Abstract

Cone contrast remains constant, when the same object/background is seen under different illuminations—the von Kries rule [Shevell, Vis. Res. 18, 1649 (1978)]. Here we explore this idea using asymmetric color matching. We find that von Kries adaptation holds, regardless of whether chromatic constancy index is low or high. When illumination changes the stimulus luminance (reflectance), lightness constancy is weak and matching is dictated by object/background luminance contrast. When this contrast is masked or disrupted, lightness constancy mechanisms are more prominent. Thus von Kries adaptation is incompatible with lightness constancy, suggesting that cortical mechanisms must underlie color constancy, as expected from neurophysiological studies [Zeki, Nature 284, 412 (1980); Wild, Nature 313, 133 (1985)].

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Judd, “Hue saturation and lightness of surface colors with chromatic illumination,” J. Opt. Soc. Am. 30, 2–32(1940).
    [CrossRef]
  2. L. Arend and A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
    [CrossRef]
  3. J. M. Troost and C. M. de Weert, “Naming versus matching in color constancy,” Percept. Psychophys. 50, 591–602 (1991).
    [CrossRef]
  4. J. Mollon, “Monge—The Verriest lecture,” Vis. Neurosci. 23, 297–309 (2006).
    [CrossRef]
  5. D. H. Brainard, “Color constancy in the nearly natural image: 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
    [CrossRef]
  6. S. K. Shevell, “The dual role of chromatic backgrounds in colour perception,” Vis. Res. 18, 1649–1661 (1978).
    [CrossRef]
  7. D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. B115–121 (1994).
    [CrossRef]
  8. B. J. Craven and D. H. Foster, “An operational approach to colour constancy,” Vis. Res. 32, 1359–1366 (1992).
    [CrossRef]
  9. D. H. Foster, “Colour constancy,” Vis. Res. 51, 674–700 (2011).
    [CrossRef]
  10. F. A. A. Kingdom, “Lightness, brightness and transparency: A quarter century of new ideas, captivating demonstrations and unrelenting controversy [Invited Review],” Vis. Res. 51, 652–673(2011).
    [CrossRef]
  11. H. Wallach, “The perception of neutral colors,” Sci. Am. 208, 107–117 (1963).
    [CrossRef]
  12. E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991).
    [CrossRef]
  13. T. Wachtler, T. D. Albright, and T. J. Sejnowski, “Nonlocal interactions in color perception: Nonlinear processing of chromatic signals from remote inducers,” Vis. Res. 41, 1535–1546(2001).
    [CrossRef]
  14. I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict colour constancy,” Vis. Neurosci. 23, 543–547 (2006).
  15. I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
    [CrossRef]
  16. S. Zeki, “Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours,” Neuroscience 9, 741–765 (1983).
  17. S. Zeki, “The representation of colours in the cerebral cortex,” Nature 284, 412–418 (1980).
    [CrossRef]
  18. D. J. McKeefry and S. Zeki, “The position and topography of the human colour centre as revealed by functional magnetic resonance imaging,” Brain 120, 2229–2242 (1997).
    [CrossRef]
  19. M. Kusunoki, K. Moutoussis, and S. Zeki, “Effect of background colors on the tuning of color-selective cells in monkey area V4,” J. Neurophysiol. 95, 3047–3059 (2006).
    [CrossRef]
  20. H. M. Wild, S. R. Butler, D. Carden, and J. J. Kulikowski, “Primate cortical area V4 important for colour constancy but not wavelength discrimination,” Nature 313, 133–135 (1985).
    [CrossRef]
  21. V. Walsh, D. Carden, S. R. Butler, and J. J. Kulikowski, “The effects of V4 lesions on the visual abilities of macaques: Hue discrimination and colour constancy,” Behav. Brain Res. 53, 51–62 (1993).
    [CrossRef]
  22. C. R. Michael, “Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields,” J. Neurophysiol. 41, 1233–1249 (1978).
  23. E. N. Johnson, M. J. Hawken, and R. Shapley, “Cone inputs in macaque primary visual cortex,” Neurophysiol. 91, 2501–2514 (2004).
    [CrossRef]
  24. B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006).
    [CrossRef]
  25. R. Shapley and M. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res 51, 701–717 (2011).
    [CrossRef]
  26. J. M. Kraft and D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. USA 96, 307–312 (1999).
    [CrossRef]
  27. M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).
  28. K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
    [CrossRef]
  29. S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Ann. Rev. Psychol. 59, 143–166 (2008).
    [CrossRef]
  30. E. H. Land and J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
    [CrossRef]
  31. J. J. McCann, “Lessons learned from Mondrians applied to real images and color gamuts,” in Proceedings of the IS&T/SID Seventh Color Imaging Conference (The Society for Imaging Science and Technology, 1999), pp. 1–8.
  32. R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant sample and backgrounds: A model,” Perception 34, 995–1002 (2005).
    [CrossRef]
  33. A. Daugirdiene, I. J. Murray, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrast computations, physical versus perceived background and colour constancy,” Spat. Vis. 19, 173–192 (2006).
  34. J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989).
    [CrossRef]
  35. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
    [CrossRef]
  36. A. D. Logvinenko and L. T. Maloney, “The proximity structure of achromatic surface colors and the impossibility of asymmetric lightness matching,” Percept. Psychophys. 68, 76–83 (2006).
    [CrossRef]
  37. M. P. Lucassen and J. Walraven, “Separate processing of chromatic and achromatic contrast in color constancy,” Color Res. Appl. 30, 172–185 (2005).
    [CrossRef]
  38. J. D. Mollon, B. C. Regan, and J. K. Bowmaker, “What is the function of the cone-rich rim of the retina?,” Eye 12, 548–552 (1998).
    [CrossRef]
  39. J. Golz and D. I. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
    [CrossRef]
  40. A. C. Hurlbert, D. I. Bramwell, C. Heywood, and A. Cowey, “Discrimination of cone contrast changes as evidence for colour constancy in cerebral achromatopsia,” Exp. Brain Res. 123, 136–144 (1998).
    [CrossRef]
  41. H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Phil. Trans. R. Soc. B 360, 1329–1346 (2005).
    [CrossRef]
  42. C. van Trigt, “Illuminant dependence of von Kries type quotients,” Int. J. Comput. Vis. 61, 5–30 (2005).
    [CrossRef]
  43. S. M. C. Nascimento and D. H. Foster, “Statistics of spatial cone-excitation ratios in natural scenes,” J. Opt. Soc. Am. A 19, 1484–1490 (2002).
    [CrossRef]
  44. J. J. Kulikowski, “Effective contrast constancy and linearity of contrast sensation,” Vis. Res. 16, 1419–1431 (1976).
    [CrossRef]
  45. M. A. Georgeson and G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. 252, 627–656 (1975).
  46. J. J. Kulikowski and K. Kranda, “Detection of coarse patterns with minimum contribution from rods,” Vis. Res. 17, 653–656 (1977).
    [CrossRef]
  47. C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260(1969).
  48. A. G. Robson and J. J. Kulikowski, “The effect of pattern adaptation on chromatic and chromatic visual evoked potentials,” Color Res. Appl. S26, S133–S135 (2001).
    [CrossRef]
  49. J. J. Kulikowski, “Limiting conditions of visual perception (in Polish: English translation),” Warszawa. Prace Instytutu Automatyki PAN 77, 1–133 (1969).
  50. Sharanjeet-Kaur, J. J. Kulikowski, and D. Carden, “Isolation of chromatic and achromatic mechanisms: A new approach,” Ophthalmic Physiol. Opt. 18, 49–59 (1998).

2011 (3)

D. H. Foster, “Colour constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

F. A. A. Kingdom, “Lightness, brightness and transparency: A quarter century of new ideas, captivating demonstrations and unrelenting controversy [Invited Review],” Vis. Res. 51, 652–673(2011).
[CrossRef]

R. Shapley and M. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res 51, 701–717 (2011).
[CrossRef]

2008 (1)

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Ann. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

2006 (7)

A. D. Logvinenko and L. T. Maloney, “The proximity structure of achromatic surface colors and the impossibility of asymmetric lightness matching,” Percept. Psychophys. 68, 76–83 (2006).
[CrossRef]

B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006).
[CrossRef]

J. Mollon, “Monge—The Verriest lecture,” Vis. Neurosci. 23, 297–309 (2006).
[CrossRef]

I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict colour constancy,” Vis. Neurosci. 23, 543–547 (2006).

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[CrossRef]

M. Kusunoki, K. Moutoussis, and S. Zeki, “Effect of background colors on the tuning of color-selective cells in monkey area V4,” J. Neurophysiol. 95, 3047–3059 (2006).
[CrossRef]

A. Daugirdiene, I. J. Murray, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrast computations, physical versus perceived background and colour constancy,” Spat. Vis. 19, 173–192 (2006).

2005 (4)

R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant sample and backgrounds: A model,” Perception 34, 995–1002 (2005).
[CrossRef]

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Phil. Trans. R. Soc. B 360, 1329–1346 (2005).
[CrossRef]

C. van Trigt, “Illuminant dependence of von Kries type quotients,” Int. J. Comput. Vis. 61, 5–30 (2005).
[CrossRef]

M. P. Lucassen and J. Walraven, “Separate processing of chromatic and achromatic contrast in color constancy,” Color Res. Appl. 30, 172–185 (2005).
[CrossRef]

2004 (1)

E. N. Johnson, M. J. Hawken, and R. Shapley, “Cone inputs in macaque primary visual cortex,” Neurophysiol. 91, 2501–2514 (2004).
[CrossRef]

2003 (1)

K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
[CrossRef]

2002 (2)

S. M. C. Nascimento and D. H. Foster, “Statistics of spatial cone-excitation ratios in natural scenes,” J. Opt. Soc. Am. A 19, 1484–1490 (2002).
[CrossRef]

J. Golz and D. I. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

2001 (2)

T. Wachtler, T. D. Albright, and T. J. Sejnowski, “Nonlocal interactions in color perception: Nonlinear processing of chromatic signals from remote inducers,” Vis. Res. 41, 1535–1546(2001).
[CrossRef]

A. G. Robson and J. J. Kulikowski, “The effect of pattern adaptation on chromatic and chromatic visual evoked potentials,” Color Res. Appl. S26, S133–S135 (2001).
[CrossRef]

1999 (2)

J. M. Kraft and D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. USA 96, 307–312 (1999).
[CrossRef]

M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

1998 (4)

J. D. Mollon, B. C. Regan, and J. K. Bowmaker, “What is the function of the cone-rich rim of the retina?,” Eye 12, 548–552 (1998).
[CrossRef]

A. C. Hurlbert, D. I. Bramwell, C. Heywood, and A. Cowey, “Discrimination of cone contrast changes as evidence for colour constancy in cerebral achromatopsia,” Exp. Brain Res. 123, 136–144 (1998).
[CrossRef]

Sharanjeet-Kaur, J. J. Kulikowski, and D. Carden, “Isolation of chromatic and achromatic mechanisms: A new approach,” Ophthalmic Physiol. Opt. 18, 49–59 (1998).

D. H. Brainard, “Color constancy in the nearly natural image: 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
[CrossRef]

1997 (1)

D. J. McKeefry and S. Zeki, “The position and topography of the human colour centre as revealed by functional magnetic resonance imaging,” Brain 120, 2229–2242 (1997).
[CrossRef]

1994 (1)

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. B115–121 (1994).
[CrossRef]

1993 (1)

V. Walsh, D. Carden, S. R. Butler, and J. J. Kulikowski, “The effects of V4 lesions on the visual abilities of macaques: Hue discrimination and colour constancy,” Behav. Brain Res. 53, 51–62 (1993).
[CrossRef]

1992 (1)

B. J. Craven and D. H. Foster, “An operational approach to colour constancy,” Vis. Res. 32, 1359–1366 (1992).
[CrossRef]

1991 (2)

E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991).
[CrossRef]

J. M. Troost and C. M. de Weert, “Naming versus matching in color constancy,” Percept. Psychophys. 50, 591–602 (1991).
[CrossRef]

1989 (1)

1986 (1)

1985 (1)

H. M. Wild, S. R. Butler, D. Carden, and J. J. Kulikowski, “Primate cortical area V4 important for colour constancy but not wavelength discrimination,” Nature 313, 133–135 (1985).
[CrossRef]

1983 (1)

S. Zeki, “Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours,” Neuroscience 9, 741–765 (1983).

1980 (1)

S. Zeki, “The representation of colours in the cerebral cortex,” Nature 284, 412–418 (1980).
[CrossRef]

1978 (2)

C. R. Michael, “Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields,” J. Neurophysiol. 41, 1233–1249 (1978).

S. K. Shevell, “The dual role of chromatic backgrounds in colour perception,” Vis. Res. 18, 1649–1661 (1978).
[CrossRef]

1977 (1)

J. J. Kulikowski and K. Kranda, “Detection of coarse patterns with minimum contribution from rods,” Vis. Res. 17, 653–656 (1977).
[CrossRef]

1976 (1)

J. J. Kulikowski, “Effective contrast constancy and linearity of contrast sensation,” Vis. Res. 16, 1419–1431 (1976).
[CrossRef]

1975 (2)

M. A. Georgeson and G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. 252, 627–656 (1975).

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

1971 (1)

1969 (2)

J. J. Kulikowski, “Limiting conditions of visual perception (in Polish: English translation),” Warszawa. Prace Instytutu Automatyki PAN 77, 1–133 (1969).

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260(1969).

1963 (1)

H. Wallach, “The perception of neutral colors,” Sci. Am. 208, 107–117 (1963).
[CrossRef]

1940 (1)

Albright, T. D.

T. Wachtler, T. D. Albright, and T. J. Sejnowski, “Nonlocal interactions in color perception: Nonlinear processing of chromatic signals from remote inducers,” Vis. Res. 41, 1535–1546(2001).
[CrossRef]

Arend, L.

Blakemore, C.

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260(1969).

Bloj, M. G.

M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

Bowmaker, J. K.

J. D. Mollon, B. C. Regan, and J. K. Bowmaker, “What is the function of the cone-rich rim of the retina?,” Eye 12, 548–552 (1998).
[CrossRef]

Brainard, D. H.

J. M. Kraft and D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. USA 96, 307–312 (1999).
[CrossRef]

D. H. Brainard, “Color constancy in the nearly natural image: 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
[CrossRef]

Bramwell, D. I.

A. C. Hurlbert, D. I. Bramwell, C. Heywood, and A. Cowey, “Discrimination of cone contrast changes as evidence for colour constancy in cerebral achromatopsia,” Exp. Brain Res. 123, 136–144 (1998).
[CrossRef]

Brenner, E.

E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991).
[CrossRef]

Butler, S. R.

V. Walsh, D. Carden, S. R. Butler, and J. J. Kulikowski, “The effects of V4 lesions on the visual abilities of macaques: Hue discrimination and colour constancy,” Behav. Brain Res. 53, 51–62 (1993).
[CrossRef]

H. M. Wild, S. R. Butler, D. Carden, and J. J. Kulikowski, “Primate cortical area V4 important for colour constancy but not wavelength discrimination,” Nature 313, 133–135 (1985).
[CrossRef]

Campbell, F. W.

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260(1969).

Carden, D.

Sharanjeet-Kaur, J. J. Kulikowski, and D. Carden, “Isolation of chromatic and achromatic mechanisms: A new approach,” Ophthalmic Physiol. Opt. 18, 49–59 (1998).

V. Walsh, D. Carden, S. R. Butler, and J. J. Kulikowski, “The effects of V4 lesions on the visual abilities of macaques: Hue discrimination and colour constancy,” Behav. Brain Res. 53, 51–62 (1993).
[CrossRef]

H. M. Wild, S. R. Butler, D. Carden, and J. J. Kulikowski, “Primate cortical area V4 important for colour constancy but not wavelength discrimination,” Nature 313, 133–135 (1985).
[CrossRef]

Conway, B. R.

B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006).
[CrossRef]

Cornelissen, F. W.

E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991).
[CrossRef]

Cowey, A.

A. C. Hurlbert, D. I. Bramwell, C. Heywood, and A. Cowey, “Discrimination of cone contrast changes as evidence for colour constancy in cerebral achromatopsia,” Exp. Brain Res. 123, 136–144 (1998).
[CrossRef]

Craven, B. J.

B. J. Craven and D. H. Foster, “An operational approach to colour constancy,” Vis. Res. 32, 1359–1366 (1992).
[CrossRef]

Daugirdiene, A.

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[CrossRef]

I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict colour constancy,” Vis. Neurosci. 23, 543–547 (2006).

A. Daugirdiene, I. J. Murray, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrast computations, physical versus perceived background and colour constancy,” Spat. Vis. 19, 173–192 (2006).

R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant sample and backgrounds: A model,” Perception 34, 995–1002 (2005).
[CrossRef]

de Weert, C. M.

J. M. Troost and C. M. de Weert, “Naming versus matching in color constancy,” Percept. Psychophys. 50, 591–602 (1991).
[CrossRef]

Foster, D. H.

D. H. Foster, “Colour constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

S. M. C. Nascimento and D. H. Foster, “Statistics of spatial cone-excitation ratios in natural scenes,” J. Opt. Soc. Am. A 19, 1484–1490 (2002).
[CrossRef]

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. B115–121 (1994).
[CrossRef]

B. J. Craven and D. H. Foster, “An operational approach to colour constancy,” Vis. Res. 32, 1359–1366 (1992).
[CrossRef]

Gegenfurtner, K. R.

K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
[CrossRef]

Georgeson, M. A.

M. A. Georgeson and G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. 252, 627–656 (1975).

Golz, J.

J. Golz and D. I. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

Hallikainen, J.

Hawken, M.

R. Shapley and M. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res 51, 701–717 (2011).
[CrossRef]

Hawken, M. J.

E. N. Johnson, M. J. Hawken, and R. Shapley, “Cone inputs in macaque primary visual cortex,” Neurophysiol. 91, 2501–2514 (2004).
[CrossRef]

Heywood, C.

A. C. Hurlbert, D. I. Bramwell, C. Heywood, and A. Cowey, “Discrimination of cone contrast changes as evidence for colour constancy in cerebral achromatopsia,” Exp. Brain Res. 123, 136–144 (1998).
[CrossRef]

Hurlbert, A. C.

M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

A. C. Hurlbert, D. I. Bramwell, C. Heywood, and A. Cowey, “Discrimination of cone contrast changes as evidence for colour constancy in cerebral achromatopsia,” Exp. Brain Res. 123, 136–144 (1998).
[CrossRef]

Jaaskelainen, T.

Johnson, E. N.

E. N. Johnson, M. J. Hawken, and R. Shapley, “Cone inputs in macaque primary visual cortex,” Neurophysiol. 91, 2501–2514 (2004).
[CrossRef]

Judd, D. B.

Kersten, D.

M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

Kingdom, F. A. A.

F. A. A. Kingdom, “Lightness, brightness and transparency: A quarter century of new ideas, captivating demonstrations and unrelenting controversy [Invited Review],” Vis. Res. 51, 652–673(2011).
[CrossRef]

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Ann. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

Kraft, J. M.

J. M. Kraft and D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. USA 96, 307–312 (1999).
[CrossRef]

Kranda, K.

J. J. Kulikowski and K. Kranda, “Detection of coarse patterns with minimum contribution from rods,” Vis. Res. 17, 653–656 (1977).
[CrossRef]

Kulikowski, J. J.

I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict colour constancy,” Vis. Neurosci. 23, 543–547 (2006).

A. Daugirdiene, I. J. Murray, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrast computations, physical versus perceived background and colour constancy,” Spat. Vis. 19, 173–192 (2006).

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[CrossRef]

R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant sample and backgrounds: A model,” Perception 34, 995–1002 (2005).
[CrossRef]

A. G. Robson and J. J. Kulikowski, “The effect of pattern adaptation on chromatic and chromatic visual evoked potentials,” Color Res. Appl. S26, S133–S135 (2001).
[CrossRef]

Sharanjeet-Kaur, J. J. Kulikowski, and D. Carden, “Isolation of chromatic and achromatic mechanisms: A new approach,” Ophthalmic Physiol. Opt. 18, 49–59 (1998).

V. Walsh, D. Carden, S. R. Butler, and J. J. Kulikowski, “The effects of V4 lesions on the visual abilities of macaques: Hue discrimination and colour constancy,” Behav. Brain Res. 53, 51–62 (1993).
[CrossRef]

H. M. Wild, S. R. Butler, D. Carden, and J. J. Kulikowski, “Primate cortical area V4 important for colour constancy but not wavelength discrimination,” Nature 313, 133–135 (1985).
[CrossRef]

J. J. Kulikowski and K. Kranda, “Detection of coarse patterns with minimum contribution from rods,” Vis. Res. 17, 653–656 (1977).
[CrossRef]

J. J. Kulikowski, “Effective contrast constancy and linearity of contrast sensation,” Vis. Res. 16, 1419–1431 (1976).
[CrossRef]

J. J. Kulikowski, “Limiting conditions of visual perception (in Polish: English translation),” Warszawa. Prace Instytutu Automatyki PAN 77, 1–133 (1969).

Kusunoki, M.

M. Kusunoki, K. Moutoussis, and S. Zeki, “Effect of background colors on the tuning of color-selective cells in monkey area V4,” J. Neurophysiol. 95, 3047–3059 (2006).
[CrossRef]

Land, E. H.

Livingstone, M. S.

B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006).
[CrossRef]

Logvinenko, A. D.

A. D. Logvinenko and L. T. Maloney, “The proximity structure of achromatic surface colors and the impossibility of asymmetric lightness matching,” Percept. Psychophys. 68, 76–83 (2006).
[CrossRef]

Lucassen, M. P.

M. P. Lucassen and J. Walraven, “Separate processing of chromatic and achromatic contrast in color constancy,” Color Res. Appl. 30, 172–185 (2005).
[CrossRef]

MacLeod, D. I.

J. Golz and D. I. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

Maloney, L. T.

A. D. Logvinenko and L. T. Maloney, “The proximity structure of achromatic surface colors and the impossibility of asymmetric lightness matching,” Percept. Psychophys. 68, 76–83 (2006).
[CrossRef]

McCann, J. J.

E. H. Land and J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
[CrossRef]

J. J. McCann, “Lessons learned from Mondrians applied to real images and color gamuts,” in Proceedings of the IS&T/SID Seventh Color Imaging Conference (The Society for Imaging Science and Technology, 1999), pp. 1–8.

McKeefry, D. J.

D. J. McKeefry and S. Zeki, “The position and topography of the human colour centre as revealed by functional magnetic resonance imaging,” Brain 120, 2229–2242 (1997).
[CrossRef]

Michael, C. R.

C. R. Michael, “Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields,” J. Neurophysiol. 41, 1233–1249 (1978).

Mollon, J.

J. Mollon, “Monge—The Verriest lecture,” Vis. Neurosci. 23, 297–309 (2006).
[CrossRef]

Mollon, J. D.

J. D. Mollon, B. C. Regan, and J. K. Bowmaker, “What is the function of the cone-rich rim of the retina?,” Eye 12, 548–552 (1998).
[CrossRef]

Moutoussis, K.

M. Kusunoki, K. Moutoussis, and S. Zeki, “Effect of background colors on the tuning of color-selective cells in monkey area V4,” J. Neurophysiol. 95, 3047–3059 (2006).
[CrossRef]

Murray, I. J.

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[CrossRef]

A. Daugirdiene, I. J. Murray, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrast computations, physical versus perceived background and colour constancy,” Spat. Vis. 19, 173–192 (2006).

I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict colour constancy,” Vis. Neurosci. 23, 543–547 (2006).

R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant sample and backgrounds: A model,” Perception 34, 995–1002 (2005).
[CrossRef]

Nascimento, S. M. C.

S. M. C. Nascimento and D. H. Foster, “Statistics of spatial cone-excitation ratios in natural scenes,” J. Opt. Soc. Am. A 19, 1484–1490 (2002).
[CrossRef]

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. B115–121 (1994).
[CrossRef]

Parkkinen, J. P. S.

Pokorny, J.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

Reeves, A.

Regan, B. C.

J. D. Mollon, B. C. Regan, and J. K. Bowmaker, “What is the function of the cone-rich rim of the retina?,” Eye 12, 548–552 (1998).
[CrossRef]

Robson, A. G.

A. G. Robson and J. J. Kulikowski, “The effect of pattern adaptation on chromatic and chromatic visual evoked potentials,” Color Res. Appl. S26, S133–S135 (2001).
[CrossRef]

Sejnowski, T. J.

T. Wachtler, T. D. Albright, and T. J. Sejnowski, “Nonlocal interactions in color perception: Nonlinear processing of chromatic signals from remote inducers,” Vis. Res. 41, 1535–1546(2001).
[CrossRef]

Shapley, R.

R. Shapley and M. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res 51, 701–717 (2011).
[CrossRef]

E. N. Johnson, M. J. Hawken, and R. Shapley, “Cone inputs in macaque primary visual cortex,” Neurophysiol. 91, 2501–2514 (2004).
[CrossRef]

Sharanjeet-Kaur,

Sharanjeet-Kaur, J. J. Kulikowski, and D. Carden, “Isolation of chromatic and achromatic mechanisms: A new approach,” Ophthalmic Physiol. Opt. 18, 49–59 (1998).

Shevell, S. K.

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Ann. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

S. K. Shevell, “The dual role of chromatic backgrounds in colour perception,” Vis. Res. 18, 1649–1661 (1978).
[CrossRef]

Smith, V. C.

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

Smithson, H. E.

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Phil. Trans. R. Soc. B 360, 1329–1346 (2005).
[CrossRef]

Stanikunas, R.

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[CrossRef]

I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict colour constancy,” Vis. Neurosci. 23, 543–547 (2006).

R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant sample and backgrounds: A model,” Perception 34, 995–1002 (2005).
[CrossRef]

Sullivan, G. D.

M. A. Georgeson and G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. 252, 627–656 (1975).

Troost, J. M.

J. M. Troost and C. M. de Weert, “Naming versus matching in color constancy,” Percept. Psychophys. 50, 591–602 (1991).
[CrossRef]

Vaitkevicius, H.

I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict colour constancy,” Vis. Neurosci. 23, 543–547 (2006).

A. Daugirdiene, I. J. Murray, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrast computations, physical versus perceived background and colour constancy,” Spat. Vis. 19, 173–192 (2006).

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[CrossRef]

R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant sample and backgrounds: A model,” Perception 34, 995–1002 (2005).
[CrossRef]

van Trigt, C.

C. van Trigt, “Illuminant dependence of von Kries type quotients,” Int. J. Comput. Vis. 61, 5–30 (2005).
[CrossRef]

Wachtler, T.

T. Wachtler, T. D. Albright, and T. J. Sejnowski, “Nonlocal interactions in color perception: Nonlinear processing of chromatic signals from remote inducers,” Vis. Res. 41, 1535–1546(2001).
[CrossRef]

Wallach, H.

H. Wallach, “The perception of neutral colors,” Sci. Am. 208, 107–117 (1963).
[CrossRef]

Walraven, J.

M. P. Lucassen and J. Walraven, “Separate processing of chromatic and achromatic contrast in color constancy,” Color Res. Appl. 30, 172–185 (2005).
[CrossRef]

Walsh, V.

V. Walsh, D. Carden, S. R. Butler, and J. J. Kulikowski, “The effects of V4 lesions on the visual abilities of macaques: Hue discrimination and colour constancy,” Behav. Brain Res. 53, 51–62 (1993).
[CrossRef]

Wild, H. M.

H. M. Wild, S. R. Butler, D. Carden, and J. J. Kulikowski, “Primate cortical area V4 important for colour constancy but not wavelength discrimination,” Nature 313, 133–135 (1985).
[CrossRef]

Zeki, S.

M. Kusunoki, K. Moutoussis, and S. Zeki, “Effect of background colors on the tuning of color-selective cells in monkey area V4,” J. Neurophysiol. 95, 3047–3059 (2006).
[CrossRef]

D. J. McKeefry and S. Zeki, “The position and topography of the human colour centre as revealed by functional magnetic resonance imaging,” Brain 120, 2229–2242 (1997).
[CrossRef]

S. Zeki, “Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours,” Neuroscience 9, 741–765 (1983).

S. Zeki, “The representation of colours in the cerebral cortex,” Nature 284, 412–418 (1980).
[CrossRef]

Ann. Rev. Psychol. (1)

S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Ann. Rev. Psychol. 59, 143–166 (2008).
[CrossRef]

Behav. Brain Res. (1)

V. Walsh, D. Carden, S. R. Butler, and J. J. Kulikowski, “The effects of V4 lesions on the visual abilities of macaques: Hue discrimination and colour constancy,” Behav. Brain Res. 53, 51–62 (1993).
[CrossRef]

Brain (1)

D. J. McKeefry and S. Zeki, “The position and topography of the human colour centre as revealed by functional magnetic resonance imaging,” Brain 120, 2229–2242 (1997).
[CrossRef]

Color Res. Appl. (2)

M. P. Lucassen and J. Walraven, “Separate processing of chromatic and achromatic contrast in color constancy,” Color Res. Appl. 30, 172–185 (2005).
[CrossRef]

A. G. Robson and J. J. Kulikowski, “The effect of pattern adaptation on chromatic and chromatic visual evoked potentials,” Color Res. Appl. S26, S133–S135 (2001).
[CrossRef]

Exp. Brain Res. (1)

A. C. Hurlbert, D. I. Bramwell, C. Heywood, and A. Cowey, “Discrimination of cone contrast changes as evidence for colour constancy in cerebral achromatopsia,” Exp. Brain Res. 123, 136–144 (1998).
[CrossRef]

Eye (1)

J. D. Mollon, B. C. Regan, and J. K. Bowmaker, “What is the function of the cone-rich rim of the retina?,” Eye 12, 548–552 (1998).
[CrossRef]

Int. J. Comput. Vis. (1)

C. van Trigt, “Illuminant dependence of von Kries type quotients,” Int. J. Comput. Vis. 61, 5–30 (2005).
[CrossRef]

J. Neurophysiol. (2)

M. Kusunoki, K. Moutoussis, and S. Zeki, “Effect of background colors on the tuning of color-selective cells in monkey area V4,” J. Neurophysiol. 95, 3047–3059 (2006).
[CrossRef]

C. R. Michael, “Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields,” J. Neurophysiol. 41, 1233–1249 (1978).

J. Neurosci. (1)

B. R. Conway and M. S. Livingstone, “Spatial and temporal properties of cone signals in alert macaque primary visual cortex,” J. Neurosci. 26, 10826–10846 (2006).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

J. Physiol. (1)

M. A. Georgeson and G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. 252, 627–656 (1975).

J. Physiol. (1)

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260(1969).

Nat. Rev. Neurosci. (1)

K. R. Gegenfurtner, “Cortical mechanisms of colour vision,” Nat. Rev. Neurosci. 4, 563–572 (2003).
[CrossRef]

Nature (4)

J. Golz and D. I. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

M. G. Bloj, D. Kersten, and A. C. Hurlbert, “Perception of three-dimensional shape influences colour perception through mutual illumination,” Nature 402, 877–879 (1999).

H. M. Wild, S. R. Butler, D. Carden, and J. J. Kulikowski, “Primate cortical area V4 important for colour constancy but not wavelength discrimination,” Nature 313, 133–135 (1985).
[CrossRef]

S. Zeki, “The representation of colours in the cerebral cortex,” Nature 284, 412–418 (1980).
[CrossRef]

Naturwissenschaften (1)

E. Brenner and F. W. Cornelissen, “Spatial interactions in color vision depend on distances between boundaries,” Naturwissenschaften 78, 70–73 (1991).
[CrossRef]

Neurophysiol. (1)

E. N. Johnson, M. J. Hawken, and R. Shapley, “Cone inputs in macaque primary visual cortex,” Neurophysiol. 91, 2501–2514 (2004).
[CrossRef]

Neuroscience (1)

S. Zeki, “Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours,” Neuroscience 9, 741–765 (1983).

Ophthalmic Physiol. Opt. (1)

Sharanjeet-Kaur, J. J. Kulikowski, and D. Carden, “Isolation of chromatic and achromatic mechanisms: A new approach,” Ophthalmic Physiol. Opt. 18, 49–59 (1998).

Percept. Psychophys. (2)

J. M. Troost and C. M. de Weert, “Naming versus matching in color constancy,” Percept. Psychophys. 50, 591–602 (1991).
[CrossRef]

A. D. Logvinenko and L. T. Maloney, “The proximity structure of achromatic surface colors and the impossibility of asymmetric lightness matching,” Percept. Psychophys. 68, 76–83 (2006).
[CrossRef]

Perception (1)

R. Stanikunas, H. Vaitkevicius, J. J. Kulikowski, I. J. Murray, and A. Daugirdiene, “Colour matching of isoluminant sample and backgrounds: A model,” Perception 34, 995–1002 (2005).
[CrossRef]

Phil. Trans. R. Soc. B (1)

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Phil. Trans. R. Soc. B 360, 1329–1346 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

J. M. Kraft and D. H. Brainard, “Mechanisms of color constancy under nearly natural viewing,” Proc. Natl. Acad. Sci. USA 96, 307–312 (1999).
[CrossRef]

Proc. R. Soc. B (1)

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. B115–121 (1994).
[CrossRef]

Sci. Am. (1)

H. Wallach, “The perception of neutral colors,” Sci. Am. 208, 107–117 (1963).
[CrossRef]

Spat. Vis. (1)

A. Daugirdiene, I. J. Murray, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrast computations, physical versus perceived background and colour constancy,” Spat. Vis. 19, 173–192 (2006).

Vis. Neurosci. (2)

J. Mollon, “Monge—The Verriest lecture,” Vis. Neurosci. 23, 297–309 (2006).
[CrossRef]

I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict colour constancy,” Vis. Neurosci. 23, 543–547 (2006).

Vis. Res (1)

R. Shapley and M. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res 51, 701–717 (2011).
[CrossRef]

Vis. Res. (9)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975).
[CrossRef]

I. J. Murray, A. Daugirdiene, H. Vaitkevicius, J. J. Kulikowski, and R. Stanikunas, “Almost complete colour constancy achieved with full-field adaptation,” Vis. Res. 46, 3067–3078 (2006).
[CrossRef]

S. K. Shevell, “The dual role of chromatic backgrounds in colour perception,” Vis. Res. 18, 1649–1661 (1978).
[CrossRef]

T. Wachtler, T. D. Albright, and T. J. Sejnowski, “Nonlocal interactions in color perception: Nonlinear processing of chromatic signals from remote inducers,” Vis. Res. 41, 1535–1546(2001).
[CrossRef]

B. J. Craven and D. H. Foster, “An operational approach to colour constancy,” Vis. Res. 32, 1359–1366 (1992).
[CrossRef]

D. H. Foster, “Colour constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

F. A. A. Kingdom, “Lightness, brightness and transparency: A quarter century of new ideas, captivating demonstrations and unrelenting controversy [Invited Review],” Vis. Res. 51, 652–673(2011).
[CrossRef]

J. J. Kulikowski and K. Kranda, “Detection of coarse patterns with minimum contribution from rods,” Vis. Res. 17, 653–656 (1977).
[CrossRef]

J. J. Kulikowski, “Effective contrast constancy and linearity of contrast sensation,” Vis. Res. 16, 1419–1431 (1976).
[CrossRef]

Warszawa. Prace Instytutu Automatyki PAN (1)

J. J. Kulikowski, “Limiting conditions of visual perception (in Polish: English translation),” Warszawa. Prace Instytutu Automatyki PAN 77, 1–133 (1969).

Other (1)

J. J. McCann, “Lessons learned from Mondrians applied to real images and color gamuts,” in Proceedings of the IS&T/SID Seventh Color Imaging Conference (The Society for Imaging Science and Technology, 1999), pp. 1–8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

A, Stimulus presentation sequence. Test stimulus appeared in response to space bar press and remained present under test illuminant for test duration. This was followed by an equivalent readapt period. Subjects then adjusted hue, saturation, and brightness according to the color appearance under the presentation period [15]. Below, the stimulus is illustrated as being surrounded by an achromatic border or frame. B, 3D representation of stimuli in the u, v, L color space and their projections. Solid diamonds represent 40 Munsell chips under reference illuminant C (photometrically isoluminant) and their projection on the uv chromaticity plane. Squares represent Munsell chip loci under test illuminant A and circles under illuminant S (sky blue). Gray symbols represent projections on different planes. Note that samples illuminated by A (and S) are not isoluminant; their loci are tilted because orangey samples reflect more light and bluish less light compared with neutral illuminant. C, Reference (solid diamonds) and test (solid circles) samples on the u, v plane. Empty circles indicate color matches by the subject under reference illuminant C. CiTi is the physical, and CiMi apparent shift in chromaticity. The large circle is matched color appearance of neutrality.

Fig. 2.
Fig. 2.

A, Ideal observer performance for matching color of samples viewed under test illuminants A or S compared with reference illuminant C (solid diamonds). The dashed lines represent midway performance (cCI=0.5), whereas the dots mark ideal chromatic constancy (cCI=1) when the matches coincide with diamonds. B, Luminance shifts under test illuminants A, S shown by the solid lines: if the ideal observer matches covary with test luminance there is no lightness constancy. The dashed lines indicate “halfway” luminance matches (LCI=0.5), whereas the dots represent “full-way” luminance constancy. C, L, M, S cone contrasts computed for two chromatic constancy indices: cCI=0.5 and 1. Note that cone contrast adaptation is independent of chromatic constancy. Conversely, any degree of luminance or lightness constancy profoundly affects L, M cone contrast relations, which become nonlinear, as indicated by dashed lines (LCI=0,5) and dotted lines (LCI=1).

Fig. 3.
Fig. 3.

Experiment 1: A, Data for test illuminant A. B, Data for test illuminant S. (a) Subject matches color appearance [(a)-empty circles]-mean chromatic constancy is moderate cCI=0.53 and luminance constancy low LCI=0.23 [(b)-empty circles)]. When instructed to match the luminance of test samples [(a), (b)-gray squares), chromatic constancy is little affected (cCI=0.61) but LCI=0.01. Evidently, when matching introduces even moderate luminance constancy LCI=0.23 [(b), (c)-empty circles], this results in nonlinearity of M cone contrast rule [(c)-dashed line]. Compliance with the von Kries rule for all cones is possible when LCI0.

Fig. 4.
Fig. 4.

Experiment 2: A, Shift from reference S illuminant to test A. B, Shift from reference A to test S. These are “double distance” shifts compared to Fig. 3, yet constancy indices are similar as before A: cCI=0.53, LCI=0.45 B: cCI=0.68, LCI=0.27. Note all cone contrasts functions are affected by this manipulation.

Fig. 5.
Fig. 5.

Experiment 3: A, Data for test illuminant A. B, Data for test illuminant S. With 60s adaptation to an extended background, subject achieves almost full chromatic constancy cCI=0.87 [(a)-empty circles approach solid circles], but lightness constancy is zero [(b)-empty circles overlap solid]. Under these conditions, matches are in reasonable agreement with the cone contrast rule for all cone types [(c)-solid lines] similar to the case of luminance tracking [Fig. 3(c)-gray squares, solid lines].

Fig. 6.
Fig. 6.

Experiment 4: Note that chromatic constancy for samples without the frame is intermediate between data in Fig. 3 and Fig. 5, i.e., cCI=0.75 [see (b)-empty circles]. But even moderate lightness constancy LCI=0.47 affects the cone contrast linearity for M cones [(a)-empty circles, dashed lines]. Adding the frame to samples slightly reduces chromatic constancy (A cCI=0.67, B cCI=0.31) but substantially improves lightness constancy LCI1, [see (b)-gray circles). This results in violation of L , and M cone contrast linearity [see (c)-gray circles best fitting dotted lines]. This experiment is complementary to Experiment 3.

Fig. 7.
Fig. 7.

Experiment 5: The averaged data for Munsell experiment. The data for matching under illuminant C are shown by empty circles. B, Chromatic constancy indices (empty circles+SD, top panel) and luminance (solid circles under illuminant A, empty circles+SD matches under illuminant C, lower panel) mean indices: cCI=0.89 and LCI=0.38. C, L, M, S cone contrasts; solid and dashed lines indicate covariant and halfway model fits, respectively.

Fig. 8.
Fig. 8.

A and B, Matched luminance contrast is plotted against contrast under test illuminants A (Fig. 8A) or S (Fig. 8B). Dotted horizontal lines mark lightness constancy [isoluminance] whereas line of slope of one means that matched contrast is proportional to test luminance contrast, i.e., the contrast rule. The left-hand columns for each illuminant (A, S) shows cases for 1 and 60s presentation, which illustrate that matched luminance contrast is proportional to test luminance contrast. Note that the explicit instruction of “tracking test luminance” makes a relatively small improvement to the contrast fit (left-top; gray squares versus empty circles). Subjects matched according to luminance contrast ignoring lightness (horizontal dots). The right-hand columns for illuminants A and S show special cases, with poor fit of the luminance contrast. Top panels show cases of double illuminant changes and bottom, dichoptic viewing with achromatic frame (bottom, gray squares). When cone, and thereby luminance contrast rule, is disrupted, lightness constancy mechanisms operate. The data for dichoptic viewing with no frame (empty circles) serve as controls by having reasonable luminance contrast fits, in spite of substantial violations of M cone contrast.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

cCIi=1CiMiCiTi,
LCI=1LmaxLminLphotmaxLphotmin,

Metrics