Abstract

Gratings that contain luminance and chromatic components of different spatial frequencies were used to study the segregation of signals in luminance and chromatic pathways. Psychophysical detection and discrimination thresholds to these compound gratings, with luminance and chromatic components of the one either half or double the spatial frequency of the other, were measured in human observers. Spatial frequency tuning curves for detection of compound gratings followed the envelope of those for luminance and chromatic gratings. Different grating types were discriminable at detection threshold. Fourier analysis of physiological responses of macaque retinal ganglion cells to compound waveforms showed chromatic information to be restricted to the parvocellular pathway and luminance information to the magnocellular pathway. Taken together, the human psychophysical and macaque physiological data support the strict segregation of luminance and chromatic information in independent channels, with the magnocellular and parvocellular pathways, respectively, serving as likely the physiological substrates.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Parraga, G. Brelstaff, T. Troscianko, and I. R. Moorehead, “Color and luminance information in natural scenes,” J. Opt. Soc. Am. A 15, 563–569 (1998).
    [CrossRef]
  2. T. Wachtler, T. Lee, and T. J. Sejnowski, “Chromatic structure of natural scenes,” J. Opt. Soc. Am. A 18, 65–77 (2001).
    [CrossRef]
  3. G. J. Burton and I. R. Moorhead, “Color and spatial structure in natural scenes,” Appl. Opt. 26, 157–170 (1987).
    [CrossRef]
  4. G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. B 220, 89–113 (1983).
    [CrossRef]
  5. T. von der Twer and D. I. MacLeod, “Optimal nonlinear codes for the perception of natural colors,” Network 12, 395–407(2001).
  6. D. I. A. MacLeod and T. von der Twer, “The pleistochrome: optimal opponent codes for natural colours,” in Color Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003).
  7. H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vis. Res. 22, 635–643 (1982).
    [CrossRef]
  8. C. R. Ingling and E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X channel,” Vis. Res. 23, 1495–1500 (1983).
    [CrossRef]
  9. P. Lennie and M. D. D’Zmura, “Mechanisms of color vision,” CRC Crit. Rev. Neurobiol. 3, 333–400 (1988).
  10. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  11. F. A. A. Kingdom and K. T. Mullen, “Separating colour and luminance information in the visual system,” Spatial Vision 9, 191–219 (1995).
    [CrossRef]
  12. E. Kaplan, B. B. Lee, and R. M. Shapley, “New views of primate retinal function,” Progr. Retinal Res. 9, 273–336 (1990).
    [CrossRef]
  13. R. M. Shapley, “Visual sensitivity and parallel retinocortical channels,” Annu. Rev. Psych. 41, 635–658 (1990).
    [CrossRef]
  14. B. B. Lee, “Visual pathways and psychophysical channels in the primate,” J. Physiol. 589, 41–47 (2011).
    [CrossRef]
  15. B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).
  16. D. M. Dacey, “Circuitry for color coding in the primate retina,” Proc. Natl. Acad. Sci. USA 93, 582–588 (1996).
    [CrossRef]
  17. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
    [CrossRef]
  18. F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).
  19. J. Nachmias and A. Weber, “Discrimination of simple and complex gratings,” Vis. Res. 15, 217–223 (1975).
    [CrossRef]
  20. B. B. Lee, H. Sun, and A. Valberg, “Segregation of chromatic and luminance signals using a novel grating stimulus,” J. Physiol. 589, 59–73 (2011).
    [CrossRef]
  21. J. M. Crook, B. Lange-Malecki, B. B. Lee, and A. Valberg, “Visual resolution of macaque retinal ganglion cells,” J. Physiol. 396, 205–224 (1988).
  22. B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).
  23. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
    [CrossRef]
  24. J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Vis. Neurosci. 21, 263–267 (2004).
    [CrossRef]
  25. S. Anstis and P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision Physiology and Psychophysics, J. D. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 155–166.
  26. B. B. Lee, P. R. Martin, and A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).
  27. K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
  28. A. B. Watson, “Temporal Sensitivity,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, and J. P. Thomas, eds. (Wiley, 1986), pp. 6-1–6-43.
  29. R. L. DeValois and K. K. DeValois, eds., Spatial Vision, Oxford Psychology Series (Oxford University, 1988).
  30. E. Switkes, A. Bradley, and K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162(1988).
    [CrossRef]
  31. T. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
  32. A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).
  33. B. B. Lee, R. M. Shapley, M. J. Hawken, and H. Sun, “Spatial distribution of cone inputs to cells of the parvocellular pathway,” J. Opt. Soc. Am. A 29, A223–A232 (2012).
  34. K. R. Gegenfurtner, “Cortical mechanisms of color vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
    [CrossRef]
  35. E. N. Johnson, M. J. Hawken, and R. Shapley, “Cone inputs in macaque primary visual cortex,” J. Neurophysiol. 91, 2501–2514 (2004).
    [CrossRef]

2012 (1)

2011 (2)

B. B. Lee, “Visual pathways and psychophysical channels in the primate,” J. Physiol. 589, 41–47 (2011).
[CrossRef]

B. B. Lee, H. Sun, and A. Valberg, “Segregation of chromatic and luminance signals using a novel grating stimulus,” J. Physiol. 589, 59–73 (2011).
[CrossRef]

2008 (1)

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

2004 (2)

J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Vis. Neurosci. 21, 263–267 (2004).
[CrossRef]

E. N. Johnson, M. J. Hawken, and R. Shapley, “Cone inputs in macaque primary visual cortex,” J. Neurophysiol. 91, 2501–2514 (2004).
[CrossRef]

2003 (1)

K. R. Gegenfurtner, “Cortical mechanisms of color vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
[CrossRef]

2001 (2)

T. Wachtler, T. Lee, and T. J. Sejnowski, “Chromatic structure of natural scenes,” J. Opt. Soc. Am. A 18, 65–77 (2001).
[CrossRef]

T. von der Twer and D. I. MacLeod, “Optimal nonlinear codes for the perception of natural colors,” Network 12, 395–407(2001).

1998 (1)

1996 (1)

D. M. Dacey, “Circuitry for color coding in the primate retina,” Proc. Natl. Acad. Sci. USA 93, 582–588 (1996).
[CrossRef]

1995 (1)

F. A. A. Kingdom and K. T. Mullen, “Separating colour and luminance information in the visual system,” Spatial Vision 9, 191–219 (1995).
[CrossRef]

1990 (3)

E. Kaplan, B. B. Lee, and R. M. Shapley, “New views of primate retinal function,” Progr. Retinal Res. 9, 273–336 (1990).
[CrossRef]

R. M. Shapley, “Visual sensitivity and parallel retinocortical channels,” Annu. Rev. Psych. 41, 635–658 (1990).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

1989 (2)

B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).

B. B. Lee, P. R. Martin, and A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).

1988 (4)

E. Switkes, A. Bradley, and K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162(1988).
[CrossRef]

P. Lennie and M. D. D’Zmura, “Mechanisms of color vision,” CRC Crit. Rev. Neurobiol. 3, 333–400 (1988).

J. M. Crook, B. Lange-Malecki, B. B. Lee, and A. Valberg, “Visual resolution of macaque retinal ganglion cells,” J. Physiol. 396, 205–224 (1988).

B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).

1987 (1)

1985 (1)

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

1984 (2)

A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

1983 (2)

G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. B 220, 89–113 (1983).
[CrossRef]

C. R. Ingling and E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X channel,” Vis. Res. 23, 1495–1500 (1983).
[CrossRef]

1982 (1)

H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vis. Res. 22, 635–643 (1982).
[CrossRef]

1975 (1)

J. Nachmias and A. Weber, “Discrimination of simple and complex gratings,” Vis. Res. 15, 217–223 (1975).
[CrossRef]

1968 (1)

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).

1966 (1)

T. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).

Anstis, S.

S. Anstis and P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision Physiology and Psychophysics, J. D. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 155–166.

Barlow, H. B.

H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vis. Res. 22, 635–643 (1982).
[CrossRef]

Bradley, A.

Brelstaff, G.

Buchsbaum, G.

G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. B 220, 89–113 (1983).
[CrossRef]

Burton, G. J.

Campbell, F. W.

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).

Cavanagh, P.

S. Anstis and P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision Physiology and Psychophysics, J. D. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 155–166.

Crook, J. M.

J. M. Crook, B. Lange-Malecki, B. B. Lee, and A. Valberg, “Visual resolution of macaque retinal ganglion cells,” J. Physiol. 396, 205–224 (1988).

D’Zmura, M. D.

P. Lennie and M. D. D’Zmura, “Mechanisms of color vision,” CRC Crit. Rev. Neurobiol. 3, 333–400 (1988).

Dacey, D. M.

D. M. Dacey, “Circuitry for color coding in the primate retina,” Proc. Natl. Acad. Sci. USA 93, 582–588 (1996).
[CrossRef]

De Valois, K. K.

Derrington, A. M.

A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Gegenfurtner, K. R.

K. R. Gegenfurtner, “Cortical mechanisms of color vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
[CrossRef]

Gottschalk, A.

G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. B 220, 89–113 (1983).
[CrossRef]

Hawken, M. J.

B. B. Lee, R. M. Shapley, M. J. Hawken, and H. Sun, “Spatial distribution of cone inputs to cells of the parvocellular pathway,” J. Opt. Soc. Am. A 29, A223–A232 (2012).

E. N. Johnson, M. J. Hawken, and R. Shapley, “Cone inputs in macaque primary visual cortex,” J. Neurophysiol. 91, 2501–2514 (2004).
[CrossRef]

Hubel, D. H.

T. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).

Ingling, C. R.

C. R. Ingling and E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X channel,” Vis. Res. 23, 1495–1500 (1983).
[CrossRef]

Johnson, E. N.

E. N. Johnson, M. J. Hawken, and R. Shapley, “Cone inputs in macaque primary visual cortex,” J. Neurophysiol. 91, 2501–2514 (2004).
[CrossRef]

Kaplan, E.

E. Kaplan, B. B. Lee, and R. M. Shapley, “New views of primate retinal function,” Progr. Retinal Res. 9, 273–336 (1990).
[CrossRef]

Kingdom, F. A. A.

F. A. A. Kingdom and K. T. Mullen, “Separating colour and luminance information in the visual system,” Spatial Vision 9, 191–219 (1995).
[CrossRef]

Krauskopf, J.

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

Lange-Malecki, B.

J. M. Crook, B. Lange-Malecki, B. B. Lee, and A. Valberg, “Visual resolution of macaque retinal ganglion cells,” J. Physiol. 396, 205–224 (1988).

Lee, B. B.

B. B. Lee, R. M. Shapley, M. J. Hawken, and H. Sun, “Spatial distribution of cone inputs to cells of the parvocellular pathway,” J. Opt. Soc. Am. A 29, A223–A232 (2012).

B. B. Lee, “Visual pathways and psychophysical channels in the primate,” J. Physiol. 589, 41–47 (2011).
[CrossRef]

B. B. Lee, H. Sun, and A. Valberg, “Segregation of chromatic and luminance signals using a novel grating stimulus,” J. Physiol. 589, 59–73 (2011).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

E. Kaplan, B. B. Lee, and R. M. Shapley, “New views of primate retinal function,” Progr. Retinal Res. 9, 273–336 (1990).
[CrossRef]

B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).

B. B. Lee, P. R. Martin, and A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).

B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).

J. M. Crook, B. Lange-Malecki, B. B. Lee, and A. Valberg, “Visual resolution of macaque retinal ganglion cells,” J. Physiol. 396, 205–224 (1988).

Lee, T.

Lennie, P.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

P. Lennie and M. D. D’Zmura, “Mechanisms of color vision,” CRC Crit. Rev. Neurobiol. 3, 333–400 (1988).

A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

MacLeod, D. I.

T. von der Twer and D. I. MacLeod, “Optimal nonlinear codes for the perception of natural colors,” Network 12, 395–407(2001).

MacLeod, D. I. A.

D. I. A. MacLeod and T. von der Twer, “The pleistochrome: optimal opponent codes for natural colours,” in Color Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003).

Martin, P. R.

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

B. B. Lee, P. R. Martin, and A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).

B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).

B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).

Martinez-Uriegas, E.

C. R. Ingling and E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X channel,” Vis. Res. 23, 1495–1500 (1983).
[CrossRef]

Moorehead, I. R.

Moorhead, I. R.

Mullen, K. T.

F. A. A. Kingdom and K. T. Mullen, “Separating colour and luminance information in the visual system,” Spatial Vision 9, 191–219 (1995).
[CrossRef]

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

Nachmias, J.

J. Nachmias and A. Weber, “Discrimination of simple and complex gratings,” Vis. Res. 15, 217–223 (1975).
[CrossRef]

Parraga, C. A.

Pokorny, J.

J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Vis. Neurosci. 21, 263–267 (2004).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

Quinlan, J.

J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Vis. Neurosci. 21, 263–267 (2004).
[CrossRef]

Robson, J. G.

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).

Sejnowski, T. J.

Shapley, R.

E. N. Johnson, M. J. Hawken, and R. Shapley, “Cone inputs in macaque primary visual cortex,” J. Neurophysiol. 91, 2501–2514 (2004).
[CrossRef]

Shapley, R. M.

B. B. Lee, R. M. Shapley, M. J. Hawken, and H. Sun, “Spatial distribution of cone inputs to cells of the parvocellular pathway,” J. Opt. Soc. Am. A 29, A223–A232 (2012).

R. M. Shapley, “Visual sensitivity and parallel retinocortical channels,” Annu. Rev. Psych. 41, 635–658 (1990).
[CrossRef]

E. Kaplan, B. B. Lee, and R. M. Shapley, “New views of primate retinal function,” Progr. Retinal Res. 9, 273–336 (1990).
[CrossRef]

Smith, V. C.

Smithson, H.

J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Vis. Neurosci. 21, 263–267 (2004).
[CrossRef]

Solomon, S. G.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

Sun, H.

B. B. Lee, R. M. Shapley, M. J. Hawken, and H. Sun, “Spatial distribution of cone inputs to cells of the parvocellular pathway,” J. Opt. Soc. Am. A 29, A223–A232 (2012).

B. B. Lee, H. Sun, and A. Valberg, “Segregation of chromatic and luminance signals using a novel grating stimulus,” J. Physiol. 589, 59–73 (2011).
[CrossRef]

Switkes, E.

Tailby, C.

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

Troscianko, T.

Valberg, A.

B. B. Lee, H. Sun, and A. Valberg, “Segregation of chromatic and luminance signals using a novel grating stimulus,” J. Physiol. 589, 59–73 (2011).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990).
[CrossRef]

B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).

B. B. Lee, P. R. Martin, and A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).

B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).

J. M. Crook, B. Lange-Malecki, B. B. Lee, and A. Valberg, “Visual resolution of macaque retinal ganglion cells,” J. Physiol. 396, 205–224 (1988).

von der Twer, T.

T. von der Twer and D. I. MacLeod, “Optimal nonlinear codes for the perception of natural colors,” Network 12, 395–407(2001).

D. I. A. MacLeod and T. von der Twer, “The pleistochrome: optimal opponent codes for natural colours,” in Color Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003).

Wachtler, T.

Watson, A. B.

A. B. Watson, “Temporal Sensitivity,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, and J. P. Thomas, eds. (Wiley, 1986), pp. 6-1–6-43.

Weber, A.

J. Nachmias and A. Weber, “Discrimination of simple and complex gratings,” Vis. Res. 15, 217–223 (1975).
[CrossRef]

Wiesel, T.

T. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).

Annu. Rev. Psych. (1)

R. M. Shapley, “Visual sensitivity and parallel retinocortical channels,” Annu. Rev. Psych. 41, 635–658 (1990).
[CrossRef]

Appl. Opt. (1)

CRC Crit. Rev. Neurobiol. (1)

P. Lennie and M. D. D’Zmura, “Mechanisms of color vision,” CRC Crit. Rev. Neurobiol. 3, 333–400 (1988).

J. Neurophysiol. (2)

E. N. Johnson, M. J. Hawken, and R. Shapley, “Cone inputs in macaque primary visual cortex,” J. Neurophysiol. 91, 2501–2514 (2004).
[CrossRef]

T. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).

J. Neurosci. (2)

C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008).
[CrossRef]

B. B. Lee, P. R. Martin, and A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).

J. Opt. Soc. Am. A (5)

J. Physiol. (9)

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue–yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. 197, 551–566 (1968).

A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).

A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).

B. B. Lee, “Visual pathways and psychophysical channels in the primate,” J. Physiol. 589, 41–47 (2011).
[CrossRef]

B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).

B. B. Lee, H. Sun, and A. Valberg, “Segregation of chromatic and luminance signals using a novel grating stimulus,” J. Physiol. 589, 59–73 (2011).
[CrossRef]

J. M. Crook, B. Lange-Malecki, B. B. Lee, and A. Valberg, “Visual resolution of macaque retinal ganglion cells,” J. Physiol. 396, 205–224 (1988).

B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).

Nat. Rev. Neurosci. (1)

K. R. Gegenfurtner, “Cortical mechanisms of color vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
[CrossRef]

Network (1)

T. von der Twer and D. I. MacLeod, “Optimal nonlinear codes for the perception of natural colors,” Network 12, 395–407(2001).

Proc. Natl. Acad. Sci. USA (1)

D. M. Dacey, “Circuitry for color coding in the primate retina,” Proc. Natl. Acad. Sci. USA 93, 582–588 (1996).
[CrossRef]

Proc. R. Soc. B (1)

G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. B 220, 89–113 (1983).
[CrossRef]

Progr. Retinal Res. (1)

E. Kaplan, B. B. Lee, and R. M. Shapley, “New views of primate retinal function,” Progr. Retinal Res. 9, 273–336 (1990).
[CrossRef]

Spatial Vision (1)

F. A. A. Kingdom and K. T. Mullen, “Separating colour and luminance information in the visual system,” Spatial Vision 9, 191–219 (1995).
[CrossRef]

Vis. Neurosci. (1)

J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Vis. Neurosci. 21, 263–267 (2004).
[CrossRef]

Vis. Res. (3)

H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vis. Res. 22, 635–643 (1982).
[CrossRef]

C. R. Ingling and E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X channel,” Vis. Res. 23, 1495–1500 (1983).
[CrossRef]

J. Nachmias and A. Weber, “Discrimination of simple and complex gratings,” Vis. Res. 15, 217–223 (1975).
[CrossRef]

Other (4)

A. B. Watson, “Temporal Sensitivity,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, and J. P. Thomas, eds. (Wiley, 1986), pp. 6-1–6-43.

R. L. DeValois and K. K. DeValois, eds., Spatial Vision, Oxford Psychology Series (Oxford University, 1988).

D. I. A. MacLeod and T. von der Twer, “The pleistochrome: optimal opponent codes for natural colours,” in Color Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003).

S. Anstis and P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision Physiology and Psychophysics, J. D. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 155–166.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Grating stimuli. (A) Luminance grating. (B) Isoluminant red–green grating. (C) Compound 1, chromatic red/green modulation combined with luminance modulation of twice the spatial frequency; (D, E) Compound grating 2, chromatic red/green modulation of doubled spatial frequency is combined with a luminance grating. Two phase relations are shown (2A, 2B). Below each stimulus sample are waveforms representing the gun modulations (red and green); the solid black curve is the mean luminance of the two guns.

Fig. 2.
Fig. 2.

Retinal ganglion cell response histograms. +LM and +ML PC and on- and off-center MC Cell responses to grating stimuli. (A) Luminance, (B) Chromatic, (C) Compound 1, and (D and E) Compound 2 variants. 4° stimuli were presented at 4.88 Hz using a Maxwellian view system: 50% contrast. PC cells respond preferentially to the chromatic content of compound gratings whereas MC cells respond strongly to the luminance content. Average of 32 stimulus cycles, 64 bins/cycle.

Fig. 3.
Fig. 3.

Harmonic composition of PC and MC cell responses. Fourier spectra for (A) the +ML, +LM PC cells and (B) the on- and off-center MC cells of Fig. 2. PC cells exhibit strong responses to the chromatic content in compound gratings with the majority of energy in the first harmonic for compound 1 and the second harmonic for compound 2 (Compounds 2A,2B). The reverse is true for MC cells. MC cells respond chiefly to the luminance content of compound gratings with the majority of MC energy localized in the second harmonic of compound 1 (Compound 1) and the first harmonic of compound 2 (Compounds 2A,2B).

Fig. 4.
Fig. 4.

Harmonic composition of PC and MC cells as a function of contrast. First and second harmonic composition of an +ML PC cell and an On MC cell for (A) standard luminance and chromatic modulation, (B) Compound 1, (C) both variations of Compound 2. The PC and MC response to compound gratings is again specific to either the chromatic or luminance content respectively, and this relation is maintained across a wide range of contrast.

Fig. 5.
Fig. 5.

Luminance and chromatic spatial contrast sensitivity functions and detection thresholds of compound grating types. Detection thresholds are plotted for observers BC and RE: (A) Solid and dashed curves represent filter fits to the observer’s detection thresholds for luminance and red–green isoluminant chromatic modulation. The luminance CSF consists of a bandpass filter that is a difference between a 3-stage and 1-stage lowpass filter. Chromatic CSFs are fit with a lowpass 2-stage filter. (B) CSFs and detection thresholds of Compound 1. The luminance curve [filter fit from (A)] was shifted along the x-axis by a factor of 0.5 to account for relative spatial frequency of the luminance content, and the chromatic CSF was shifted by a factor of 1.78 along the y-axis to account for the relative RMS chromatic contrast of the chromatic and compound gratings. (C) CSFs and detection thresholds of Compound 2. The chromatic curve was shifted along the x-axis by a factor of 0.5 to account for relative spatial frequency of the chromatic content and was shifted by a factor of 1.58 along the y-axis to account for the relative chromatic contrast of the chromatic and compound gratings. The chromatic CSF is more sensitive at low spatial frequencies whereas the luminance CSF dominates at higher spatial frequencies. Therefore, the detection of compound gratings appears to be mediated by the mechanism that is most sensitive at a particular spatial frequency.

Fig. 6.
Fig. 6.

Psychophysical thresholds of the discrimination of compound gratings from luminance and chromatic gratings. Thresholds for observers BC and RE for the conditions (A) Compound 1 discrimination from a luminance grating, (B) Compound 1 discrimination from a chromatic grating, (C) Compound 2 discrimination from a luminance grating, and (D) Compound 2 discrimination from a chromatic grating. The discrimination task is robust down to threshold, which is consistent with independent luminance and chromatic mechanisms permitting discrimination.

Fig. 7.
Fig. 7.

Tritan psychophysical spatial contrast sensitivity functions of different grating types. Detection and discrimination thresholds for observer BC: (A) Luminance and blue–yellow tritan contrast sensitivity functions. Filter fits applied to B–Y results are analogous to the R–G CSF models. (B) Detection of compound 1 and compound 2 gratings. As with R–G modulation, B–Y detection follows the envelope of the more sensitive CSF. (C) Discrimination data for both compounds 1 and 2 from luminance and chromatic gratings. The same adjustment for the luminance and chromatic CSFs regarding relative spatial frequency and RMS chromatic contrast were used as for red–green detection and discrimination.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R(θ)=Clumsin(θ)+1G(θ)=Clumsin(θ)+1,
R(θ)=Cchrsin(θ)+1G(θ)=Cchrsin(θ)+1,
R(θ)=(Clumcos(2θ)+1)(Cchrsin(θ)+1)/2G(θ)=(Clumcos(2θ)+1)(Cchrsin(θ)+1)/2,
R(θ)=(Clumsin(θ+π/4)+1)(Cchrsin(2θ)+1)/2G(θ)=(Clumsin(θ+π/4)+1)(Cchrsin(2θ)+1)/2,
Schrom=k0(1+2π(f/f0)2)22
Slum=k1(1+2π(f/f1)2)32k2(1+2π(f/f2)2)12,

Metrics