANT” (Naval Submarine Medical Research Laboratory, 1998).

2008 (1)

T. Fujine, T. Kanda, Y. Yoshida, M. Sugino, M. Teragawa, Y. Yamamoto, and N. Ohta, “Bit depth needed for high image quality TV-evaluation using color distribution index,” J. Disp. Technol. 4, 340–347 (2008).
[CrossRef]

2006 (1)

B. L. Cole, K. Y. Lian, and C. Lakkis, “Color vision assessment: fail rates of two versions of the Farnsworth lantern test,” Aviat. Space Environ. Med. 77, 624–630 (2006).

2005 (1)

H. Schmidgen, “The Donders machine: matter, signs, and time in a physiological experiment, ca. 1865,” Configurations 13, 211–216 (2005).

1986 (1)

A. J. Vingrys and B. L. Cole, “Validation of the Holmes–Wright lanterns for testing colour vision,” Ophthalmic Physiol. Opt. 3, 137–152 (1986).

1900 (2)

W. Thomson, “A lantern for detecting color-blindness in railroad employees,” Trans. Am. Ophthalmol. Soc. 9, 189–192 (1900).

C. H. Williams, “An improved lantern for testing color-perception,” Trans. Am. Ophthalmol. Soc. 9, 192–196 (1900).

C., T. C.

K. V. Laxar, S. L. Wagner, and T. C. C., “Evaluation of the Stereo Optical Farnsworth Co. Lantern (FALANT) color perception test: A specification and performance comparison with the original FALANT” (Naval Submarine Medical Research Laboratory, 1998).

Cole, B. L.

B. L. Cole, K. Y. Lian, and C. Lakkis, “Color vision assessment: fail rates of two versions of the Farnsworth lantern test,” Aviat. Space Environ. Med. 77, 624–630 (2006).

A. J. Vingrys and B. L. Cole, “Validation of the Holmes–Wright lanterns for testing colour vision,” Ophthalmic Physiol. Opt. 3, 137–152 (1986).

Farnsworth, D.

D. Farnsworth and P. Foreman, Development and Trial of New London Navy Lantern as a Selection Test for Serviceable Color Vision (Naval Submarine Medical Research Laboratory, 1946).

Foreman, P.

D. Farnsworth and P. Foreman, Development and Trial of New London Navy Lantern as a Selection Test for Serviceable Color Vision (Naval Submarine Medical Research Laboratory, 1946).

Fujine, T.

T. Fujine, T. Kanda, Y. Yoshida, M. Sugino, M. Teragawa, Y. Yamamoto, and N. Ohta, “Bit depth needed for high image quality TV-evaluation using color distribution index,” J. Disp. Technol. 4, 340–347 (2008).
[CrossRef]

Kanda, T.

T. Fujine, T. Kanda, Y. Yoshida, M. Sugino, M. Teragawa, Y. Yamamoto, and N. Ohta, “Bit depth needed for high image quality TV-evaluation using color distribution index,” J. Disp. Technol. 4, 340–347 (2008).
[CrossRef]

Lakkis, C.

B. L. Cole, K. Y. Lian, and C. Lakkis, “Color vision assessment: fail rates of two versions of the Farnsworth lantern test,” Aviat. Space Environ. Med. 77, 624–630 (2006).

Laxar, K. V.

K. V. Laxar, S. L. Wagner, and T. C. C., “Evaluation of the Stereo Optical Farnsworth Co. Lantern (FALANT) color perception test: A specification and performance comparison with the original FALANT” (Naval Submarine Medical Research Laboratory, 1998).

Lian, K. Y.

B. L. Cole, K. Y. Lian, and C. Lakkis, “Color vision assessment: fail rates of two versions of the Farnsworth lantern test,” Aviat. Space Environ. Med. 77, 624–630 (2006).

Ohta, N.

T. Fujine, T. Kanda, Y. Yoshida, M. Sugino, M. Teragawa, Y. Yamamoto, and N. Ohta, “Bit depth needed for high image quality TV-evaluation using color distribution index,” J. Disp. Technol. 4, 340–347 (2008).
[CrossRef]

Schmidgen, H.

H. Schmidgen, “The Donders machine: matter, signs, and time in a physiological experiment, ca. 1865,” Configurations 13, 211–216 (2005).

Stelman, J. M.

J. M. Stelman, Encyclopaedia of Occupational Health and Safety (International Labour Office, 1999), Vol. 1.

Sugino, M.

T. Fujine, T. Kanda, Y. Yoshida, M. Sugino, M. Teragawa, Y. Yamamoto, and N. Ohta, “Bit depth needed for high image quality TV-evaluation using color distribution index,” J. Disp. Technol. 4, 340–347 (2008).
[CrossRef]

Teragawa, M.

T. Fujine, T. Kanda, Y. Yoshida, M. Sugino, M. Teragawa, Y. Yamamoto, and N. Ohta, “Bit depth needed for high image quality TV-evaluation using color distribution index,” J. Disp. Technol. 4, 340–347 (2008).
[CrossRef]

Thomson, W.

W. Thomson, “A lantern for detecting color-blindness in railroad employees,” Trans. Am. Ophthalmol. Soc. 9, 189–192 (1900).

Vingrys, A. J.

A. J. Vingrys and B. L. Cole, “Validation of the Holmes–Wright lanterns for testing colour vision,” Ophthalmic Physiol. Opt. 3, 137–152 (1986).

Wagner, S. L.

K. V. Laxar, S. L. Wagner, and T. C. C., “Evaluation of the Stereo Optical Farnsworth Co. Lantern (FALANT) color perception test: A specification and performance comparison with the original FALANT” (Naval Submarine Medical Research Laboratory, 1998).

Williams, C. H.

C. H. Williams, “An improved lantern for testing color-perception,” Trans. Am. Ophthalmol. Soc. 9, 192–196 (1900).

Wright, W. D.

W. D. Wright, Researches on Normal and Defective Colour Vision (Henry Kimpton, 1946).

Yamamoto, Y.

T. Fujine, T. Kanda, Y. Yoshida, M. Sugino, M. Teragawa, Y. Yamamoto, and N. Ohta, “Bit depth needed for high image quality TV-evaluation using color distribution index,” J. Disp. Technol. 4, 340–347 (2008).
[CrossRef]

Yoshida, Y.

T. Fujine, T. Kanda, Y. Yoshida, M. Sugino, M. Teragawa, Y. Yamamoto, and N. Ohta, “Bit depth needed for high image quality TV-evaluation using color distribution index,” J. Disp. Technol. 4, 340–347 (2008).
[CrossRef]

Aviat. Space Environ. Med. (1)

B. L. Cole, K. Y. Lian, and C. Lakkis, “Color vision assessment: fail rates of two versions of the Farnsworth lantern test,” Aviat. Space Environ. Med. 77, 624–630 (2006).

Configurations (1)

H. Schmidgen, “The Donders machine: matter, signs, and time in a physiological experiment, ca. 1865,” Configurations 13, 211–216 (2005).

J. Disp. Technol. (1)

T. Fujine, T. Kanda, Y. Yoshida, M. Sugino, M. Teragawa, Y. Yamamoto, and N. Ohta, “Bit depth needed for high image quality TV-evaluation using color distribution index,” J. Disp. Technol. 4, 340–347 (2008).
[CrossRef]

Ophthalmic Physiol. Opt. (1)

A. J. Vingrys and B. L. Cole, “Validation of the Holmes–Wright lanterns for testing colour vision,” Ophthalmic Physiol. Opt. 3, 137–152 (1986).

Trans. Am. Ophthalmol. Soc. (2)

W. Thomson, “A lantern for detecting color-blindness in railroad employees,” Trans. Am. Ophthalmol. Soc. 9, 189–192 (1900).

C. H. Williams, “An improved lantern for testing color-perception,” Trans. Am. Ophthalmol. Soc. 9, 192–196 (1900).

Other (5)

D. Farnsworth and P. Foreman, Development and Trial of New London Navy Lantern as a Selection Test for Serviceable Color Vision (Naval Submarine Medical Research Laboratory, 1946).

W. D. Wright, Researches on Normal and Defective Colour Vision (Henry Kimpton, 1946).

K. V. Laxar, S. L. Wagner, and T. C. C., “Evaluation of the Stereo Optical Farnsworth Co. Lantern (FALANT) color perception test: A specification and performance comparison with the original FALANT” (Naval Submarine Medical Research Laboratory, 1998).

Commission Internationale de l’Éclairage and I. S. Organisation, “CIE Standard Colorimetric Observers” (CIE, 2008).

J. M. Stelman, Encyclopaedia of Occupational Health and Safety (International Labour Office, 1999), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

FALANT, subject’s view.

Fig. 2.
Fig. 2.

OPTEC 900®, subject’s view.

Fig. 3.
Fig. 3.

Farnsworth Flashlight side view with filter slides.

Fig. 4.
Fig. 4.

Chromaticity coordinates of the red stimulus colors of the Flashlight, the FALANT, and the OPTEC900 plotted with the requirements of Farnsworth [5].

Fig. 5.
Fig. 5.

Chromaticity coordinates of the white stimulus colors of the Flashlight, the FALANT, and the OPTEC900 plotted with the requirements of Farnsworth [5].

Fig. 6.
Fig. 6.

Chromaticity coordinates of the green stimulus colors of the Flashlight, the FALANT, and the OPTEC900 plotted with the requirements of Farnsworth [5].

Fig. 7.
Fig. 7.

Luminous intensity of the three stimulus colors of the Flashlight, the FALANT, and the OPTEC900. The solid lines join the means for each lantern, and the error bars represent ±1 standard deviation.

Fig. 8.
Fig. 8.

Ratio of the top luminous intensities of the top color to the bottom color of the FALANT, the OPTEC900, and the Flashlight.

Fig. 9.
Fig. 9.

Lamps from the Farnsworth Flashlight. Left is an unused spare, center is the lamp fitted after about 2 hours of use, and right is a lamp with the appropriate rating after about 2 hours of use.

Fig. 10.
Fig. 10.

Mean chromaticity coordinates of the three colors of the Flashlight, the FALANT, and the OPTEC900 plotted with the requirements of Farnsworth [5] and the protan and deutan dichromatic confusion lines through the middle of the required white region.

Tables (5)

Tables Icon

Table 1. Chromaticities and Luminous Intensities of the 18 Colors in Each Lantern in CIE 1931 x, y Color Space

Tables Icon

Table 2. Chromaticity Difference between the Mean Red, Green, and White Lights of the Flashlight, FALANT, and OPTEC900 Calculated in CIE Luv Spacea

Tables Icon

Table 3. Lightness (L*) Difference between the Mean Red, Green, and White Lights of the Flashlight, FALANT, and OPTEC900a

Tables Icon

Table 4. Residual Chromaticity Difference for Congenital Dichromatsa

Tables Icon

Table 5. Difference between the Angle of the Line Joining the Mean Colors and the Dichromatic Confusion Lines as a Measure of Alignment on the Dichromatic Confusion Linesa

Metrics