Abstract

The appearance of a chromatic stimulus depends on more than the wavelengths composing it. The scientific literature has countless examples showing that spatial and temporal features of light influence the colors we see. Studying chromatic stimuli that vary over space, time, or direction of motion has a further benefit beyond predicting color appearance: the unveiling of otherwise concealed neural processes of color vision. Spatial or temporal stimulus variation uncovers multiple mechanisms of brightness and color perception at distinct levels of the visual pathway. Spatial variation in chromaticity and luminance can change perceived three-dimensional shape, an example of chromatic signals that affect a percept other than color. Chromatic objects in motion expose the surprisingly weak link between the chromaticity of objects and their physical direction of motion, and the role of color in inducing an illusory motion direction. Space, time, and motion—color’s colleagues—reveal the richness of chromatic neural processing.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Wyszecki and W. S. Stiles, Color Science (2nd ed., Wiley, 1982).
  2. W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivites of the rods and cones,” Proc. R. Soc. Lond. Ser. B 127, 65–105 (1939).
  3. A. Stockman, D. I. A. MacLeod, and J. A. Vivien, “Isolation of the middle- and long-wavelength-sensitive cones in normal trichromats,” J. Opt. Soc. Am. A 10, 2471–2490 (1993).
    [CrossRef]
  4. V. C. Smith, R. W. Bowen, and J. Pokorny, “Threshold temporal integration of chromatic stimuli,” Vis. Res. 24, 653–660 (1984).
    [CrossRef]
  5. K. Uchikawa and M. Ikeda, “Color discrimination and appearance of short-duration, equal-luminance monochromatic lights,” J. Opt. Soc. Am. A 4, 1097–1103 (1987).
    [CrossRef]
  6. J. D. Mollon, S. Astell, and C. R. Cavonius, “A reduction in stimulus duration can improve wavelength discriminations mediated by short-wave cones,” Vis. Res. 32, 745–755 (1992).
    [CrossRef]
  7. A. Reitner, L. T. Sharpe, and E. Zrenner, “Wavelength discrimination as a function of field intensity, duration and size,” Vis. Res. 32, 179–185 (1992).
    [CrossRef]
  8. D. H. Kelly and D. van Norren, “Two-band model of heterochromatic flicker,” J. Opt. Soc. Am. 67, 1081–1091 (1977).
  9. B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).
  10. S. K. Shevell, I. Holliday, and P. Whittle, “Two separate neural mechanisms of brightness induction,” Vis. Res. 32, 2331–2340 (1992).
    [CrossRef]
  11. H. Wallach, “Brightness constancy and the nature of achromatic colors,” J. Exp. Psychol. 38, 310–324 (1948).
    [CrossRef]
  12. E. G. Heinemann, “Simultaneous brightness induction as a function of inducing-and test-field luminances,” J. Exp. Psychol. 50, 89–96 (1955).
    [CrossRef]
  13. Controls eliminate the possibility that the null effect from the outer rings is explained by rings too weak or distant to affect brightness. The same outer rings do upset the brightness matches in conditions that eliminate the percept of a fused uniform surround (see Figs. 3 and 4 in [10]).
  14. M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts, Original English translation, 1854; republished, 1967 (Van Nostrand, 1839).
  15. S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008).
    [CrossRef]
  16. R. O. Brown and D. I. A. Macleod, “Color appearance depends on the variance of surround colors,” Curr. Biol. 7, 844–849 (1997).
    [CrossRef]
  17. M. A. Webster, G. Malkoc, A. C. Bilson, and S. M. Webster, “Color contrast and contextual influences on color appearance,” J. Vision 2(6), 505–519 (2002).
    [CrossRef]
  18. S. K. Shevell and J. Wei, “A central mechanism of chromatic contrast,” Vis. Res. 40, 3173–3180 (2000).
    [CrossRef]
  19. P. Monnier and S. K. Shevell, “Large shifts in color appearance from patterned chromatic backgrounds,” Nat. Neurosci. 6, 801–802 (2003).
    [CrossRef]
  20. P. Monnier and S. K. Shevell, “Chromatic induction from S-cone patterns,” Vis. Res. 44, 849–856 (2004).
    [CrossRef]
  21. S. K. Shevell and P. Monnier, “Color shifts from S-cone patterned backgrounds: Contrast sensitivity and spatial frequency selectivity,” Vis. Res. 45, 1147–1154 (2005).
    [CrossRef]
  22. M. G. Bloj, D. Kersten, and A. C. Hurlburt, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).
  23. M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
    [CrossRef]
  24. M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
    [CrossRef]
  25. R. L. De Valois, M. A. Webster, K. K. De Valois, and B. Lingelbach, “Temporal properties of brightness and color induction,” Vis. Res. 26, 887–897 (1986).
    [CrossRef]
  26. A. F. Rossi and M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vis.Res. 36, 1391–1398 (1996).
    [CrossRef]
  27. A. D’Antona and S. K. Shevell, “Induced steady color shifts from temporally varying surrounds,” Vis. Neurosci. 23, 483–487 (2006).
  28. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt.Soc. Am. A 7, 2223–2236 (1990).
    [CrossRef]
  29. A. D’Antona and S. K. Shevell, “Induced temporal variation at frequencies not in the stimulus: Evidence for a neural nonlinearity,” J. Vision 9(3), 1–11 (2009).
    [CrossRef]
  30. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1185 (1979).
    [CrossRef]
  31. J. H. Christiansen, A. D. D’Antona, and S. K. Shevell, “The neural pathways mediating color shifts induced by temporally varying light,” J. Vision 9(5), 1–10 (2009).
    [CrossRef]
  32. S. X. Xian and S. K. Shevell, “Changes in color appearance caused by perceptual grouping,” Vis. Neurosci. 21, 383–388 (2004).
  33. D. L. King, “Assimilation is due to one perceived whole, and contrast is due to two perceived wholes,” New Ideas Psychol. 6, 277–288 (1988).
  34. D. L. King, “Grouping and assimilation in perception, memory, and conditioning,” Rev. Gen. Psychol. 5, 23–43 (2001).
  35. M. Wertheimer, “Laws of organization in perceptual forms,” in W. D. Ellis (ed. and translator). A Source Book of Gestalt Psychology (Kegan Paul, Trench, Trubner, 1923/1938), pp. 71–88.
  36. W. R. Uttal, L. Spillmann, F. Sturzel, and A. B. Sekuler, “Motion and shape in common fate,” Vis. Res. 40, 301–310 (2000).
    [CrossRef]
  37. X. Xian, “Perceptual grouping in color perception,” Doctoral dissertation (University of Chicago, 2004).
  38. F. A. A. Kingdom, “Color brings relief to human vision,” Nat. Neurosci. 6, 641–644 (2003).
    [CrossRef]
  39. V. S. Ramachandran, “Perception of shape from shading,” Nature 331, 163–166 (1988).
    [CrossRef]
  40. K. Seymour, C. W. G. Clifford, N. K. Logothetis, and A. Bartels, “The coding of color, motion and their conjunction in the human visual cortex,” Curr. Biol. 19, 177–183 (2009).
    [CrossRef]
  41. D. Wu, R. Kanai, and S. Shimojo, “Steady-state misbinding of colour and motion,” Nature 429, 262 (2004).
    [CrossRef]
  42. A. Treisman and H. Schmidt, “Illusory conjunctions in perception of objects,” Cogn. Psychol. 14, 107–141 (1982).
  43. Y. Sun, “On feature misbinding of color and motion,” Doctoral dissertation (University of Chicago, 2011).
  44. D. L. Medin, “Concepts and conceptual structure,” Am. Psychol. 44, 1469–1481 (1989).

2009 (3)

A. D’Antona and S. K. Shevell, “Induced temporal variation at frequencies not in the stimulus: Evidence for a neural nonlinearity,” J. Vision 9(3), 1–11 (2009).
[CrossRef]

J. H. Christiansen, A. D. D’Antona, and S. K. Shevell, “The neural pathways mediating color shifts induced by temporally varying light,” J. Vision 9(5), 1–10 (2009).
[CrossRef]

K. Seymour, C. W. G. Clifford, N. K. Logothetis, and A. Bartels, “The coding of color, motion and their conjunction in the human visual cortex,” Curr. Biol. 19, 177–183 (2009).
[CrossRef]

2008 (1)

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

2006 (1)

A. D’Antona and S. K. Shevell, “Induced steady color shifts from temporally varying surrounds,” Vis. Neurosci. 23, 483–487 (2006).

2005 (1)

S. K. Shevell and P. Monnier, “Color shifts from S-cone patterned backgrounds: Contrast sensitivity and spatial frequency selectivity,” Vis. Res. 45, 1147–1154 (2005).
[CrossRef]

2004 (3)

D. Wu, R. Kanai, and S. Shimojo, “Steady-state misbinding of colour and motion,” Nature 429, 262 (2004).
[CrossRef]

S. X. Xian and S. K. Shevell, “Changes in color appearance caused by perceptual grouping,” Vis. Neurosci. 21, 383–388 (2004).

P. Monnier and S. K. Shevell, “Chromatic induction from S-cone patterns,” Vis. Res. 44, 849–856 (2004).
[CrossRef]

2003 (2)

P. Monnier and S. K. Shevell, “Large shifts in color appearance from patterned chromatic backgrounds,” Nat. Neurosci. 6, 801–802 (2003).
[CrossRef]

F. A. A. Kingdom, “Color brings relief to human vision,” Nat. Neurosci. 6, 641–644 (2003).
[CrossRef]

2002 (1)

M. A. Webster, G. Malkoc, A. C. Bilson, and S. M. Webster, “Color contrast and contextual influences on color appearance,” J. Vision 2(6), 505–519 (2002).
[CrossRef]

2001 (1)

D. L. King, “Grouping and assimilation in perception, memory, and conditioning,” Rev. Gen. Psychol. 5, 23–43 (2001).

2000 (2)

W. R. Uttal, L. Spillmann, F. Sturzel, and A. B. Sekuler, “Motion and shape in common fate,” Vis. Res. 40, 301–310 (2000).
[CrossRef]

S. K. Shevell and J. Wei, “A central mechanism of chromatic contrast,” Vis. Res. 40, 3173–3180 (2000).
[CrossRef]

1999 (1)

M. G. Bloj, D. Kersten, and A. C. Hurlburt, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

1997 (1)

R. O. Brown and D. I. A. Macleod, “Color appearance depends on the variance of surround colors,” Curr. Biol. 7, 844–849 (1997).
[CrossRef]

1996 (1)

A. F. Rossi and M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vis.Res. 36, 1391–1398 (1996).
[CrossRef]

1994 (1)

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

1993 (1)

1992 (3)

J. D. Mollon, S. Astell, and C. R. Cavonius, “A reduction in stimulus duration can improve wavelength discriminations mediated by short-wave cones,” Vis. Res. 32, 745–755 (1992).
[CrossRef]

A. Reitner, L. T. Sharpe, and E. Zrenner, “Wavelength discrimination as a function of field intensity, duration and size,” Vis. Res. 32, 179–185 (1992).
[CrossRef]

S. K. Shevell, I. Holliday, and P. Whittle, “Two separate neural mechanisms of brightness induction,” Vis. Res. 32, 2331–2340 (1992).
[CrossRef]

1991 (1)

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

1990 (1)

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt.Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

1989 (1)

D. L. Medin, “Concepts and conceptual structure,” Am. Psychol. 44, 1469–1481 (1989).

1988 (3)

D. L. King, “Assimilation is due to one perceived whole, and contrast is due to two perceived wholes,” New Ideas Psychol. 6, 277–288 (1988).

V. S. Ramachandran, “Perception of shape from shading,” Nature 331, 163–166 (1988).
[CrossRef]

B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).

1987 (1)

1986 (1)

R. L. De Valois, M. A. Webster, K. K. De Valois, and B. Lingelbach, “Temporal properties of brightness and color induction,” Vis. Res. 26, 887–897 (1986).
[CrossRef]

1984 (1)

V. C. Smith, R. W. Bowen, and J. Pokorny, “Threshold temporal integration of chromatic stimuli,” Vis. Res. 24, 653–660 (1984).
[CrossRef]

1982 (1)

A. Treisman and H. Schmidt, “Illusory conjunctions in perception of objects,” Cogn. Psychol. 14, 107–141 (1982).

1979 (1)

1977 (1)

1955 (1)

E. G. Heinemann, “Simultaneous brightness induction as a function of inducing-and test-field luminances,” J. Exp. Psychol. 50, 89–96 (1955).
[CrossRef]

1948 (1)

H. Wallach, “Brightness constancy and the nature of achromatic colors,” J. Exp. Psychol. 38, 310–324 (1948).
[CrossRef]

1939 (1)

W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivites of the rods and cones,” Proc. R. Soc. Lond. Ser. B 127, 65–105 (1939).

Astell, S.

J. D. Mollon, S. Astell, and C. R. Cavonius, “A reduction in stimulus duration can improve wavelength discriminations mediated by short-wave cones,” Vis. Res. 32, 745–755 (1992).
[CrossRef]

Bartels, A.

K. Seymour, C. W. G. Clifford, N. K. Logothetis, and A. Bartels, “The coding of color, motion and their conjunction in the human visual cortex,” Curr. Biol. 19, 177–183 (2009).
[CrossRef]

Bilson, A. C.

M. A. Webster, G. Malkoc, A. C. Bilson, and S. M. Webster, “Color contrast and contextual influences on color appearance,” J. Vision 2(6), 505–519 (2002).
[CrossRef]

Bloj, M. G.

M. G. Bloj, D. Kersten, and A. C. Hurlburt, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

Bowen, R. W.

V. C. Smith, R. W. Bowen, and J. Pokorny, “Threshold temporal integration of chromatic stimuli,” Vis. Res. 24, 653–660 (1984).
[CrossRef]

Boynton, R. M.

Brown, R. O.

R. O. Brown and D. I. A. Macleod, “Color appearance depends on the variance of surround colors,” Curr. Biol. 7, 844–849 (1997).
[CrossRef]

Cavonius, C. R.

J. D. Mollon, S. Astell, and C. R. Cavonius, “A reduction in stimulus duration can improve wavelength discriminations mediated by short-wave cones,” Vis. Res. 32, 745–755 (1992).
[CrossRef]

Chevreul, M. E.

M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts, Original English translation, 1854; republished, 1967 (Van Nostrand, 1839).

Christiansen, J. H.

J. H. Christiansen, A. D. D’Antona, and S. K. Shevell, “The neural pathways mediating color shifts induced by temporally varying light,” J. Vision 9(5), 1–10 (2009).
[CrossRef]

Clifford, C. W. G.

K. Seymour, C. W. G. Clifford, N. K. Logothetis, and A. Bartels, “The coding of color, motion and their conjunction in the human visual cortex,” Curr. Biol. 19, 177–183 (2009).
[CrossRef]

D’Antona, A.

A. D’Antona and S. K. Shevell, “Induced steady color shifts from temporally varying surrounds,” Vis. Neurosci. 23, 483–487 (2006).

D’Antona, A. D.

J. H. Christiansen, A. D. D’Antona, and S. K. Shevell, “The neural pathways mediating color shifts induced by temporally varying light,” J. Vision 9(5), 1–10 (2009).
[CrossRef]

De Valois, K. K.

R. L. De Valois, M. A. Webster, K. K. De Valois, and B. Lingelbach, “Temporal properties of brightness and color induction,” Vis. Res. 26, 887–897 (1986).
[CrossRef]

De Valois, R. L.

R. L. De Valois, M. A. Webster, K. K. De Valois, and B. Lingelbach, “Temporal properties of brightness and color induction,” Vis. Res. 26, 887–897 (1986).
[CrossRef]

Heinemann, E. G.

E. G. Heinemann, “Simultaneous brightness induction as a function of inducing-and test-field luminances,” J. Exp. Psychol. 50, 89–96 (1955).
[CrossRef]

Holliday, I.

S. K. Shevell, I. Holliday, and P. Whittle, “Two separate neural mechanisms of brightness induction,” Vis. Res. 32, 2331–2340 (1992).
[CrossRef]

Hurlburt, A. C.

M. G. Bloj, D. Kersten, and A. C. Hurlburt, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

Ikeda, M.

Kanai, R.

D. Wu, R. Kanai, and S. Shimojo, “Steady-state misbinding of colour and motion,” Nature 429, 262 (2004).
[CrossRef]

Kelly, D. H.

Kersten, D.

M. G. Bloj, D. Kersten, and A. C. Hurlburt, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

King, D. L.

D. L. King, “Grouping and assimilation in perception, memory, and conditioning,” Rev. Gen. Psychol. 5, 23–43 (2001).

D. L. King, “Assimilation is due to one perceived whole, and contrast is due to two perceived wholes,” New Ideas Psychol. 6, 277–288 (1988).

Kingdom, F. A. A.

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

F. A. A. Kingdom, “Color brings relief to human vision,” Nat. Neurosci. 6, 641–644 (2003).
[CrossRef]

Lee, B. B.

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt.Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).

Lingelbach, B.

R. L. De Valois, M. A. Webster, K. K. De Valois, and B. Lingelbach, “Temporal properties of brightness and color induction,” Vis. Res. 26, 887–897 (1986).
[CrossRef]

Logothetis, N. K.

K. Seymour, C. W. G. Clifford, N. K. Logothetis, and A. Bartels, “The coding of color, motion and their conjunction in the human visual cortex,” Curr. Biol. 19, 177–183 (2009).
[CrossRef]

Macleod, D. I. A.

Malkoc, G.

M. A. Webster, G. Malkoc, A. C. Bilson, and S. M. Webster, “Color contrast and contextual influences on color appearance,” J. Vision 2(6), 505–519 (2002).
[CrossRef]

Martin, P. R.

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt.Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).

Medin, D. L.

D. L. Medin, “Concepts and conceptual structure,” Am. Psychol. 44, 1469–1481 (1989).

Mollon, J. D.

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

J. D. Mollon, S. Astell, and C. R. Cavonius, “A reduction in stimulus duration can improve wavelength discriminations mediated by short-wave cones,” Vis. Res. 32, 745–755 (1992).
[CrossRef]

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

Monnier, P.

S. K. Shevell and P. Monnier, “Color shifts from S-cone patterned backgrounds: Contrast sensitivity and spatial frequency selectivity,” Vis. Res. 45, 1147–1154 (2005).
[CrossRef]

P. Monnier and S. K. Shevell, “Chromatic induction from S-cone patterns,” Vis. Res. 44, 849–856 (2004).
[CrossRef]

P. Monnier and S. K. Shevell, “Large shifts in color appearance from patterned chromatic backgrounds,” Nat. Neurosci. 6, 801–802 (2003).
[CrossRef]

Paradiso, M. A.

A. F. Rossi and M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vis.Res. 36, 1391–1398 (1996).
[CrossRef]

Pokorny, J.

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt.Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

V. C. Smith, R. W. Bowen, and J. Pokorny, “Threshold temporal integration of chromatic stimuli,” Vis. Res. 24, 653–660 (1984).
[CrossRef]

Ramachandran, V. S.

V. S. Ramachandran, “Perception of shape from shading,” Nature 331, 163–166 (1988).
[CrossRef]

Reitner, A.

A. Reitner, L. T. Sharpe, and E. Zrenner, “Wavelength discrimination as a function of field intensity, duration and size,” Vis. Res. 32, 179–185 (1992).
[CrossRef]

Rossi, A. F.

A. F. Rossi and M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vis.Res. 36, 1391–1398 (1996).
[CrossRef]

Schmidt, H.

A. Treisman and H. Schmidt, “Illusory conjunctions in perception of objects,” Cogn. Psychol. 14, 107–141 (1982).

Sekuler, A. B.

W. R. Uttal, L. Spillmann, F. Sturzel, and A. B. Sekuler, “Motion and shape in common fate,” Vis. Res. 40, 301–310 (2000).
[CrossRef]

Seymour, K.

K. Seymour, C. W. G. Clifford, N. K. Logothetis, and A. Bartels, “The coding of color, motion and their conjunction in the human visual cortex,” Curr. Biol. 19, 177–183 (2009).
[CrossRef]

Sharpe, L. T.

A. Reitner, L. T. Sharpe, and E. Zrenner, “Wavelength discrimination as a function of field intensity, duration and size,” Vis. Res. 32, 179–185 (1992).
[CrossRef]

Shevell, S. K.

J. H. Christiansen, A. D. D’Antona, and S. K. Shevell, “The neural pathways mediating color shifts induced by temporally varying light,” J. Vision 9(5), 1–10 (2009).
[CrossRef]

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

A. D’Antona and S. K. Shevell, “Induced steady color shifts from temporally varying surrounds,” Vis. Neurosci. 23, 483–487 (2006).

S. K. Shevell and P. Monnier, “Color shifts from S-cone patterned backgrounds: Contrast sensitivity and spatial frequency selectivity,” Vis. Res. 45, 1147–1154 (2005).
[CrossRef]

P. Monnier and S. K. Shevell, “Chromatic induction from S-cone patterns,” Vis. Res. 44, 849–856 (2004).
[CrossRef]

S. X. Xian and S. K. Shevell, “Changes in color appearance caused by perceptual grouping,” Vis. Neurosci. 21, 383–388 (2004).

P. Monnier and S. K. Shevell, “Large shifts in color appearance from patterned chromatic backgrounds,” Nat. Neurosci. 6, 801–802 (2003).
[CrossRef]

S. K. Shevell and J. Wei, “A central mechanism of chromatic contrast,” Vis. Res. 40, 3173–3180 (2000).
[CrossRef]

S. K. Shevell, I. Holliday, and P. Whittle, “Two separate neural mechanisms of brightness induction,” Vis. Res. 32, 2331–2340 (1992).
[CrossRef]

Shimojo, S.

D. Wu, R. Kanai, and S. Shimojo, “Steady-state misbinding of colour and motion,” Nature 429, 262 (2004).
[CrossRef]

Smith, V. C.

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt.Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

V. C. Smith, R. W. Bowen, and J. Pokorny, “Threshold temporal integration of chromatic stimuli,” Vis. Res. 24, 653–660 (1984).
[CrossRef]

Spillmann, L.

W. R. Uttal, L. Spillmann, F. Sturzel, and A. B. Sekuler, “Motion and shape in common fate,” Vis. Res. 40, 301–310 (2000).
[CrossRef]

Stiles, W. S.

W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivites of the rods and cones,” Proc. R. Soc. Lond. Ser. B 127, 65–105 (1939).

G. Wyszecki and W. S. Stiles, Color Science (2nd ed., Wiley, 1982).

Stockman, A.

Sturzel, F.

W. R. Uttal, L. Spillmann, F. Sturzel, and A. B. Sekuler, “Motion and shape in common fate,” Vis. Res. 40, 301–310 (2000).
[CrossRef]

Sun, Y.

Y. Sun, “On feature misbinding of color and motion,” Doctoral dissertation (University of Chicago, 2011).

Treisman, A.

A. Treisman and H. Schmidt, “Illusory conjunctions in perception of objects,” Cogn. Psychol. 14, 107–141 (1982).

Uchikawa, K.

Uttal, W. R.

W. R. Uttal, L. Spillmann, F. Sturzel, and A. B. Sekuler, “Motion and shape in common fate,” Vis. Res. 40, 301–310 (2000).
[CrossRef]

Valberg, A.

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt.Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).

van Norren, D.

Vivien, J. A.

Wallach, H.

H. Wallach, “Brightness constancy and the nature of achromatic colors,” J. Exp. Psychol. 38, 310–324 (1948).
[CrossRef]

Webster, M. A.

M. A. Webster, G. Malkoc, A. C. Bilson, and S. M. Webster, “Color contrast and contextual influences on color appearance,” J. Vision 2(6), 505–519 (2002).
[CrossRef]

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

R. L. De Valois, M. A. Webster, K. K. De Valois, and B. Lingelbach, “Temporal properties of brightness and color induction,” Vis. Res. 26, 887–897 (1986).
[CrossRef]

Webster, S. M.

M. A. Webster, G. Malkoc, A. C. Bilson, and S. M. Webster, “Color contrast and contextual influences on color appearance,” J. Vision 2(6), 505–519 (2002).
[CrossRef]

Wei, J.

S. K. Shevell and J. Wei, “A central mechanism of chromatic contrast,” Vis. Res. 40, 3173–3180 (2000).
[CrossRef]

Wertheimer, M.

M. Wertheimer, “Laws of organization in perceptual forms,” in W. D. Ellis (ed. and translator). A Source Book of Gestalt Psychology (Kegan Paul, Trench, Trubner, 1923/1938), pp. 71–88.

Whittle, P.

S. K. Shevell, I. Holliday, and P. Whittle, “Two separate neural mechanisms of brightness induction,” Vis. Res. 32, 2331–2340 (1992).
[CrossRef]

Wu, D.

D. Wu, R. Kanai, and S. Shimojo, “Steady-state misbinding of colour and motion,” Nature 429, 262 (2004).
[CrossRef]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science (2nd ed., Wiley, 1982).

Xian, S. X.

S. X. Xian and S. K. Shevell, “Changes in color appearance caused by perceptual grouping,” Vis. Neurosci. 21, 383–388 (2004).

Xian, X.

X. Xian, “Perceptual grouping in color perception,” Doctoral dissertation (University of Chicago, 2004).

Zrenner, E.

A. Reitner, L. T. Sharpe, and E. Zrenner, “Wavelength discrimination as a function of field intensity, duration and size,” Vis. Res. 32, 179–185 (1992).
[CrossRef]

Am. Psychol. (1)

D. L. Medin, “Concepts and conceptual structure,” Am. Psychol. 44, 1469–1481 (1989).

Annu. Rev. Psychol. (1)

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

Cogn. Psychol. (1)

A. Treisman and H. Schmidt, “Illusory conjunctions in perception of objects,” Cogn. Psychol. 14, 107–141 (1982).

Curr. Biol. (2)

K. Seymour, C. W. G. Clifford, N. K. Logothetis, and A. Bartels, “The coding of color, motion and their conjunction in the human visual cortex,” Curr. Biol. 19, 177–183 (2009).
[CrossRef]

R. O. Brown and D. I. A. Macleod, “Color appearance depends on the variance of surround colors,” Curr. Biol. 7, 844–849 (1997).
[CrossRef]

J. Exp. Psychol. (2)

H. Wallach, “Brightness constancy and the nature of achromatic colors,” J. Exp. Psychol. 38, 310–324 (1948).
[CrossRef]

E. G. Heinemann, “Simultaneous brightness induction as a function of inducing-and test-field luminances,” J. Exp. Psychol. 50, 89–96 (1955).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

J. Opt.Soc. Am. A (1)

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt.Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

J. Physiol. (1)

B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).

J. Vision (3)

M. A. Webster, G. Malkoc, A. C. Bilson, and S. M. Webster, “Color contrast and contextual influences on color appearance,” J. Vision 2(6), 505–519 (2002).
[CrossRef]

A. D’Antona and S. K. Shevell, “Induced temporal variation at frequencies not in the stimulus: Evidence for a neural nonlinearity,” J. Vision 9(3), 1–11 (2009).
[CrossRef]

J. H. Christiansen, A. D. D’Antona, and S. K. Shevell, “The neural pathways mediating color shifts induced by temporally varying light,” J. Vision 9(5), 1–10 (2009).
[CrossRef]

Nat. Neurosci. (2)

F. A. A. Kingdom, “Color brings relief to human vision,” Nat. Neurosci. 6, 641–644 (2003).
[CrossRef]

P. Monnier and S. K. Shevell, “Large shifts in color appearance from patterned chromatic backgrounds,” Nat. Neurosci. 6, 801–802 (2003).
[CrossRef]

Nature (4)

M. G. Bloj, D. Kersten, and A. C. Hurlburt, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991).
[CrossRef]

V. S. Ramachandran, “Perception of shape from shading,” Nature 331, 163–166 (1988).
[CrossRef]

D. Wu, R. Kanai, and S. Shimojo, “Steady-state misbinding of colour and motion,” Nature 429, 262 (2004).
[CrossRef]

New Ideas Psychol. (1)

D. L. King, “Assimilation is due to one perceived whole, and contrast is due to two perceived wholes,” New Ideas Psychol. 6, 277–288 (1988).

Proc. R. Soc. Lond. Ser. B (1)

W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivites of the rods and cones,” Proc. R. Soc. Lond. Ser. B 127, 65–105 (1939).

Rev. Gen. Psychol. (1)

D. L. King, “Grouping and assimilation in perception, memory, and conditioning,” Rev. Gen. Psychol. 5, 23–43 (2001).

Vis. Neurosci. (2)

S. X. Xian and S. K. Shevell, “Changes in color appearance caused by perceptual grouping,” Vis. Neurosci. 21, 383–388 (2004).

A. D’Antona and S. K. Shevell, “Induced steady color shifts from temporally varying surrounds,” Vis. Neurosci. 23, 483–487 (2006).

Vis. Res. (10)

W. R. Uttal, L. Spillmann, F. Sturzel, and A. B. Sekuler, “Motion and shape in common fate,” Vis. Res. 40, 301–310 (2000).
[CrossRef]

M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994).
[CrossRef]

R. L. De Valois, M. A. Webster, K. K. De Valois, and B. Lingelbach, “Temporal properties of brightness and color induction,” Vis. Res. 26, 887–897 (1986).
[CrossRef]

P. Monnier and S. K. Shevell, “Chromatic induction from S-cone patterns,” Vis. Res. 44, 849–856 (2004).
[CrossRef]

S. K. Shevell and P. Monnier, “Color shifts from S-cone patterned backgrounds: Contrast sensitivity and spatial frequency selectivity,” Vis. Res. 45, 1147–1154 (2005).
[CrossRef]

V. C. Smith, R. W. Bowen, and J. Pokorny, “Threshold temporal integration of chromatic stimuli,” Vis. Res. 24, 653–660 (1984).
[CrossRef]

S. K. Shevell, I. Holliday, and P. Whittle, “Two separate neural mechanisms of brightness induction,” Vis. Res. 32, 2331–2340 (1992).
[CrossRef]

J. D. Mollon, S. Astell, and C. R. Cavonius, “A reduction in stimulus duration can improve wavelength discriminations mediated by short-wave cones,” Vis. Res. 32, 745–755 (1992).
[CrossRef]

A. Reitner, L. T. Sharpe, and E. Zrenner, “Wavelength discrimination as a function of field intensity, duration and size,” Vis. Res. 32, 179–185 (1992).
[CrossRef]

S. K. Shevell and J. Wei, “A central mechanism of chromatic contrast,” Vis. Res. 40, 3173–3180 (2000).
[CrossRef]

Vis.Res. (1)

A. F. Rossi and M. A. Paradiso, “Temporal limits of brightness induction and mechanisms of brightness perception,” Vis.Res. 36, 1391–1398 (1996).
[CrossRef]

Other (6)

X. Xian, “Perceptual grouping in color perception,” Doctoral dissertation (University of Chicago, 2004).

M. Wertheimer, “Laws of organization in perceptual forms,” in W. D. Ellis (ed. and translator). A Source Book of Gestalt Psychology (Kegan Paul, Trench, Trubner, 1923/1938), pp. 71–88.

Controls eliminate the possibility that the null effect from the outer rings is explained by rings too weak or distant to affect brightness. The same outer rings do upset the brightness matches in conditions that eliminate the percept of a fused uniform surround (see Figs. 3 and 4 in [10]).

M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts, Original English translation, 1854; republished, 1967 (Van Nostrand, 1839).

G. Wyszecki and W. S. Stiles, Color Science (2nd ed., Wiley, 1982).

Y. Sun, “On feature misbinding of color and motion,” Doctoral dissertation (University of Chicago, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic drawing of achromatic dichoptic stimuli giving the percept of fields TL and TR, which are matched in brightness, within a uniform fused surround. (b) An outer ring can be added in both eyes; its fused percept is a uniform field contiguous with the surround. (c) Brightness matches between TL (horizontal axis, set by experimenter) and TR (vertical axis, set by observer for a match), without the outer rings (squares) or with them (triangles). Adapted from [10].

Fig. 2.
Fig. 2.

View at a distance of about 50 cm. (a) A ring within a dark surround. The identical ring is in all parts of Figs. 2a–d. (b) The ring within a uniform greenish or purplish surround. (c) The ring within a surround having two chromaticities ([the same chromaticities as the uniform surrounds in (b)]. In the top [bottom] panel, the greenish [purplish] color is contiguous with the ring. (d) As (b) except about half the area of the uniform surround is replace by achromatic light. (e) The logo of the International Colour Vision Society. The light from the letters in INTERNATIONAL and COLOUR is identical. Also, the light from the letters in VISION and SOCIETY is identical (though not the same as light from INTERNATIONAL and COLOUR).

Fig. 3.
Fig. 3.

(a) A neural ‘sandwich model’ for temporally varying chromatic light. An initial linear filter precedes a nonlinear response which, in turn, is followed by a second linear filter. The cutoff frequency of the first linear filter is substantially higher than the cutoff of the second one. (b) Temporal chromatic oscillation in only the L/(L+M) direction (0 to 180 deg), only the S/(L+M) direction (90 to 270 deg), or intermediate directions. The two colored bars show equal magnitudes of simultaneous L/(L+M) and S/(L+M) modulation but with opposite relative phase: at 45 deg, the maximal L/(L+M) level is presented with the maximal S/(L+M) level, while at 135 deg the maximal L/(L+M) level is presented with the minimal S/(L+M) level. Points along the vertical dash-dot line represent the maximal L/(L+M) level paired with different levels of S/(L+M) (see text).

Fig. 4.
Fig. 4.

View at a distance of about 50 cm. (a) A test square within a uniform achromatic surround or a surround with greenish and purplish stripes. The identical test square is in all panels of Fig. 4. (b) As the bottom panel of (a) but with horizontal bars added to form an hourglass-shaped structure with the test square at the center. In the top [bottom] panel, the horizontal bars are between purplish [greenish] stripes. The difference in color appearance between the two test squares, indicated by black arrows, is the color shift from grouping. (c) Schematic drawing of the horizontal bars and test square in motion, in the same direction (above) or opposite directions (below).

Fig. 5.
Fig. 5.

(Left) Luminance variation gives the percept of a three-dimensional corrugated surface when luminance and color vary in different directions (luminance varies from top left to bottom right, color from top right to bottom left). (Right) The percept of depth is much weaker or lost entirely when color and luminance variation are perfectly aligned (both from top left to bottom right).

Fig. 6.
Fig. 6.

(a) Typical stimulus frame with red and green dots in vertical motion (width 28 deg). (b) Schematic drawing of baseline condition (after [41]): in the center (within the 4 white hash marks), red dots move upward and green dots downward, while in the periphery (outside the hash marks) the directions are reversed (red downward , green upward). The observer often perceives peripheral red dots moving upward (and green dots downward), thus taking their direction of motion from the center instead of from their physical motion. (c) Schematic drawings of stimuli that vary the degree of shape correspondence among central and peripheral stimuli, from 0 to 100%.

Metrics