Abstract

Electroretinographic responses to cone and rod isolating stimuli and to simultaneous L- and M-cone modulation were measured at different temporal frequencies between 2 and 60 Hz and at two mean luminances using a four primary stimulator. The responses driven by each photoreceptor type had distinct characteristics. The responses to stimuli containing L- and/or M-cone stimulation indicated the presence of two underlying mechanisms that were active in distinct frequency regions. Between 2 and 12 Hz, the responses displayed properties that were reminiscent of the L–M-cone opponent system. At higher temporal frequencies, the electroretinograms were more determined by the luminance content in the stimuli.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Estévez and H. Spekreijse, “A spectral compensation method for determining the flicker characteristics of the human colour mechanisms,” Vis. Res. 14, 823–830 (1974).
    [CrossRef]
  2. O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982).
    [CrossRef]
  3. J. Kremers, “The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal retina,” Prog. Retinal Eye Res. 22, 579–605 (2003).
    [CrossRef]
  4. A. G. Shapiro, J. Pokorny, and V. C. Smith, “Cone–rod receptor spaces with illustrations that use the CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996).
    [CrossRef]
  5. J. V. Odom, D. Reits, N. Burgers, and F. C. Riemslag, “Flicker electroretinograms: a systems analytic approach,” Optom. Vis. Sci. 69, 106–116 (1992).
    [CrossRef]
  6. S. Viswanathan, L. J. Frishman, and J. G. Robson, “Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques,” Doc. Ophthalmol. 105, 223–242 (2002).
    [CrossRef]
  7. G. Pangeni, F. K. Horn, and J. Kremers, “A new interpretation of components in the ERG signals to sine wave luminance stimuli at different temporal frequencies and contrasts,” Vis. Neurosci. 27, 79–90 (2010).
    [CrossRef]
  8. V. A. Krishna, K. R. Alexander, and N. S. Peachey, “Temporal properties of the mouse cone electroretinogram,” J. Neurophysiol. 87, 42–48 (2002).
  9. J. Kremers and B. Link, “Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways,” J. Vision 8, 1–14 (2008).
    [CrossRef]
  10. J. Kremers, A. R. Rodrigues, L. C. L. Silveira, and M. da Silva-Filho, “Flicker ERGs representing chromaticity and luminance signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010).
    [CrossRef]
  11. J. Kremers, D. Czop, and B. Link, “Rod and S-cone driven ERG signals at high retinal illuminances,” Doc. Ophthalmol. 118, 205–216 (2009).
    [CrossRef]
  12. A. Stockman, D. I. A. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
    [CrossRef]
  13. P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
    [CrossRef]
  14. D. H. Brainard, J. B. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Investig. Ophthalmol. Vis. Sci. 40, 2840–2847 (1999).
  15. T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vis. Res. 38, 3391–3396 (1998).
    [CrossRef]
  16. J. Kremers, T. Usui, H. P. N. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).
  17. N. K. Challa, D. McKeefry, N. R. A. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12 Hz and 30 Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
    [CrossRef]
  18. J. Kremers, H. P. N. Scholl, H. Knau, T. T. J. M. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinograpy, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
    [CrossRef]
  19. J. Krauskopf, “Relative number of long- and middle-wavelength-sensitive cones in the human fovea,” J. Opt. Soc. Am. A 17, 510–516 (2000).
    [CrossRef]
  20. E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vis. Res. 38, 601–612 (1998).
    [CrossRef]
  21. G. H. Jacobs, “Color vision polymorphisms in New World monkeys: implications for the evolution of primate trichromacy,” in New World Primates; Ecology, Evolution and Behavior, W. G. Kinzey, ed. (Aldine de Gruyter, 1997), pp. 45–74.
  22. G. H. Jacobs and J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Vis. Neurosci. 14, 921–928 (1997).
    [CrossRef]
  23. G. H. Jacobs, J. F. Deegan, and J. L. Moran, “ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes),” Vis. Res. 36, 2587–2594 (1996).
    [CrossRef]
  24. G. H. Jacobs and J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1993), pp. 107–112.
  25. G. H. Jacobs, J. Neitz, and M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vis. Res. 27, 2089–2100 (1987).
    [CrossRef]
  26. G. H. Jacobs, J. Neitz, and K. Krogh, “Electroretinogram flicker photometry and its applications,” J. Opt. Soc. Am. A 13, 641–648 (1996).
    [CrossRef]
  27. J. Neitz and G. H. Jacobs, “Electroretinogram measurements of cone spectral sensitivity in dichromatic monkeys,” J. Opt. Soc. Am. A 1, 1175–1180 (1984).
    [CrossRef]
  28. J. Neitz and G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vis. Res. 30, 621–636 (1990).
    [CrossRef]
  29. M. Neitz, J. Neitz, and G. H. Jacobs, “Spectral tuning of pigments underlying red-green color vision,” Science 252, 971–974 (1991).
    [CrossRef]
  30. J. Kremers, M. W. Stepien, H. P. N. Scholl, and C. A. Saito, “Cone selective adaptation influences L- and M-cone driven signals in electroretinography and psychophysics,” J. Vision 3, 146–160 (2003).
    [CrossRef]
  31. R. A. Bush and P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996).
    [CrossRef]

2010

G. Pangeni, F. K. Horn, and J. Kremers, “A new interpretation of components in the ERG signals to sine wave luminance stimuli at different temporal frequencies and contrasts,” Vis. Neurosci. 27, 79–90 (2010).
[CrossRef]

J. Kremers, A. R. Rodrigues, L. C. L. Silveira, and M. da Silva-Filho, “Flicker ERGs representing chromaticity and luminance signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010).
[CrossRef]

N. K. Challa, D. McKeefry, N. R. A. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12 Hz and 30 Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

2009

J. Kremers, D. Czop, and B. Link, “Rod and S-cone driven ERG signals at high retinal illuminances,” Doc. Ophthalmol. 118, 205–216 (2009).
[CrossRef]

2008

J. Kremers and B. Link, “Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways,” J. Vision 8, 1–14 (2008).
[CrossRef]

2003

J. Kremers, “The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal retina,” Prog. Retinal Eye Res. 22, 579–605 (2003).
[CrossRef]

J. Kremers, M. W. Stepien, H. P. N. Scholl, and C. A. Saito, “Cone selective adaptation influences L- and M-cone driven signals in electroretinography and psychophysics,” J. Vision 3, 146–160 (2003).
[CrossRef]

2002

V. A. Krishna, K. R. Alexander, and N. S. Peachey, “Temporal properties of the mouse cone electroretinogram,” J. Neurophysiol. 87, 42–48 (2002).

S. Viswanathan, L. J. Frishman, and J. G. Robson, “Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques,” Doc. Ophthalmol. 105, 223–242 (2002).
[CrossRef]

2000

1999

D. H. Brainard, J. B. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Investig. Ophthalmol. Vis. Sci. 40, 2840–2847 (1999).

J. Kremers, T. Usui, H. P. N. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

1998

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vis. Res. 38, 3391–3396 (1998).
[CrossRef]

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vis. Res. 38, 601–612 (1998).
[CrossRef]

1997

G. H. Jacobs and J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Vis. Neurosci. 14, 921–928 (1997).
[CrossRef]

1996

1993

1992

P. DeMarco, J. Pokorny, and V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
[CrossRef]

J. V. Odom, D. Reits, N. Burgers, and F. C. Riemslag, “Flicker electroretinograms: a systems analytic approach,” Optom. Vis. Sci. 69, 106–116 (1992).
[CrossRef]

1991

M. Neitz, J. Neitz, and G. H. Jacobs, “Spectral tuning of pigments underlying red-green color vision,” Science 252, 971–974 (1991).
[CrossRef]

1990

J. Neitz and G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vis. Res. 30, 621–636 (1990).
[CrossRef]

1987

G. H. Jacobs, J. Neitz, and M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vis. Res. 27, 2089–2100 (1987).
[CrossRef]

1984

1982

O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982).
[CrossRef]

1974

O. Estévez and H. Spekreijse, “A spectral compensation method for determining the flicker characteristics of the human colour mechanisms,” Vis. Res. 14, 823–830 (1974).
[CrossRef]

Alexander, K. R.

V. A. Krishna, K. R. Alexander, and N. S. Peachey, “Temporal properties of the mouse cone electroretinogram,” J. Neurophysiol. 87, 42–48 (2002).

Baron, E.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vis. Res. 38, 601–612 (1998).
[CrossRef]

Baron, R.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vis. Res. 38, 601–612 (1998).
[CrossRef]

Berendschot, T. T. J. M.

Brainard, D. H.

D. H. Brainard, J. B. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Investig. Ophthalmol. Vis. Sci. 40, 2840–2847 (1999).

Burgers, N.

J. V. Odom, D. Reits, N. Burgers, and F. C. Riemslag, “Flicker electroretinograms: a systems analytic approach,” Optom. Vis. Sci. 69, 106–116 (1992).
[CrossRef]

Bush, R. A.

Calderone, J. B.

D. H. Brainard, J. B. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Investig. Ophthalmol. Vis. Sci. 40, 2840–2847 (1999).

Challa, N. K.

N. K. Challa, D. McKeefry, N. R. A. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12 Hz and 30 Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

Crognale, M.

G. H. Jacobs, J. Neitz, and M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vis. Res. 27, 2089–2100 (1987).
[CrossRef]

Czop, D.

J. Kremers, D. Czop, and B. Link, “Rod and S-cone driven ERG signals at high retinal illuminances,” Doc. Ophthalmol. 118, 205–216 (2009).
[CrossRef]

da Silva-Filho, M.

J. Kremers, A. R. Rodrigues, L. C. L. Silveira, and M. da Silva-Filho, “Flicker ERGs representing chromaticity and luminance signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010).
[CrossRef]

Deegan, J. F.

G. H. Jacobs and J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Vis. Neurosci. 14, 921–928 (1997).
[CrossRef]

G. H. Jacobs, J. F. Deegan, and J. L. Moran, “ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes),” Vis. Res. 36, 2587–2594 (1996).
[CrossRef]

DeMarco, P.

Estévez, O.

O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982).
[CrossRef]

O. Estévez and H. Spekreijse, “A spectral compensation method for determining the flicker characteristics of the human colour mechanisms,” Vis. Res. 14, 823–830 (1974).
[CrossRef]

Frishman, L. J.

S. Viswanathan, L. J. Frishman, and J. G. Robson, “Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques,” Doc. Ophthalmol. 105, 223–242 (2002).
[CrossRef]

Horn, F. K.

G. Pangeni, F. K. Horn, and J. Kremers, “A new interpretation of components in the ERG signals to sine wave luminance stimuli at different temporal frequencies and contrasts,” Vis. Neurosci. 27, 79–90 (2010).
[CrossRef]

Jacobs, G. H.

D. H. Brainard, J. B. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Investig. Ophthalmol. Vis. Sci. 40, 2840–2847 (1999).

G. H. Jacobs and J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Vis. Neurosci. 14, 921–928 (1997).
[CrossRef]

G. H. Jacobs, J. Neitz, and K. Krogh, “Electroretinogram flicker photometry and its applications,” J. Opt. Soc. Am. A 13, 641–648 (1996).
[CrossRef]

G. H. Jacobs, J. F. Deegan, and J. L. Moran, “ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes),” Vis. Res. 36, 2587–2594 (1996).
[CrossRef]

M. Neitz, J. Neitz, and G. H. Jacobs, “Spectral tuning of pigments underlying red-green color vision,” Science 252, 971–974 (1991).
[CrossRef]

J. Neitz and G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vis. Res. 30, 621–636 (1990).
[CrossRef]

G. H. Jacobs, J. Neitz, and M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vis. Res. 27, 2089–2100 (1987).
[CrossRef]

J. Neitz and G. H. Jacobs, “Electroretinogram measurements of cone spectral sensitivity in dichromatic monkeys,” J. Opt. Soc. Am. A 1, 1175–1180 (1984).
[CrossRef]

G. H. Jacobs, “Color vision polymorphisms in New World monkeys: implications for the evolution of primate trichromacy,” in New World Primates; Ecology, Evolution and Behavior, W. G. Kinzey, ed. (Aldine de Gruyter, 1997), pp. 45–74.

G. H. Jacobs and J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1993), pp. 107–112.

Johnson, N. E.

Knau, H.

Krauskopf, J.

Kremers, J.

G. Pangeni, F. K. Horn, and J. Kremers, “A new interpretation of components in the ERG signals to sine wave luminance stimuli at different temporal frequencies and contrasts,” Vis. Neurosci. 27, 79–90 (2010).
[CrossRef]

J. Kremers, A. R. Rodrigues, L. C. L. Silveira, and M. da Silva-Filho, “Flicker ERGs representing chromaticity and luminance signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010).
[CrossRef]

N. K. Challa, D. McKeefry, N. R. A. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12 Hz and 30 Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

J. Kremers, D. Czop, and B. Link, “Rod and S-cone driven ERG signals at high retinal illuminances,” Doc. Ophthalmol. 118, 205–216 (2009).
[CrossRef]

J. Kremers and B. Link, “Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways,” J. Vision 8, 1–14 (2008).
[CrossRef]

J. Kremers, M. W. Stepien, H. P. N. Scholl, and C. A. Saito, “Cone selective adaptation influences L- and M-cone driven signals in electroretinography and psychophysics,” J. Vision 3, 146–160 (2003).
[CrossRef]

J. Kremers, “The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal retina,” Prog. Retinal Eye Res. 22, 579–605 (2003).
[CrossRef]

J. Kremers, H. P. N. Scholl, H. Knau, T. T. J. M. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinograpy, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

J. Kremers, T. Usui, H. P. N. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vis. Res. 38, 3391–3396 (1998).
[CrossRef]

Krishna, V. A.

V. A. Krishna, K. R. Alexander, and N. S. Peachey, “Temporal properties of the mouse cone electroretinogram,” J. Neurophysiol. 87, 42–48 (2002).

Krogh, K.

Link, B.

J. Kremers, D. Czop, and B. Link, “Rod and S-cone driven ERG signals at high retinal illuminances,” Doc. Ophthalmol. 118, 205–216 (2009).
[CrossRef]

J. Kremers and B. Link, “Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways,” J. Vision 8, 1–14 (2008).
[CrossRef]

MacLeod, D. I. A.

McKeefry, D.

N. K. Challa, D. McKeefry, N. R. A. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12 Hz and 30 Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

Miyahara, E.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vis. Res. 38, 601–612 (1998).
[CrossRef]

Moran, J. L.

G. H. Jacobs, J. F. Deegan, and J. L. Moran, “ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes),” Vis. Res. 36, 2587–2594 (1996).
[CrossRef]

Murray, I. J.

N. K. Challa, D. McKeefry, N. R. A. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12 Hz and 30 Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

Neitz, J.

G. H. Jacobs, J. Neitz, and K. Krogh, “Electroretinogram flicker photometry and its applications,” J. Opt. Soc. Am. A 13, 641–648 (1996).
[CrossRef]

M. Neitz, J. Neitz, and G. H. Jacobs, “Spectral tuning of pigments underlying red-green color vision,” Science 252, 971–974 (1991).
[CrossRef]

J. Neitz and G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vis. Res. 30, 621–636 (1990).
[CrossRef]

G. H. Jacobs, J. Neitz, and M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vis. Res. 27, 2089–2100 (1987).
[CrossRef]

J. Neitz and G. H. Jacobs, “Electroretinogram measurements of cone spectral sensitivity in dichromatic monkeys,” J. Opt. Soc. Am. A 1, 1175–1180 (1984).
[CrossRef]

G. H. Jacobs and J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1993), pp. 107–112.

Neitz, M.

M. Neitz, J. Neitz, and G. H. Jacobs, “Spectral tuning of pigments underlying red-green color vision,” Science 252, 971–974 (1991).
[CrossRef]

Nugent, A. K.

D. H. Brainard, J. B. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Investig. Ophthalmol. Vis. Sci. 40, 2840–2847 (1999).

Odom, J. V.

J. V. Odom, D. Reits, N. Burgers, and F. C. Riemslag, “Flicker electroretinograms: a systems analytic approach,” Optom. Vis. Sci. 69, 106–116 (1992).
[CrossRef]

Pangeni, G.

G. Pangeni, F. K. Horn, and J. Kremers, “A new interpretation of components in the ERG signals to sine wave luminance stimuli at different temporal frequencies and contrasts,” Vis. Neurosci. 27, 79–90 (2010).
[CrossRef]

Panorgias, A.

N. K. Challa, D. McKeefry, N. R. A. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12 Hz and 30 Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

Parry, N. R. A.

N. K. Challa, D. McKeefry, N. R. A. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12 Hz and 30 Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

Peachey, N. S.

V. A. Krishna, K. R. Alexander, and N. S. Peachey, “Temporal properties of the mouse cone electroretinogram,” J. Neurophysiol. 87, 42–48 (2002).

Pokorny, J.

Reits, D.

J. V. Odom, D. Reits, N. Burgers, and F. C. Riemslag, “Flicker electroretinograms: a systems analytic approach,” Optom. Vis. Sci. 69, 106–116 (1992).
[CrossRef]

Riemslag, F. C.

J. V. Odom, D. Reits, N. Burgers, and F. C. Riemslag, “Flicker electroretinograms: a systems analytic approach,” Optom. Vis. Sci. 69, 106–116 (1992).
[CrossRef]

Robson, J. G.

S. Viswanathan, L. J. Frishman, and J. G. Robson, “Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques,” Doc. Ophthalmol. 105, 223–242 (2002).
[CrossRef]

Rodrigues, A. R.

J. Kremers, A. R. Rodrigues, L. C. L. Silveira, and M. da Silva-Filho, “Flicker ERGs representing chromaticity and luminance signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010).
[CrossRef]

Saito, C. A.

J. Kremers, M. W. Stepien, H. P. N. Scholl, and C. A. Saito, “Cone selective adaptation influences L- and M-cone driven signals in electroretinography and psychophysics,” J. Vision 3, 146–160 (2003).
[CrossRef]

Scholl, H. P. N.

J. Kremers, M. W. Stepien, H. P. N. Scholl, and C. A. Saito, “Cone selective adaptation influences L- and M-cone driven signals in electroretinography and psychophysics,” J. Vision 3, 146–160 (2003).
[CrossRef]

J. Kremers, H. P. N. Scholl, H. Knau, T. T. J. M. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinograpy, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

J. Kremers, T. Usui, H. P. N. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

Shapiro, A. G.

Sharpe, L. T.

J. Kremers, H. P. N. Scholl, H. Knau, T. T. J. M. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinograpy, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

J. Kremers, T. Usui, H. P. N. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vis. Res. 38, 3391–3396 (1998).
[CrossRef]

Sieving, P. A.

Silveira, L. C. L.

J. Kremers, A. R. Rodrigues, L. C. L. Silveira, and M. da Silva-Filho, “Flicker ERGs representing chromaticity and luminance signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010).
[CrossRef]

Smith, V. C.

Spekreijse, H.

O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982).
[CrossRef]

O. Estévez and H. Spekreijse, “A spectral compensation method for determining the flicker characteristics of the human colour mechanisms,” Vis. Res. 14, 823–830 (1974).
[CrossRef]

Stepien, M. W.

J. Kremers, M. W. Stepien, H. P. N. Scholl, and C. A. Saito, “Cone selective adaptation influences L- and M-cone driven signals in electroretinography and psychophysics,” J. Vision 3, 146–160 (2003).
[CrossRef]

Stockman, A.

Usui, T.

J. Kremers, H. P. N. Scholl, H. Knau, T. T. J. M. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinograpy, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000).
[CrossRef]

J. Kremers, T. Usui, H. P. N. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vis. Res. 38, 3391–3396 (1998).
[CrossRef]

Viswanathan, S.

S. Viswanathan, L. J. Frishman, and J. G. Robson, “Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques,” Doc. Ophthalmol. 105, 223–242 (2002).
[CrossRef]

Zrenner, E.

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vis. Res. 38, 3391–3396 (1998).
[CrossRef]

Doc. Ophthalmol.

S. Viswanathan, L. J. Frishman, and J. G. Robson, “Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques,” Doc. Ophthalmol. 105, 223–242 (2002).
[CrossRef]

J. Kremers, D. Czop, and B. Link, “Rod and S-cone driven ERG signals at high retinal illuminances,” Doc. Ophthalmol. 118, 205–216 (2009).
[CrossRef]

Investig. Ophthalmol. Vis. Sci.

J. Kremers, A. R. Rodrigues, L. C. L. Silveira, and M. da Silva-Filho, “Flicker ERGs representing chromaticity and luminance signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010).
[CrossRef]

J. Kremers, T. Usui, H. P. N. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).

D. H. Brainard, J. B. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Investig. Ophthalmol. Vis. Sci. 40, 2840–2847 (1999).

J. Neurophysiol.

V. A. Krishna, K. R. Alexander, and N. S. Peachey, “Temporal properties of the mouse cone electroretinogram,” J. Neurophysiol. 87, 42–48 (2002).

J. Opt. Soc. Am. A

J. Vision

J. Kremers, M. W. Stepien, H. P. N. Scholl, and C. A. Saito, “Cone selective adaptation influences L- and M-cone driven signals in electroretinography and psychophysics,” J. Vision 3, 146–160 (2003).
[CrossRef]

J. Kremers and B. Link, “Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways,” J. Vision 8, 1–14 (2008).
[CrossRef]

Ophthalmic Physiol. Opt.

N. K. Challa, D. McKeefry, N. R. A. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12 Hz and 30 Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010).
[CrossRef]

Optom. Vis. Sci.

J. V. Odom, D. Reits, N. Burgers, and F. C. Riemslag, “Flicker electroretinograms: a systems analytic approach,” Optom. Vis. Sci. 69, 106–116 (1992).
[CrossRef]

Prog. Retinal Eye Res.

J. Kremers, “The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal retina,” Prog. Retinal Eye Res. 22, 579–605 (2003).
[CrossRef]

Science

M. Neitz, J. Neitz, and G. H. Jacobs, “Spectral tuning of pigments underlying red-green color vision,” Science 252, 971–974 (1991).
[CrossRef]

Vis. Neurosci.

G. Pangeni, F. K. Horn, and J. Kremers, “A new interpretation of components in the ERG signals to sine wave luminance stimuli at different temporal frequencies and contrasts,” Vis. Neurosci. 27, 79–90 (2010).
[CrossRef]

G. H. Jacobs and J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Vis. Neurosci. 14, 921–928 (1997).
[CrossRef]

Vis. Res.

G. H. Jacobs, J. F. Deegan, and J. L. Moran, “ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes),” Vis. Res. 36, 2587–2594 (1996).
[CrossRef]

T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vis. Res. 38, 3391–3396 (1998).
[CrossRef]

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vis. Res. 38, 601–612 (1998).
[CrossRef]

O. Estévez and H. Spekreijse, “A spectral compensation method for determining the flicker characteristics of the human colour mechanisms,” Vis. Res. 14, 823–830 (1974).
[CrossRef]

O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982).
[CrossRef]

G. H. Jacobs, J. Neitz, and M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vis. Res. 27, 2089–2100 (1987).
[CrossRef]

J. Neitz and G. H. Jacobs, “Polymorphism in normal human color vision and its mechanism,” Vis. Res. 30, 621–636 (1990).
[CrossRef]

Other

G. H. Jacobs, “Color vision polymorphisms in New World monkeys: implications for the evolution of primate trichromacy,” in New World Primates; Ecology, Evolution and Behavior, W. G. Kinzey, ed. (Aldine de Gruyter, 1997), pp. 45–74.

G. H. Jacobs and J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1993), pp. 107–112.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Original averaged responses measured in one subject. The mean luminance was 284cd/m2. The responses to six different stimulus conditions at 2, 12, and 36 Hz are shown. Identical episodes within the recording period are displayed so that the response phases can directly be compared.

Fig. 2.
Fig. 2.

Amplitudes of the first-harmonic components of the responses as a function of temporal frequencies. The upper and lower plots show the data obtained at 71 and 284cd/m2 mean luminances (n=3 in the upper plot; n=4 in the lower plot), respectively. The open symbols represent the amplitude of noise obtained from measurements in the absence of a stimulus.

Fig. 3.
Fig. 3.

Noise corrected responsivities to the different photoreceptor isolating stimuli given as a function of temporal frequency. The data are obtained from the response amplitudes displayed in Fig. 2 by subtracting the noise from the amplitudes. The data were disregarded if the remaining response was smaller than 0.1 μV. These corrected responses were divided by the stimulus cone contrast to obtain the responsivity (or contrast gain). This procedure is valid because the response amplitude was previously found to be linearly dependent on stimulus contrast.

Fig. 4.
Fig. 4.

Ratio of responsivities in the L- and M-cone isolating conditions versus temporal frequency plotted separately for the 71 and 284cd/m2 mean luminances. The ratio is about 1 at frequencies below 12 Hz. Above this frequency, the ratio increases with increasing temporal frequency and can be as large as 10:1 above 36 Hz.

Fig. 5.
Fig. 5.

Phases of the responses to cone isolating stimuli plotted as a function of temporal frequency. The response phases with the 14% cone contrast L-cone stimuli were very similar to those with the 19% L-cone condition and are therefore not shown. The responses to rod stimuli had similar phases as those to L-cone stimuli. S- and L-cone stimuli elicited responses with similar phases below 12 Hz. Above 12 Hz, S-cone response phases were similar to the phases of the M-cone-driven responses. The data were the means from data from two or three subjects at 71cd/m2. The data at 284cd/m2 were the means of phases obtained from four subjects in 51 out of 80 (64%) conditions, from three subjects in 21 (27%) conditions. Especially for the rod- and S-cone-isolating conditions, only two phases could be averaged because of the low signal-to-noise ratio.

Fig. 6.
Fig. 6.

Phase differences between the responses elicited by the 19% L-cone contrast and the 18% M-cone contrast stimuli versus temporal frequency. The phase difference increases with decreasing temporal frequency and is about 180° at 12 Hz and below.

Fig. 7.
Fig. 7.

Mean noise corrected responsivities in the L+M and L+M conditions given as a function of temporal frequencies. The data are plotted separately for 71 and 284cd/m2 mean luminance conditions.

Metrics