Abstract

Color discrimination was estimated using the Cambridge Colour Test (CCT) in 160 normal trichromats of four life decades, 20–59 years of age. For each age cohort, medians and tolerance limits of the CCT parameters are tabulated. Compared across the age cohorts (Kruskal–Wallis test), the Trivector test showed increases in the three vectors, Protan, Deutan, and Tritan, with advancing age; the Ellipses test revealed significant elongation of the major axes of all three ellipses but no changes in either the axis ratio or the angle of the ellipse major axis. Multiple comparisons (Mann–Whitney test) between the cohorts of four age decades (20+,,50+) revealed initial benign deterioration of color discrimination in the 40+ decade, as an incremental loss of discrimination along the Deutan axis (Trivector test), and in the 50+ decade, as an elongation of the major axes of all three ellipses (Ellipses test).

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Lakowski, “Theory and practice of colour vision testing: a review,” Brit. J. Ind. Med. 26, 173–189, 265–288 (1969).
  2. J. Pokorny, V. C. Smith, G. Verriest, and A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, 1979).
  3. J. Birch, Diagnosis of Defective Colour Vision (Oxford University, 1993).
  4. S. J. Dain, “Clinical colour vision tests,” Clin. Exp. Optom. 4, 276–293 (2004).
  5. S. Ishihara, Test for Colour-Blindness, 24 Plates Edition(Kanehra Shupan Co., 1973).
  6. D. Farnsworth, “Farnsworth-Munsell 100-hue and dichotomous test for color vision,” J. Opt. Soc. Am. 33, 568–578 (1943).
    [CrossRef]
  7. P. Lanthony, “The desaturated panel D-15,” Doc. Ophthalmol. 46, 185–189 (1978).
  8. J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and Stilling,” J. Physiol. 414, 5P (1989).
  9. R. J. P. Reffin, S. Astell, and J. D. Mollon, “Trials of a computer-controlled colour vision test that preserves the advantages of pseudoisochromatic plates,” in Colour Vision Deficiencies X, B. Drum, J. D. Moreland, and A. Serra, eds. (Kluwer, 1991), pp. 69–76.
  10. J. L. Barbur, “‘Double-blindsight’ revealed through the processing of color and luminance contrast defined motion,” Prog. Brain Res. 144, 243–259 (2004).
    [CrossRef]
  11. G. Arden, K. Gündüz, and S. Perry, “Color vision testing with a computer graphics system: preliminary results,” Doc. Ophthalmol. 69, 167–174 (1988).
    [CrossRef]
  12. B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
    [CrossRef]
  13. J. D. Mollon and J. P. Reffin, Handbook of the Cambridge Colour Test (Cambridge Research Systems, 2000).
  14. D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. De Souza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal & Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.
  15. M. F. Costa, D. F. Ventura, F. Perazzolo, M. Murakoshi, and L. C. L. Silveira, “Absence of binocular summation, eye dominance, and learning effects in color discrimination,” Vis. Neurosci. 23, 461–469 (2006).
    [CrossRef]
  16. B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
    [CrossRef]
  17. M. F. Silva, P. Faria, F. S. Regateiro, V. Forjaz, C. Januário, A. Freire, and M. Castelo-Branco, “Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson’s disease,” Brain 128, 2260–2271 (2005).
    [CrossRef]
  18. C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Opthalmol. Physiol. Opt. 30, 717–723 (2010).
    [CrossRef]
  19. M. Castelo-Branco, P. Faria, V. Forjaz, L. R. Kozak, and H. Azevedo, “Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: correlation with clinical measures,” Invest. Ophthalmol. Vis. Sci. 45, 499–505 (2004).
  20. C. Feitosa-Santana, M. T. S. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simões, M. F. Costa, L. C. L. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Vis. Neurosci. 25, 487–491(2008).
    [CrossRef]
  21. G. Hagerstrom-Portnoy, M. E. Schneck, and J. A. Brabyn, “Seeing into old age: vision function beyond acuity,” Optom. Vis. Sci. 76, 141–158 (1999).
    [CrossRef]
  22. J. S. Werner, D. H. Peterzell, and A. J. Scheetz, “Light, vision, and aging,” Optom. Vis. Sci. 67, 214–229 (1990).
    [CrossRef]
  23. K. Knoblauch, F. Vital-Durand, and J. L. Barbur, “Variation of chromatic sensitivity across the life span,” Vis. Res. 41, 23–36 (2001).
    [CrossRef]
  24. J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
    [CrossRef]
  25. J. S. Werner and V. G. Steele, “Sensitivity of human foveal color mechanisms throughout the life span,” J. Opt. Soc. Am. A 5, 2122–2129 (1988).
    [CrossRef]
  26. K. Shinomori, B. E. Schefrin, and J. S. Werner “Age-related changes in wavelength discrimination,” J. Opt. Soc. Am. A 18, 310–318 (2001).
    [CrossRef]
  27. S. Wuerger, K. Xiao, C. Fu, and D. Karataz, “Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes,” Opthalmol. Physiol. Opt. 30, 653–659 (2010).
    [CrossRef]
  28. W. A. Verdon and A. J. Adams, “Color vision,” in The Psychophysical Measurement of Visual Function, T. T. Norton, D. A. Corliss, and J. E. Bailey, eds. (Butterworth-Heinemann, 2002), pp. 217–287.
  29. A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of ageing on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
    [CrossRef]
  30. A. Peters, “The effects of normal aging on nerve fibres and neuroglia in the central nervous system,” in Brain Aging: Models, Methods, and Mechanisms, D. Riddle, ed. (CRC Press, 2007), pp. 97–125.
  31. P. R. Kinnear and A. Sahraie, “New Farnsworth-Munsell 100 hue test norms of normal observers for each year of age 5–22 and for age decades 30–70,” Brit. J. Ophthalmol. 86, 1408–1411(2002).
    [CrossRef]
  32. G. Verriest, J. Van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93, 635–642 (1982).
  33. D. de Fez, J. Luque, and V. Viqueira, “Enhancement of contrast sensitivity and losses of chromatic discrimination with tinted lenses,” Optom. Vis. Sci. 79, 590–597 (2002).
    [CrossRef]
  34. Cambridge Research Systems Ltd., http://www.crsltd.com/catalog/metropsis/CCT.html .
  35. W. J. Dixon and F. J. Massey, Introduction to Statistical Analysis, 3rd ed. (McGraw-Hill, 1969).
  36. K. Krishnamoorthy, Handbook of Statistical Distributions with Applications (Chapman and Hall/CRC, 2006), pp. 323–324.
  37. STATGRAPHICS Centurion, http://www.statgraphics.com .
  38. S. Siegel and N. J. Castellan, “Nonparametric Statistics for the Behavioral Sciences, 2nd ed. (McGraw-Hill, 1988), pp. 213–215.

2010 (3)

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Opthalmol. Physiol. Opt. 30, 717–723 (2010).
[CrossRef]

S. Wuerger, K. Xiao, C. Fu, and D. Karataz, “Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes,” Opthalmol. Physiol. Opt. 30, 653–659 (2010).
[CrossRef]

A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of ageing on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
[CrossRef]

2008 (1)

C. Feitosa-Santana, M. T. S. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simões, M. F. Costa, L. C. L. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Vis. Neurosci. 25, 487–491(2008).
[CrossRef]

2006 (1)

M. F. Costa, D. F. Ventura, F. Perazzolo, M. Murakoshi, and L. C. L. Silveira, “Absence of binocular summation, eye dominance, and learning effects in color discrimination,” Vis. Neurosci. 23, 461–469 (2006).
[CrossRef]

2005 (1)

M. F. Silva, P. Faria, F. S. Regateiro, V. Forjaz, C. Januário, A. Freire, and M. Castelo-Branco, “Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson’s disease,” Brain 128, 2260–2271 (2005).
[CrossRef]

2004 (3)

M. Castelo-Branco, P. Faria, V. Forjaz, L. R. Kozak, and H. Azevedo, “Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: correlation with clinical measures,” Invest. Ophthalmol. Vis. Sci. 45, 499–505 (2004).

S. J. Dain, “Clinical colour vision tests,” Clin. Exp. Optom. 4, 276–293 (2004).

J. L. Barbur, “‘Double-blindsight’ revealed through the processing of color and luminance contrast defined motion,” Prog. Brain Res. 144, 243–259 (2004).
[CrossRef]

2002 (2)

D. de Fez, J. Luque, and V. Viqueira, “Enhancement of contrast sensitivity and losses of chromatic discrimination with tinted lenses,” Optom. Vis. Sci. 79, 590–597 (2002).
[CrossRef]

P. R. Kinnear and A. Sahraie, “New Farnsworth-Munsell 100 hue test norms of normal observers for each year of age 5–22 and for age decades 30–70,” Brit. J. Ophthalmol. 86, 1408–1411(2002).
[CrossRef]

2001 (2)

K. Shinomori, B. E. Schefrin, and J. S. Werner “Age-related changes in wavelength discrimination,” J. Opt. Soc. Am. A 18, 310–318 (2001).
[CrossRef]

K. Knoblauch, F. Vital-Durand, and J. L. Barbur, “Variation of chromatic sensitivity across the life span,” Vis. Res. 41, 23–36 (2001).
[CrossRef]

1999 (1)

G. Hagerstrom-Portnoy, M. E. Schneck, and J. A. Brabyn, “Seeing into old age: vision function beyond acuity,” Optom. Vis. Sci. 76, 141–158 (1999).
[CrossRef]

1998 (1)

B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
[CrossRef]

1994 (1)

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

1990 (1)

J. S. Werner, D. H. Peterzell, and A. J. Scheetz, “Light, vision, and aging,” Optom. Vis. Sci. 67, 214–229 (1990).
[CrossRef]

1989 (1)

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and Stilling,” J. Physiol. 414, 5P (1989).

1988 (2)

G. Arden, K. Gündüz, and S. Perry, “Color vision testing with a computer graphics system: preliminary results,” Doc. Ophthalmol. 69, 167–174 (1988).
[CrossRef]

J. S. Werner and V. G. Steele, “Sensitivity of human foveal color mechanisms throughout the life span,” J. Opt. Soc. Am. A 5, 2122–2129 (1988).
[CrossRef]

1987 (1)

1982 (1)

G. Verriest, J. Van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93, 635–642 (1982).

1978 (1)

P. Lanthony, “The desaturated panel D-15,” Doc. Ophthalmol. 46, 185–189 (1978).

1969 (1)

R. Lakowski, “Theory and practice of colour vision testing: a review,” Brit. J. Ind. Med. 26, 173–189, 265–288 (1969).

1943 (1)

Adams, A. J.

W. A. Verdon and A. J. Adams, “Color vision,” in The Psychophysical Measurement of Visual Function, T. T. Norton, D. A. Corliss, and J. E. Bailey, eds. (Butterworth-Heinemann, 2002), pp. 217–287.

Arden, G.

G. Arden, K. Gündüz, and S. Perry, “Color vision testing with a computer graphics system: preliminary results,” Doc. Ophthalmol. 69, 167–174 (1988).
[CrossRef]

Astell, S.

R. J. P. Reffin, S. Astell, and J. D. Mollon, “Trials of a computer-controlled colour vision test that preserves the advantages of pseudoisochromatic plates,” in Colour Vision Deficiencies X, B. Drum, J. D. Moreland, and A. Serra, eds. (Kluwer, 1991), pp. 69–76.

Azevedo, H.

M. Castelo-Branco, P. Faria, V. Forjaz, L. R. Kozak, and H. Azevedo, “Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: correlation with clinical measures,” Invest. Ophthalmol. Vis. Sci. 45, 499–505 (2004).

Barboni, M. T. S.

C. Feitosa-Santana, M. T. S. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simões, M. F. Costa, L. C. L. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Vis. Neurosci. 25, 487–491(2008).
[CrossRef]

Barbur, J. L.

J. L. Barbur, “‘Double-blindsight’ revealed through the processing of color and luminance contrast defined motion,” Prog. Brain Res. 144, 243–259 (2004).
[CrossRef]

K. Knoblauch, F. Vital-Durand, and J. L. Barbur, “Variation of chromatic sensitivity across the life span,” Vis. Res. 41, 23–36 (2001).
[CrossRef]

Bayer, A.

A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of ageing on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
[CrossRef]

Birch, J.

J. Birch, Diagnosis of Defective Colour Vision (Oxford University, 1993).

Bonci, D.

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. De Souza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal & Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

Brabyn, J. A.

G. Hagerstrom-Portnoy, M. E. Schneck, and J. A. Brabyn, “Seeing into old age: vision function beyond acuity,” Optom. Vis. Sci. 76, 141–158 (1999).
[CrossRef]

Castellan, N. J.

S. Siegel and N. J. Castellan, “Nonparametric Statistics for the Behavioral Sciences, 2nd ed. (McGraw-Hill, 1988), pp. 213–215.

Castelo-Branco, M.

M. F. Silva, P. Faria, F. S. Regateiro, V. Forjaz, C. Januário, A. Freire, and M. Castelo-Branco, “Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson’s disease,” Brain 128, 2260–2271 (2005).
[CrossRef]

M. Castelo-Branco, P. Faria, V. Forjaz, L. R. Kozak, and H. Azevedo, “Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: correlation with clinical measures,” Invest. Ophthalmol. Vis. Sci. 45, 499–505 (2004).

Costa, M. F.

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Opthalmol. Physiol. Opt. 30, 717–723 (2010).
[CrossRef]

C. Feitosa-Santana, M. T. S. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simões, M. F. Costa, L. C. L. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Vis. Neurosci. 25, 487–491(2008).
[CrossRef]

M. F. Costa, D. F. Ventura, F. Perazzolo, M. Murakoshi, and L. C. L. Silveira, “Absence of binocular summation, eye dominance, and learning effects in color discrimination,” Vis. Neurosci. 23, 461–469 (2006).
[CrossRef]

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. De Souza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal & Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

Dain, S. J.

S. J. Dain, “Clinical colour vision tests,” Clin. Exp. Optom. 4, 276–293 (2004).

de Fez, D.

D. de Fez, J. Luque, and V. Viqueira, “Enhancement of contrast sensitivity and losses of chromatic discrimination with tinted lenses,” Optom. Vis. Sci. 79, 590–597 (2002).
[CrossRef]

De Souza, J. M.

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. De Souza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal & Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

Dixon, W. J.

W. J. Dixon and F. J. Massey, Introduction to Statistical Analysis, 3rd ed. (McGraw-Hill, 1969).

Faria, P.

M. F. Silva, P. Faria, F. S. Regateiro, V. Forjaz, C. Januário, A. Freire, and M. Castelo-Branco, “Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson’s disease,” Brain 128, 2260–2271 (2005).
[CrossRef]

M. Castelo-Branco, P. Faria, V. Forjaz, L. R. Kozak, and H. Azevedo, “Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: correlation with clinical measures,” Invest. Ophthalmol. Vis. Sci. 45, 499–505 (2004).

Farnsworth, D.

Feitosa-Santana, C.

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Opthalmol. Physiol. Opt. 30, 717–723 (2010).
[CrossRef]

C. Feitosa-Santana, M. T. S. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simões, M. F. Costa, L. C. L. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Vis. Neurosci. 25, 487–491(2008).
[CrossRef]

Forjaz, V.

M. F. Silva, P. Faria, F. S. Regateiro, V. Forjaz, C. Januário, A. Freire, and M. Castelo-Branco, “Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson’s disease,” Brain 128, 2260–2271 (2005).
[CrossRef]

M. Castelo-Branco, P. Faria, V. Forjaz, L. R. Kozak, and H. Azevedo, “Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: correlation with clinical measures,” Invest. Ophthalmol. Vis. Sci. 45, 499–505 (2004).

Freire, A.

M. F. Silva, P. Faria, F. S. Regateiro, V. Forjaz, C. Januário, A. Freire, and M. Castelo-Branco, “Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson’s disease,” Brain 128, 2260–2271 (2005).
[CrossRef]

Freudenthaler, N.

B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
[CrossRef]

Fu, C.

S. Wuerger, K. Xiao, C. Fu, and D. Karataz, “Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes,” Opthalmol. Physiol. Opt. 30, 653–659 (2010).
[CrossRef]

Gualtieri, M.

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Opthalmol. Physiol. Opt. 30, 717–723 (2010).
[CrossRef]

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. De Souza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal & Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

Gündüz, K.

G. Arden, K. Gündüz, and S. Perry, “Color vision testing with a computer graphics system: preliminary results,” Doc. Ophthalmol. 69, 167–174 (1988).
[CrossRef]

Hagerstrom-Portnoy, G.

G. Hagerstrom-Portnoy, M. E. Schneck, and J. A. Brabyn, “Seeing into old age: vision function beyond acuity,” Optom. Vis. Sci. 76, 141–158 (1999).
[CrossRef]

Ishihara, S.

S. Ishihara, Test for Colour-Blindness, 24 Plates Edition(Kanehra Shupan Co., 1973).

Januário, C.

M. F. Silva, P. Faria, F. S. Regateiro, V. Forjaz, C. Januário, A. Freire, and M. Castelo-Branco, “Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson’s disease,” Brain 128, 2260–2271 (2005).
[CrossRef]

Karataz, D.

S. Wuerger, K. Xiao, C. Fu, and D. Karataz, “Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes,” Opthalmol. Physiol. Opt. 30, 653–659 (2010).
[CrossRef]

Kinnear, P. R.

P. R. Kinnear and A. Sahraie, “New Farnsworth-Munsell 100 hue test norms of normal observers for each year of age 5–22 and for age decades 30–70,” Brit. J. Ophthalmol. 86, 1408–1411(2002).
[CrossRef]

Knoblauch, K.

K. Knoblauch, F. Vital-Durand, and J. L. Barbur, “Variation of chromatic sensitivity across the life span,” Vis. Res. 41, 23–36 (2001).
[CrossRef]

Kolle, R.

B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
[CrossRef]

Kozak, L. R.

M. Castelo-Branco, P. Faria, V. Forjaz, L. R. Kozak, and H. Azevedo, “Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: correlation with clinical measures,” Invest. Ophthalmol. Vis. Sci. 45, 499–505 (2004).

Krishnamoorthy, K.

K. Krishnamoorthy, Handbook of Statistical Distributions with Applications (Chapman and Hall/CRC, 2006), pp. 323–324.

Lakowski, R.

R. Lakowski, “Theory and practice of colour vision testing: a review,” Brit. J. Ind. Med. 26, 173–189, 265–288 (1969).

Lanthony, P.

P. Lanthony, “The desaturated panel D-15,” Doc. Ophthalmol. 46, 185–189 (1978).

Luque, J.

D. de Fez, J. Luque, and V. Viqueira, “Enhancement of contrast sensitivity and losses of chromatic discrimination with tinted lenses,” Optom. Vis. Sci. 79, 590–597 (2002).
[CrossRef]

Lutze, M.

Massey, F. J.

W. J. Dixon and F. J. Massey, Introduction to Statistical Analysis, 3rd ed. (McGraw-Hill, 1969).

Mollon, J. D.

B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
[CrossRef]

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and Stilling,” J. Physiol. 414, 5P (1989).

R. J. P. Reffin, S. Astell, and J. D. Mollon, “Trials of a computer-controlled colour vision test that preserves the advantages of pseudoisochromatic plates,” in Colour Vision Deficiencies X, B. Drum, J. D. Moreland, and A. Serra, eds. (Kluwer, 1991), pp. 69–76.

J. D. Mollon and J. P. Reffin, Handbook of the Cambridge Colour Test (Cambridge Research Systems, 2000).

Murakoshi, M.

M. F. Costa, D. F. Ventura, F. Perazzolo, M. Murakoshi, and L. C. L. Silveira, “Absence of binocular summation, eye dominance, and learning effects in color discrimination,” Vis. Neurosci. 23, 461–469 (2006).
[CrossRef]

Nishi, M.

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Opthalmol. Physiol. Opt. 30, 717–723 (2010).
[CrossRef]

Oiwa, N. N.

C. Feitosa-Santana, M. T. S. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simões, M. F. Costa, L. C. L. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Vis. Neurosci. 25, 487–491(2008).
[CrossRef]

Paramei, G. V.

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Opthalmol. Physiol. Opt. 30, 717–723 (2010).
[CrossRef]

C. Feitosa-Santana, M. T. S. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simões, M. F. Costa, L. C. L. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Vis. Neurosci. 25, 487–491(2008).
[CrossRef]

Paulus, W.

A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of ageing on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
[CrossRef]

B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
[CrossRef]

Perazzolo, F.

M. F. Costa, D. F. Ventura, F. Perazzolo, M. Murakoshi, and L. C. L. Silveira, “Absence of binocular summation, eye dominance, and learning effects in color discrimination,” Vis. Neurosci. 23, 461–469 (2006).
[CrossRef]

Perry, S.

G. Arden, K. Gündüz, and S. Perry, “Color vision testing with a computer graphics system: preliminary results,” Doc. Ophthalmol. 69, 167–174 (1988).
[CrossRef]

Peters, A.

A. Peters, “The effects of normal aging on nerve fibres and neuroglia in the central nervous system,” in Brain Aging: Models, Methods, and Mechanisms, D. Riddle, ed. (CRC Press, 2007), pp. 97–125.

Peterzell, D. H.

J. S. Werner, D. H. Peterzell, and A. J. Scheetz, “Light, vision, and aging,” Optom. Vis. Sci. 67, 214–229 (1990).
[CrossRef]

Pinckers, A. J. L. G.

J. Pokorny, V. C. Smith, G. Verriest, and A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, 1979).

Pokorny, J.

J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef]

J. Pokorny, V. C. Smith, G. Verriest, and A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, 1979).

Reffin, J. P.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and Stilling,” J. Physiol. 414, 5P (1989).

J. D. Mollon and J. P. Reffin, Handbook of the Cambridge Colour Test (Cambridge Research Systems, 2000).

Reffin, R. J. P.

R. J. P. Reffin, S. Astell, and J. D. Mollon, “Trials of a computer-controlled colour vision test that preserves the advantages of pseudoisochromatic plates,” in Colour Vision Deficiencies X, B. Drum, J. D. Moreland, and A. Serra, eds. (Kluwer, 1991), pp. 69–76.

Regan, B. C.

B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
[CrossRef]

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

Regateiro, F. S.

M. F. Silva, P. Faria, F. S. Regateiro, V. Forjaz, C. Januário, A. Freire, and M. Castelo-Branco, “Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson’s disease,” Brain 128, 2260–2271 (2005).
[CrossRef]

Rodrigues, A. R.

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. De Souza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal & Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

Sahraie, A.

P. R. Kinnear and A. Sahraie, “New Farnsworth-Munsell 100 hue test norms of normal observers for each year of age 5–22 and for age decades 30–70,” Brit. J. Ophthalmol. 86, 1408–1411(2002).
[CrossRef]

Scheetz, A. J.

J. S. Werner, D. H. Peterzell, and A. J. Scheetz, “Light, vision, and aging,” Optom. Vis. Sci. 67, 214–229 (1990).
[CrossRef]

Schefrin, B. E.

Schneck, M. E.

G. Hagerstrom-Portnoy, M. E. Schneck, and J. A. Brabyn, “Seeing into old age: vision function beyond acuity,” Optom. Vis. Sci. 76, 141–158 (1999).
[CrossRef]

Schwarz, G.

A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of ageing on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
[CrossRef]

Shinomori, K.

Siegel, S.

S. Siegel and N. J. Castellan, “Nonparametric Statistics for the Behavioral Sciences, 2nd ed. (McGraw-Hill, 1988), pp. 213–215.

Silva, M. F.

M. F. Silva, P. Faria, F. S. Regateiro, V. Forjaz, C. Januário, A. Freire, and M. Castelo-Branco, “Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson’s disease,” Brain 128, 2260–2271 (2005).
[CrossRef]

Silveira, L. C. L.

C. Feitosa-Santana, M. T. S. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simões, M. F. Costa, L. C. L. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Vis. Neurosci. 25, 487–491(2008).
[CrossRef]

M. F. Costa, D. F. Ventura, F. Perazzolo, M. Murakoshi, and L. C. L. Silveira, “Absence of binocular summation, eye dominance, and learning effects in color discrimination,” Vis. Neurosci. 23, 461–469 (2006).
[CrossRef]

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. De Souza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal & Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

Simões, A. L.

C. Feitosa-Santana, M. T. S. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simões, M. F. Costa, L. C. L. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Vis. Neurosci. 25, 487–491(2008).
[CrossRef]

Smith, V. C.

J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[CrossRef]

J. Pokorny, V. C. Smith, G. Verriest, and A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, 1979).

Steele, V. G.

Uvijls, A.

G. Verriest, J. Van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93, 635–642 (1982).

Van Laethem, J.

G. Verriest, J. Van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93, 635–642 (1982).

Ventura, D. F.

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Opthalmol. Physiol. Opt. 30, 717–723 (2010).
[CrossRef]

C. Feitosa-Santana, M. T. S. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simões, M. F. Costa, L. C. L. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Vis. Neurosci. 25, 487–491(2008).
[CrossRef]

M. F. Costa, D. F. Ventura, F. Perazzolo, M. Murakoshi, and L. C. L. Silveira, “Absence of binocular summation, eye dominance, and learning effects in color discrimination,” Vis. Neurosci. 23, 461–469 (2006).
[CrossRef]

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. De Souza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal & Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

Verdon, W. A.

W. A. Verdon and A. J. Adams, “Color vision,” in The Psychophysical Measurement of Visual Function, T. T. Norton, D. A. Corliss, and J. E. Bailey, eds. (Butterworth-Heinemann, 2002), pp. 217–287.

Verriest, G.

G. Verriest, J. Van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93, 635–642 (1982).

J. Pokorny, V. C. Smith, G. Verriest, and A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, 1979).

Viqueira, V.

D. de Fez, J. Luque, and V. Viqueira, “Enhancement of contrast sensitivity and losses of chromatic discrimination with tinted lenses,” Optom. Vis. Sci. 79, 590–597 (2002).
[CrossRef]

Vital-Durand, F.

K. Knoblauch, F. Vital-Durand, and J. L. Barbur, “Variation of chromatic sensitivity across the life span,” Vis. Res. 41, 23–36 (2001).
[CrossRef]

Werner, A.

A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of ageing on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
[CrossRef]

Werner, J. S.

Wuerger, S.

S. Wuerger, K. Xiao, C. Fu, and D. Karataz, “Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes,” Opthalmol. Physiol. Opt. 30, 653–659 (2010).
[CrossRef]

Xiao, K.

S. Wuerger, K. Xiao, C. Fu, and D. Karataz, “Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes,” Opthalmol. Physiol. Opt. 30, 653–659 (2010).
[CrossRef]

Zrenner, E.

A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of ageing on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
[CrossRef]

Am. J. Ophthalmol. (1)

G. Verriest, J. Van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93, 635–642 (1982).

Appl. Opt. (1)

Brain (1)

M. F. Silva, P. Faria, F. S. Regateiro, V. Forjaz, C. Januário, A. Freire, and M. Castelo-Branco, “Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson’s disease,” Brain 128, 2260–2271 (2005).
[CrossRef]

Brit. J. Ind. Med. (1)

R. Lakowski, “Theory and practice of colour vision testing: a review,” Brit. J. Ind. Med. 26, 173–189, 265–288 (1969).

Brit. J. Ophthalmol. (1)

P. R. Kinnear and A. Sahraie, “New Farnsworth-Munsell 100 hue test norms of normal observers for each year of age 5–22 and for age decades 30–70,” Brit. J. Ophthalmol. 86, 1408–1411(2002).
[CrossRef]

Clin. Exp. Optom. (1)

S. J. Dain, “Clinical colour vision tests,” Clin. Exp. Optom. 4, 276–293 (2004).

Doc. Ophthalmol. (2)

P. Lanthony, “The desaturated panel D-15,” Doc. Ophthalmol. 46, 185–189 (1978).

G. Arden, K. Gündüz, and S. Perry, “Color vision testing with a computer graphics system: preliminary results,” Doc. Ophthalmol. 69, 167–174 (1988).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

M. Castelo-Branco, P. Faria, V. Forjaz, L. R. Kozak, and H. Azevedo, “Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: correlation with clinical measures,” Invest. Ophthalmol. Vis. Sci. 45, 499–505 (2004).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Physiol. (1)

J. D. Mollon and J. P. Reffin, “A computer-controlled colour vision test that combines the principles of Chibret and Stilling,” J. Physiol. 414, 5P (1989).

Opthalmol. Physiol. Opt. (2)

C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Opthalmol. Physiol. Opt. 30, 717–723 (2010).
[CrossRef]

S. Wuerger, K. Xiao, C. Fu, and D. Karataz, “Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes,” Opthalmol. Physiol. Opt. 30, 653–659 (2010).
[CrossRef]

Optom. Vis. Sci. (3)

G. Hagerstrom-Portnoy, M. E. Schneck, and J. A. Brabyn, “Seeing into old age: vision function beyond acuity,” Optom. Vis. Sci. 76, 141–158 (1999).
[CrossRef]

J. S. Werner, D. H. Peterzell, and A. J. Scheetz, “Light, vision, and aging,” Optom. Vis. Sci. 67, 214–229 (1990).
[CrossRef]

D. de Fez, J. Luque, and V. Viqueira, “Enhancement of contrast sensitivity and losses of chromatic discrimination with tinted lenses,” Optom. Vis. Sci. 79, 590–597 (2002).
[CrossRef]

Prog. Brain Res. (1)

J. L. Barbur, “‘Double-blindsight’ revealed through the processing of color and luminance contrast defined motion,” Prog. Brain Res. 144, 243–259 (2004).
[CrossRef]

Vis. Neurosci. (2)

M. F. Costa, D. F. Ventura, F. Perazzolo, M. Murakoshi, and L. C. L. Silveira, “Absence of binocular summation, eye dominance, and learning effects in color discrimination,” Vis. Neurosci. 23, 461–469 (2006).
[CrossRef]

C. Feitosa-Santana, M. T. S. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simões, M. F. Costa, L. C. L. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Vis. Neurosci. 25, 487–491(2008).
[CrossRef]

Vis. Res. (4)

K. Knoblauch, F. Vital-Durand, and J. L. Barbur, “Variation of chromatic sensitivity across the life span,” Vis. Res. 41, 23–36 (2001).
[CrossRef]

A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of ageing on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010).
[CrossRef]

B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998).
[CrossRef]

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

Other (13)

J. D. Mollon and J. P. Reffin, Handbook of the Cambridge Colour Test (Cambridge Research Systems, 2000).

D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. De Souza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal & Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.

R. J. P. Reffin, S. Astell, and J. D. Mollon, “Trials of a computer-controlled colour vision test that preserves the advantages of pseudoisochromatic plates,” in Colour Vision Deficiencies X, B. Drum, J. D. Moreland, and A. Serra, eds. (Kluwer, 1991), pp. 69–76.

S. Ishihara, Test for Colour-Blindness, 24 Plates Edition(Kanehra Shupan Co., 1973).

J. Pokorny, V. C. Smith, G. Verriest, and A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, 1979).

J. Birch, Diagnosis of Defective Colour Vision (Oxford University, 1993).

A. Peters, “The effects of normal aging on nerve fibres and neuroglia in the central nervous system,” in Brain Aging: Models, Methods, and Mechanisms, D. Riddle, ed. (CRC Press, 2007), pp. 97–125.

Cambridge Research Systems Ltd., http://www.crsltd.com/catalog/metropsis/CCT.html .

W. J. Dixon and F. J. Massey, Introduction to Statistical Analysis, 3rd ed. (McGraw-Hill, 1969).

K. Krishnamoorthy, Handbook of Statistical Distributions with Applications (Chapman and Hall/CRC, 2006), pp. 323–324.

STATGRAPHICS Centurion, http://www.statgraphics.com .

S. Siegel and N. J. Castellan, “Nonparametric Statistics for the Behavioral Sciences, 2nd ed. (McGraw-Hill, 1988), pp. 213–215.

W. A. Verdon and A. J. Adams, “Color vision,” in The Psychophysical Measurement of Visual Function, T. T. Norton, D. A. Corliss, and J. E. Bailey, eds. (Butterworth-Heinemann, 2002), pp. 217–287.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

An illustration of the chromatic targets, Landolt “C,” embedded in the luminance noise background. (In the gray-scale image, chromatic contrast is absent and the Landolt “C” is not visible.) Reprinted by permission from Cambridge Research Systems Ltd [13, p. 4].

Fig. 2.
Fig. 2.

(a) Confusion vectors (in the CIE 1976 u v color space) along which the chromaticity is varied in the CCT Trivector test: Protan (P), Deutan (D), and Tritan (T). The origin of the vectors indicates chromaticity coordinates of the neutral background (u=0.1977, v=0.4689). The monitor gamut used is represented by the white triangle. (b) Examples of color discrimination ellipses for NTs: Ellipse 1 (middle), Ellipse 2 (top), Ellipse 3 (bottom); crosses indicate raw discrimination vectors, and fitted ellipses are shown by solid lines. (a) is reprinted by permission of Oxford University Press from [17, p. 2265]. (b) is reprinted by permission from Cambridge Research Systems Ltd [13, Graph 1].

Fig. 3.
Fig. 3.

Trivector test: Color discrimination thresholds (in 104 u v units) for four age groups along the Protan (a), Deutan (b) and Tritan (c) confusion lines. Significant differences between the age groups are indicated by horizontal lines accompanied by corresponding p-values which are marked with an asterisk if they meet the Bonferroni-corrected criterion.

Fig. 4.
Fig. 4.

Ellipses test: length of the major axis (in 105 u v units) for four age groups. (a) Ellipse 1, (b) Ellipse 2, (c) Ellipse 3. Horizontal lines indicate significant differences between the age groups; contrasts that meet the Bonferroni-corrected criterion are marked with an asterisk.

Tables (7)

Tables Icon

Table 1. Trivector Test: Mean, Standard Deviation (SD), and Tolerance Limits of the Protan, Deutan, and Tritan Vectorsa for the 20–29 Year Old (Liverpool sample; N=40) vs. 18–30 Year Old (Brazil sample; N=75) [14]

Tables Icon

Table 2. Ellipses Test, Length of the Major Axisa: Mean, Standard Deviation (SD), and Tolerance Limits for the 20–29 Year Old (Liverpool sample; N=40) vs. 18–30 Year Old (Brazil sample; N=75) [14]

Tables Icon

Table 3. Ellipses test, Major-to-Minor Axis Ratio: Mean, Standard Deviation (SD), and Tolerance Limits for the 20–29 Year Old (Liverpool sample; N=40) vs. 18–30 Year Old (Brazil sample; N=75) [14]

Tables Icon

Table 4. Trivector Test: Median, Half-Interquartile Range (IQR/2), Upper and Lower Tolerance Limits of the Protan, Deutan and Tritan Vectorsa for the 20+, 30+, 40+, and 50+ Age Groups

Tables Icon

Table 5. Ellipses Test, Length of the Ellipse Major Axisa: Median, Half-Interquartile Range (IQR/2), Upper and Lower Tolerance Limits, for the 20+, 30+, 40+, and 50+ Age Groups

Tables Icon

Table 6. Ellipses Test, Major-to-Minor Axis Ratio: Median, Half-Interquartile Range (IQR/2), Upper and Lower Tolerance Limits for the 20+, 30+, 40+, and 50+ Age Groups

Tables Icon

Table 7. Ellipses Test, Angle of the Major Axis: Median, Half-Interquartile Range (IQR/2), Upper and Lower Tolerance Limits for the 20+, 30+, 40+, and 50+ Age Groups

Metrics