Abstract

There exist large interindividual differences in the amount of chromatic induction [Vis. Res. 49, 2261 (2009) [CrossRef]  ]. One possible reason for these differences between subjects could be differences in subjects’ eye movements. In experiment 1, subjects either had to look exclusively at the background or at the adjustable disk while they set the disk to a neutral gray as their eye position was being recorded. We found a significant difference in the amount of induction between the two viewing conditions. In a second experiment, subjects were freely looking at the display. We found no correlation between subjects’ eye movements and the amount of induction. We conclude that eye movements only play a role under artificial (forced looking) viewing conditions and that eye movements do not seem to play a large role for chromatic induction under natural viewing conditions.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hurlbert, “Color vision: putting it in context,” Curr. Biol. 6, 1381–1384 (1996).
    [CrossRef]
  2. J. Walraven, T. L. Benzschawel, and B. E. Rogowitz, “Color constancy interpretation of chromatic induction,” Die Farbe 34, 269–273 (1987).
  3. F. A. A. Kingdom, “Perceiving light versus material,” Vis. Res. 48, 2090–2105 (2008).
    [CrossRef]
  4. S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008).
    [CrossRef]
  5. E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991).
    [CrossRef]
  6. T. Hansen, S. Walter, and K. R. Gegenfurtner, “Effects of spatial and temporal context on color categories and color constancy,” J. Vis. 7(4), 2 (2007).
    [CrossRef]
  7. O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vis. Res. 40, 1813–1826 (2000).
    [CrossRef]
  8. E. H. Adelson, “Perceptual organization and the judgment of brightness,” Science 262, 2042–2044 (1993).
    [CrossRef]
  9. E. H. Adelson, “Lightness perception and lightness illusions,” in The New Cognitive Neurosciences, 2nd ed., M. Gazzaniga, ed. (MIT, 2000), pp. 339–351.
  10. B. L. Anderson, “A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions,” Perception 26, 419–453 (1997).
    [CrossRef]
  11. L. Arend and R. Goldstein, “Simultaneous constancy, lightness and brightness,” J. Opt. Soc. Am. A 4, 2281–2285 (1987).
    [CrossRef]
  12. J. J. M. Granzier, E. Brenner, F. W. Cornelissen, and J. B. J. Smeets, “Luminance-color correlation is not used to estimate the color of the illumination,” J. Vis. 5(1), 2 (2005).
    [CrossRef]
  13. D. Jameson and L. M. Hurvich, “Opponent chromatic induction: experimental evaluation and theoretical account,” J. Opt. Soc. Am. 51, 46–53 (1961).
    [CrossRef]
  14. J. Walraven, “Spatial characteristics of chromatic induction; the segregation of lateral effects from straylight artifacts,” Vis. Res. 13, 1739–1753 (1973).
    [CrossRef]
  15. E. W. Yund and J. C. Armington, “Color and brightness contrast effects as a function of spatial variables,” Vis. Res. 15, 917–929 (1975).
    [CrossRef]
  16. J. Krauskopf, “Effect of retinal image stabilization on the appearance of heterochromatic targets,” J. Opt. Soc. Am. 53, 741–744 (1963).
    [CrossRef]
  17. F. W. Cornelissen and E. Brenner, “On the role and nature of adaptation in chromatic induction,” in Channels in the Visual Nervous System: Neurophysiology, Psychophysics and Models, B. Blum ed. (Freund, 1991), pp. 109–123.
  18. F. W. Cornelissen and E. Brenner, “Simultaneous color constancy revisited: an analysis of viewing strategies,” Vis. Res. 35, 2431–2448 (1995).
    [CrossRef]
  19. P. Lennie and M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).
  20. J. M. Bosten and J. Mollon, “Kirschmann’s fourth law,” Perception 36, 190, ECVP Abstract Suppl. (2007).
  21. J. M. Bosten and J. Mollon, “Individual differences in simultaneous contrast,” Perception 37, 105, ECVP Abstract Suppl. (2008).
  22. J. Cataliotti and R. Becklen, “Single dissociation between lightness contrast effects,” Perception, Vol. 36, ECVP Abstract Suppl. (ECVP, 2007), p. 79.
  23. M. D. Fairchild, “A victory for equivalent background—on average,” in IS&T/SID Seventh Color Imaging Conference (Society for Imaging Science and Technology, 1999), pp. 87–92.
  24. V. Ekroll and F. Faul, “A simple model describes large individual differences in simultaneous color contrast,” Vis. Res. 49, 2261–2272 (2009).
    [CrossRef]
  25. M. Toscani, M. Valsecchi, and K. R. Gegenfurtner, “Where we look determines what we see,” J. Vis. 11 (11), 346 (2011).
    [CrossRef]
  26. T. Hansen and K. R. Gegenfurtner, “Classification images for chromatic signal detection,” J. Opt. Soc. Am. A 22, 2081–2089 (2005).
    [CrossRef]
  27. E. Brenner, J. J. M. Granzier, and J. B. J. Smeets, “Perceiving color at a glimpse: the relevance of where one fixates,” Vis. Res. 47, 2557–2568 (2007).
    [CrossRef]
  28. J. Golz, “Color constancy: influence of viewing behaviour on gray settings,” Perception 39, 606–619 (2010).
    [CrossRef]
  29. F. Moller, M. L. Laursen, J. Tygesen, and A. K. Sjolie, “Binocular quantification and characterization of microsaccades,” Graefe’s Archive Clin. Exper. Ophthalmol. 240, 765–770 (2002).
    [CrossRef]
  30. M. P. Lucassen and J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vis. Res. 33, 739–757 (1993).
    [CrossRef]
  31. D. H. Brainard and B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
    [CrossRef]
  32. E. H. Land, “Recent advances in retinex theory,” Vis. Res. 26, 7–21 (1986).
    [CrossRef]
  33. D. B. Judd, “Report on U.S. Secretariat Committee on colorimetry and artificial daylight,” in Proceedings of the Twelfth Session of the CIE (Bureau Central de la CIE, 1951).
  34. G. Wyszecki and W. S. Stiles, Color Science Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).
  35. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  36. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
    [CrossRef]
  37. S. Ishihara, Ishihara’s Tests for Color Deficiency (Kanehara Trading, 2004).
  38. E. Brenner and F. W. Cornelissen, “The influence of chromatic and achromatic variability on chromatic induction and perceived color,” Perception 31, 225–232 (2002).
    [CrossRef]
  39. J. J. M. Granzier, T. C. W. Nijboer, J. B. J. Smeets, and E. Brenner, “Does realistic rendering of a gradient in illumination increase chromatic induction?” in AIC Colour 05—10th Congress of the International Colour Association (2005), pp. 227–230.

2011

M. Toscani, M. Valsecchi, and K. R. Gegenfurtner, “Where we look determines what we see,” J. Vis. 11 (11), 346 (2011).
[CrossRef]

2010

J. Golz, “Color constancy: influence of viewing behaviour on gray settings,” Perception 39, 606–619 (2010).
[CrossRef]

2009

V. Ekroll and F. Faul, “A simple model describes large individual differences in simultaneous color contrast,” Vis. Res. 49, 2261–2272 (2009).
[CrossRef]

2008

J. M. Bosten and J. Mollon, “Individual differences in simultaneous contrast,” Perception 37, 105, ECVP Abstract Suppl. (2008).

F. A. A. Kingdom, “Perceiving light versus material,” Vis. Res. 48, 2090–2105 (2008).
[CrossRef]

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

2007

T. Hansen, S. Walter, and K. R. Gegenfurtner, “Effects of spatial and temporal context on color categories and color constancy,” J. Vis. 7(4), 2 (2007).
[CrossRef]

J. M. Bosten and J. Mollon, “Kirschmann’s fourth law,” Perception 36, 190, ECVP Abstract Suppl. (2007).

E. Brenner, J. J. M. Granzier, and J. B. J. Smeets, “Perceiving color at a glimpse: the relevance of where one fixates,” Vis. Res. 47, 2557–2568 (2007).
[CrossRef]

2005

T. Hansen and K. R. Gegenfurtner, “Classification images for chromatic signal detection,” J. Opt. Soc. Am. A 22, 2081–2089 (2005).
[CrossRef]

J. J. M. Granzier, E. Brenner, F. W. Cornelissen, and J. B. J. Smeets, “Luminance-color correlation is not used to estimate the color of the illumination,” J. Vis. 5(1), 2 (2005).
[CrossRef]

2002

F. Moller, M. L. Laursen, J. Tygesen, and A. K. Sjolie, “Binocular quantification and characterization of microsaccades,” Graefe’s Archive Clin. Exper. Ophthalmol. 240, 765–770 (2002).
[CrossRef]

E. Brenner and F. W. Cornelissen, “The influence of chromatic and achromatic variability on chromatic induction and perceived color,” Perception 31, 225–232 (2002).
[CrossRef]

2000

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vis. Res. 40, 1813–1826 (2000).
[CrossRef]

1997

B. L. Anderson, “A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions,” Perception 26, 419–453 (1997).
[CrossRef]

1996

A. Hurlbert, “Color vision: putting it in context,” Curr. Biol. 6, 1381–1384 (1996).
[CrossRef]

1995

F. W. Cornelissen and E. Brenner, “Simultaneous color constancy revisited: an analysis of viewing strategies,” Vis. Res. 35, 2431–2448 (1995).
[CrossRef]

1993

E. H. Adelson, “Perceptual organization and the judgment of brightness,” Science 262, 2042–2044 (1993).
[CrossRef]

M. P. Lucassen and J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vis. Res. 33, 739–757 (1993).
[CrossRef]

1992

1991

E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991).
[CrossRef]

1988

P. Lennie and M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).

1987

J. Walraven, T. L. Benzschawel, and B. E. Rogowitz, “Color constancy interpretation of chromatic induction,” Die Farbe 34, 269–273 (1987).

L. Arend and R. Goldstein, “Simultaneous constancy, lightness and brightness,” J. Opt. Soc. Am. A 4, 2281–2285 (1987).
[CrossRef]

1986

E. H. Land, “Recent advances in retinex theory,” Vis. Res. 26, 7–21 (1986).
[CrossRef]

1984

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

1982

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

1975

E. W. Yund and J. C. Armington, “Color and brightness contrast effects as a function of spatial variables,” Vis. Res. 15, 917–929 (1975).
[CrossRef]

1973

J. Walraven, “Spatial characteristics of chromatic induction; the segregation of lateral effects from straylight artifacts,” Vis. Res. 13, 1739–1753 (1973).
[CrossRef]

1963

1961

Adelson, E. H.

E. H. Adelson, “Perceptual organization and the judgment of brightness,” Science 262, 2042–2044 (1993).
[CrossRef]

E. H. Adelson, “Lightness perception and lightness illusions,” in The New Cognitive Neurosciences, 2nd ed., M. Gazzaniga, ed. (MIT, 2000), pp. 339–351.

Anderson, B. L.

B. L. Anderson, “A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions,” Perception 26, 419–453 (1997).
[CrossRef]

Arend, L.

Armington, J. C.

E. W. Yund and J. C. Armington, “Color and brightness contrast effects as a function of spatial variables,” Vis. Res. 15, 917–929 (1975).
[CrossRef]

Becklen, R.

J. Cataliotti and R. Becklen, “Single dissociation between lightness contrast effects,” Perception, Vol. 36, ECVP Abstract Suppl. (ECVP, 2007), p. 79.

Benzschawel, T. L.

J. Walraven, T. L. Benzschawel, and B. E. Rogowitz, “Color constancy interpretation of chromatic induction,” Die Farbe 34, 269–273 (1987).

Bosten, J. M.

J. M. Bosten and J. Mollon, “Individual differences in simultaneous contrast,” Perception 37, 105, ECVP Abstract Suppl. (2008).

J. M. Bosten and J. Mollon, “Kirschmann’s fourth law,” Perception 36, 190, ECVP Abstract Suppl. (2007).

Brainard, D. H.

Brenner, E.

E. Brenner, J. J. M. Granzier, and J. B. J. Smeets, “Perceiving color at a glimpse: the relevance of where one fixates,” Vis. Res. 47, 2557–2568 (2007).
[CrossRef]

J. J. M. Granzier, E. Brenner, F. W. Cornelissen, and J. B. J. Smeets, “Luminance-color correlation is not used to estimate the color of the illumination,” J. Vis. 5(1), 2 (2005).
[CrossRef]

E. Brenner and F. W. Cornelissen, “The influence of chromatic and achromatic variability on chromatic induction and perceived color,” Perception 31, 225–232 (2002).
[CrossRef]

F. W. Cornelissen and E. Brenner, “Simultaneous color constancy revisited: an analysis of viewing strategies,” Vis. Res. 35, 2431–2448 (1995).
[CrossRef]

E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991).
[CrossRef]

F. W. Cornelissen and E. Brenner, “On the role and nature of adaptation in chromatic induction,” in Channels in the Visual Nervous System: Neurophysiology, Psychophysics and Models, B. Blum ed. (Freund, 1991), pp. 109–123.

J. J. M. Granzier, T. C. W. Nijboer, J. B. J. Smeets, and E. Brenner, “Does realistic rendering of a gradient in illumination increase chromatic induction?” in AIC Colour 05—10th Congress of the International Colour Association (2005), pp. 227–230.

Cataliotti, J.

J. Cataliotti and R. Becklen, “Single dissociation between lightness contrast effects,” Perception, Vol. 36, ECVP Abstract Suppl. (ECVP, 2007), p. 79.

Cornelissen, F. W.

J. J. M. Granzier, E. Brenner, F. W. Cornelissen, and J. B. J. Smeets, “Luminance-color correlation is not used to estimate the color of the illumination,” J. Vis. 5(1), 2 (2005).
[CrossRef]

E. Brenner and F. W. Cornelissen, “The influence of chromatic and achromatic variability on chromatic induction and perceived color,” Perception 31, 225–232 (2002).
[CrossRef]

F. W. Cornelissen and E. Brenner, “Simultaneous color constancy revisited: an analysis of viewing strategies,” Vis. Res. 35, 2431–2448 (1995).
[CrossRef]

E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991).
[CrossRef]

F. W. Cornelissen and E. Brenner, “On the role and nature of adaptation in chromatic induction,” in Channels in the Visual Nervous System: Neurophysiology, Psychophysics and Models, B. Blum ed. (Freund, 1991), pp. 109–123.

D’Zmura, M.

P. Lennie and M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).

Derrington, A. M.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Ekroll, V.

V. Ekroll and F. Faul, “A simple model describes large individual differences in simultaneous color contrast,” Vis. Res. 49, 2261–2272 (2009).
[CrossRef]

Fairchild, M. D.

M. D. Fairchild, “A victory for equivalent background—on average,” in IS&T/SID Seventh Color Imaging Conference (Society for Imaging Science and Technology, 1999), pp. 87–92.

Faul, F.

V. Ekroll and F. Faul, “A simple model describes large individual differences in simultaneous color contrast,” Vis. Res. 49, 2261–2272 (2009).
[CrossRef]

Gegenfurtner, K. R.

M. Toscani, M. Valsecchi, and K. R. Gegenfurtner, “Where we look determines what we see,” J. Vis. 11 (11), 346 (2011).
[CrossRef]

T. Hansen, S. Walter, and K. R. Gegenfurtner, “Effects of spatial and temporal context on color categories and color constancy,” J. Vis. 7(4), 2 (2007).
[CrossRef]

T. Hansen and K. R. Gegenfurtner, “Classification images for chromatic signal detection,” J. Opt. Soc. Am. A 22, 2081–2089 (2005).
[CrossRef]

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vis. Res. 40, 1813–1826 (2000).
[CrossRef]

Goldstein, R.

Golz, J.

J. Golz, “Color constancy: influence of viewing behaviour on gray settings,” Perception 39, 606–619 (2010).
[CrossRef]

Granzier, J. J. M.

E. Brenner, J. J. M. Granzier, and J. B. J. Smeets, “Perceiving color at a glimpse: the relevance of where one fixates,” Vis. Res. 47, 2557–2568 (2007).
[CrossRef]

J. J. M. Granzier, E. Brenner, F. W. Cornelissen, and J. B. J. Smeets, “Luminance-color correlation is not used to estimate the color of the illumination,” J. Vis. 5(1), 2 (2005).
[CrossRef]

J. J. M. Granzier, T. C. W. Nijboer, J. B. J. Smeets, and E. Brenner, “Does realistic rendering of a gradient in illumination increase chromatic induction?” in AIC Colour 05—10th Congress of the International Colour Association (2005), pp. 227–230.

Hansen, T.

T. Hansen, S. Walter, and K. R. Gegenfurtner, “Effects of spatial and temporal context on color categories and color constancy,” J. Vis. 7(4), 2 (2007).
[CrossRef]

T. Hansen and K. R. Gegenfurtner, “Classification images for chromatic signal detection,” J. Opt. Soc. Am. A 22, 2081–2089 (2005).
[CrossRef]

Heeley, D. W.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Hurlbert, A.

A. Hurlbert, “Color vision: putting it in context,” Curr. Biol. 6, 1381–1384 (1996).
[CrossRef]

Hurvich, L. M.

Ishihara, S.

S. Ishihara, Ishihara’s Tests for Color Deficiency (Kanehara Trading, 2004).

Jameson, D.

Judd, D. B.

D. B. Judd, “Report on U.S. Secretariat Committee on colorimetry and artificial daylight,” in Proceedings of the Twelfth Session of the CIE (Bureau Central de la CIE, 1951).

Kingdom, F. A. A.

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

F. A. A. Kingdom, “Perceiving light versus material,” Vis. Res. 48, 2090–2105 (2008).
[CrossRef]

Krauskopf, J.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

J. Krauskopf, “Effect of retinal image stabilization on the appearance of heterochromatic targets,” J. Opt. Soc. Am. 53, 741–744 (1963).
[CrossRef]

Land, E. H.

E. H. Land, “Recent advances in retinex theory,” Vis. Res. 26, 7–21 (1986).
[CrossRef]

Laursen, M. L.

F. Moller, M. L. Laursen, J. Tygesen, and A. K. Sjolie, “Binocular quantification and characterization of microsaccades,” Graefe’s Archive Clin. Exper. Ophthalmol. 240, 765–770 (2002).
[CrossRef]

Lennie, P.

P. Lennie and M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Lucassen, M. P.

M. P. Lucassen and J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vis. Res. 33, 739–757 (1993).
[CrossRef]

Moller, F.

F. Moller, M. L. Laursen, J. Tygesen, and A. K. Sjolie, “Binocular quantification and characterization of microsaccades,” Graefe’s Archive Clin. Exper. Ophthalmol. 240, 765–770 (2002).
[CrossRef]

Mollon, J.

J. M. Bosten and J. Mollon, “Individual differences in simultaneous contrast,” Perception 37, 105, ECVP Abstract Suppl. (2008).

J. M. Bosten and J. Mollon, “Kirschmann’s fourth law,” Perception 36, 190, ECVP Abstract Suppl. (2007).

Nijboer, T. C. W.

J. J. M. Granzier, T. C. W. Nijboer, J. B. J. Smeets, and E. Brenner, “Does realistic rendering of a gradient in illumination increase chromatic induction?” in AIC Colour 05—10th Congress of the International Colour Association (2005), pp. 227–230.

Rinner, O.

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vis. Res. 40, 1813–1826 (2000).
[CrossRef]

Rogowitz, B. E.

J. Walraven, T. L. Benzschawel, and B. E. Rogowitz, “Color constancy interpretation of chromatic induction,” Die Farbe 34, 269–273 (1987).

Shevell, S. K.

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

Sjolie, A. K.

F. Moller, M. L. Laursen, J. Tygesen, and A. K. Sjolie, “Binocular quantification and characterization of microsaccades,” Graefe’s Archive Clin. Exper. Ophthalmol. 240, 765–770 (2002).
[CrossRef]

Smeets, J. B. J.

E. Brenner, J. J. M. Granzier, and J. B. J. Smeets, “Perceiving color at a glimpse: the relevance of where one fixates,” Vis. Res. 47, 2557–2568 (2007).
[CrossRef]

J. J. M. Granzier, E. Brenner, F. W. Cornelissen, and J. B. J. Smeets, “Luminance-color correlation is not used to estimate the color of the illumination,” J. Vis. 5(1), 2 (2005).
[CrossRef]

J. J. M. Granzier, T. C. W. Nijboer, J. B. J. Smeets, and E. Brenner, “Does realistic rendering of a gradient in illumination increase chromatic induction?” in AIC Colour 05—10th Congress of the International Colour Association (2005), pp. 227–230.

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).

Toscani, M.

M. Toscani, M. Valsecchi, and K. R. Gegenfurtner, “Where we look determines what we see,” J. Vis. 11 (11), 346 (2011).
[CrossRef]

Tygesen, J.

F. Moller, M. L. Laursen, J. Tygesen, and A. K. Sjolie, “Binocular quantification and characterization of microsaccades,” Graefe’s Archive Clin. Exper. Ophthalmol. 240, 765–770 (2002).
[CrossRef]

Valsecchi, M.

M. Toscani, M. Valsecchi, and K. R. Gegenfurtner, “Where we look determines what we see,” J. Vis. 11 (11), 346 (2011).
[CrossRef]

Walraven, J.

M. P. Lucassen and J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vis. Res. 33, 739–757 (1993).
[CrossRef]

J. Walraven, T. L. Benzschawel, and B. E. Rogowitz, “Color constancy interpretation of chromatic induction,” Die Farbe 34, 269–273 (1987).

J. Walraven, “Spatial characteristics of chromatic induction; the segregation of lateral effects from straylight artifacts,” Vis. Res. 13, 1739–1753 (1973).
[CrossRef]

Walter, S.

T. Hansen, S. Walter, and K. R. Gegenfurtner, “Effects of spatial and temporal context on color categories and color constancy,” J. Vis. 7(4), 2 (2007).
[CrossRef]

Wandell, B. A.

Williams, D. R.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).

Yund, E. W.

E. W. Yund and J. C. Armington, “Color and brightness contrast effects as a function of spatial variables,” Vis. Res. 15, 917–929 (1975).
[CrossRef]

Annu. Rev. Psychol.

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

Crit. Rev. Neurobiol.

P. Lennie and M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).

Curr. Biol.

A. Hurlbert, “Color vision: putting it in context,” Curr. Biol. 6, 1381–1384 (1996).
[CrossRef]

Die Farbe

J. Walraven, T. L. Benzschawel, and B. E. Rogowitz, “Color constancy interpretation of chromatic induction,” Die Farbe 34, 269–273 (1987).

Graefe’s Archive Clin. Exper. Ophthalmol.

F. Moller, M. L. Laursen, J. Tygesen, and A. K. Sjolie, “Binocular quantification and characterization of microsaccades,” Graefe’s Archive Clin. Exper. Ophthalmol. 240, 765–770 (2002).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Physiol.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

J. Vis.

M. Toscani, M. Valsecchi, and K. R. Gegenfurtner, “Where we look determines what we see,” J. Vis. 11 (11), 346 (2011).
[CrossRef]

J. J. M. Granzier, E. Brenner, F. W. Cornelissen, and J. B. J. Smeets, “Luminance-color correlation is not used to estimate the color of the illumination,” J. Vis. 5(1), 2 (2005).
[CrossRef]

T. Hansen, S. Walter, and K. R. Gegenfurtner, “Effects of spatial and temporal context on color categories and color constancy,” J. Vis. 7(4), 2 (2007).
[CrossRef]

Naturwissenschaften

E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991).
[CrossRef]

Perception

B. L. Anderson, “A theory of illusory lightness and transparency in monocular and binocular images: the role of contour junctions,” Perception 26, 419–453 (1997).
[CrossRef]

J. M. Bosten and J. Mollon, “Kirschmann’s fourth law,” Perception 36, 190, ECVP Abstract Suppl. (2007).

J. M. Bosten and J. Mollon, “Individual differences in simultaneous contrast,” Perception 37, 105, ECVP Abstract Suppl. (2008).

E. Brenner and F. W. Cornelissen, “The influence of chromatic and achromatic variability on chromatic induction and perceived color,” Perception 31, 225–232 (2002).
[CrossRef]

J. Golz, “Color constancy: influence of viewing behaviour on gray settings,” Perception 39, 606–619 (2010).
[CrossRef]

Science

E. H. Adelson, “Perceptual organization and the judgment of brightness,” Science 262, 2042–2044 (1993).
[CrossRef]

Vis. Res.

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vis. Res. 40, 1813–1826 (2000).
[CrossRef]

F. A. A. Kingdom, “Perceiving light versus material,” Vis. Res. 48, 2090–2105 (2008).
[CrossRef]

F. W. Cornelissen and E. Brenner, “Simultaneous color constancy revisited: an analysis of viewing strategies,” Vis. Res. 35, 2431–2448 (1995).
[CrossRef]

J. Walraven, “Spatial characteristics of chromatic induction; the segregation of lateral effects from straylight artifacts,” Vis. Res. 13, 1739–1753 (1973).
[CrossRef]

E. W. Yund and J. C. Armington, “Color and brightness contrast effects as a function of spatial variables,” Vis. Res. 15, 917–929 (1975).
[CrossRef]

V. Ekroll and F. Faul, “A simple model describes large individual differences in simultaneous color contrast,” Vis. Res. 49, 2261–2272 (2009).
[CrossRef]

E. Brenner, J. J. M. Granzier, and J. B. J. Smeets, “Perceiving color at a glimpse: the relevance of where one fixates,” Vis. Res. 47, 2557–2568 (2007).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

M. P. Lucassen and J. Walraven, “Quantifying color constancy: evidence for nonlinear processing of cone-specific contrast,” Vis. Res. 33, 739–757 (1993).
[CrossRef]

E. H. Land, “Recent advances in retinex theory,” Vis. Res. 26, 7–21 (1986).
[CrossRef]

Other

D. B. Judd, “Report on U.S. Secretariat Committee on colorimetry and artificial daylight,” in Proceedings of the Twelfth Session of the CIE (Bureau Central de la CIE, 1951).

G. Wyszecki and W. S. Stiles, Color Science Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).

S. Ishihara, Ishihara’s Tests for Color Deficiency (Kanehara Trading, 2004).

J. Cataliotti and R. Becklen, “Single dissociation between lightness contrast effects,” Perception, Vol. 36, ECVP Abstract Suppl. (ECVP, 2007), p. 79.

M. D. Fairchild, “A victory for equivalent background—on average,” in IS&T/SID Seventh Color Imaging Conference (Society for Imaging Science and Technology, 1999), pp. 87–92.

F. W. Cornelissen and E. Brenner, “On the role and nature of adaptation in chromatic induction,” in Channels in the Visual Nervous System: Neurophysiology, Psychophysics and Models, B. Blum ed. (Freund, 1991), pp. 109–123.

E. H. Adelson, “Lightness perception and lightness illusions,” in The New Cognitive Neurosciences, 2nd ed., M. Gazzaniga, ed. (MIT, 2000), pp. 339–351.

J. J. M. Granzier, T. C. W. Nijboer, J. B. J. Smeets, and E. Brenner, “Does realistic rendering of a gradient in illumination increase chromatic induction?” in AIC Colour 05—10th Congress of the International Colour Association (2005), pp. 227–230.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Examples of the stimuli used for experiment 1 and 2. The two photographs in the top row show the uniform-colored background condition, while the two photographs in the bottom row represent the variegated background condition. In the left column, the disks have a radius of 4°, while the two disks in the right column have a radius of 8°. All four types of stimuli were used for experiment 2, while only the variegated-colored background was used in experiment 1. The color of the adjustable disk as shown in the photographs is the average achromatic settings of subjects for that particular condition. For details of how the background colors were selected, see the main text.

Fig. 2.
Fig. 2.

Let A, G and B be the points in DKL space of the subject’s achromatic setting, the subject’s subjective gray setting and the background light. The projection P of A-G onto B-G is shown by the dark line. We take as our chromatic induction index, 100% *|P|/|B-G|, where |P| is the length of P and |B-G| is the length of B-G. Thus a chromatic induction index of 0% means that subject’s setting has not shifted at all from G toward B. A chromatic induction index of 100% means that the subject’s setting has shifted completely from G to B.

Fig. 3.
Fig. 3.

Results of experiment 1. The graphs show the data for the variegated-colored background condition with A, a disk radius of 4° and B, the 8° radius adjustable disk. The average chromatic induction index is plotted (y axis) for when forcing subjects to look at the background (left symbol in each graph) and when to look exclusively at the adjustable disk (right symbol) when making achromatic settings. The results show that instructing subjects to look more often at the background has a large positive effect on the chromatic induction index. The difference between these two viewing instruction on the chromatic induction index is about 10% for the 4° radius disk and about 28% for the 8° radius disk.

Fig. 4.
Fig. 4.

Results of experiment 2a. Shown are the average chromatic induction-indices obtained for each of the thirty subjects (sometimes overlapping each other) when tested with the variegated-colored background condition with the 4° radius disk. Each disk represents a subject. The big triangle represents the average amount of induction across subjects (with the standard deviation). These data show that there is a large variability between subjects in the amount of chromatic induction.

Fig. 5.
Fig. 5.

Results of experiment 2a. Shown are the average achromatic settings for each of the thirty subjects, separately plotted for each of the four inducers (shown in a different color). Also shown are the subjective gray settings for each subject (shown in black). The small crosses on the cardinal axes show the chromaticity of the inducers. The maximum variability axes were determined by computing the eigenvectors of the covariance matrix of the mean matches of the observers. From this figure we can conclude that the variability in subjects’ subjective gray settings was smaller compared to the variability in their achromatic settings during the main experiment.

Fig. 6.
Fig. 6.

Results of experiment 2a. This figure shows the area of the ellipses defined by the two maximum variability axes as shown in Fig. 5, plotted for each of the four inducers (represented by a different color) and for the variability in subjects’ subjective gray settings (gray symbol) separately. From this figure we can conclude that the least variability in subjects’ settings occurred for their subjective gray settings and that subjects showed the largest variability in their achromatic settings when a purple inducer was present. Thus, at least part of the variability between subjects in the chromatic induction index is most likely due to a real perceptual difference between subjects.

Fig. 7.
Fig. 7.

Results of experiment 2a. Shown is the average proportion of time (with their standard errors) that subjects look either at the adjustable disk, the background, or at the border when they made achromatic settings. From this figure, we can conclude that subjects spent about 88% of the time looking at the adjustable disk when making achromatic settings, about 6.5% of their time they looked at the border between the adjustable disk and the immediate background, and they only spent about 5.5% of the trial looking at the background. From this we can conclude that subjects hardly looked at the background at all.

Fig. 8.
Fig. 8.

Results of experiment 2a. A. Proportion of time that subjects looked at the background during each trial (x axis) plotted against the chromatic induction index obtained (y axis). These data reveal that there is no linear relationship between the proportion of time looking at the background and subjects’ amount of induction. Regression analysis showed that the proportion of time looking at the background could not explain the variability between subjects in the chromatic induction index to a significant degree (R2=0.079, p=0.131). B. Average number that each subject looks across the border between the adjustable disk and the background (x axis) plotted against the amount of induction obtained for that subject (y axis). These results show that there is no linear relationship between the number of border crosses and the chromatic induction index obtained. Regression analysis revealed that the average number of border crosses could not significantly explain the variability between subjects’ chromatic induction (R2=0.075, p=0.142). C. Proportion of time subjects’ looked at the border between the adjustable disk and its immediate background (shown on the x axis) and the amount of induction obtained (y axis). These results show that looking for a longer time at the border between the adjustable disk and the colored background does not increase the chromatic induction index for subjects. Regression analysis indicated that the proportion of time fixating on the border could not significantly explain the variability in subjects’ chromatic induction (R2=0.045, p=0.258).

Fig. 9.
Fig. 9.

Results from experiments 2a and 2b. Shown are the proportion of time during each trial that subjects looked at the background (y axis) separately plotted for the uniform-colored background (dark gray bar), the variegated-colored background (light gray bar), and the random-colored background of experiment 2b (white data bar). The results are shown separately for both the 4° and the 8° radius adjustable disks (plotted on the x axis). Note that for the random-color background condition, only the 4° radius disk was measured. The results show that for the 4° radius disk, there is no significant difference in the amount of time looking at the background between the uniform-colored and the variegated-colored background. However, subjects looked for less time at the background when tested with the random-colored background. For the 8° radius disk, subjects looked overall for less time at the background compared to when tested with the 4° radius disk. Moreover, subjects looked significantly longer at the background when tested with the uniform-colored background compared to the variegated-colored background condition. These data show that changing the scene statistics of the stimuli has an effect on subjects’ viewing behavior.

Fig. 10.
Fig. 10.

Results of experiment 2a. Shown is the chromatic induction index (y axis) plotted separately for the uniform-colored background (gray dashed line) and the variegated-colored background (black solid line). The data are split for the 4° radius disk and the 8° radius disk (x axis). From this figure we can conclude that overall, the chromatic induction index is larger for the uniform-colored background compared to the variegated-colored background. Moreover, the chromatic induction index is significantly larger when making achromatic settings for the 4° radius disk compared to setting an 8° radius disk to gray. This last effect is especially apparent for the uniform-colored background condition.

Fig. 11.
Fig. 11.

Stimuli used for experiment 2b: the random-colors experiment.

Fig. 12.
Fig. 12.

Results of experiment 2b. Shown is the proportion of time subjects looked at the background (x axis) and the chromatic induction index obtained (y axis). Each dot represents the average value per subject. The results show that there is no linear relationship between time spent looking at the background and the amount of chromatic induction.

Metrics