Abstract

Chromatic thresholds were measured using the Cambridge Colour Test (CCT), the Colour Assessment and Diagnosis (CAD) test, and the Cone Specific Contrast Test (CSCT) at ground and 3780 m (12 400 ft) for subjects with normal color vision and red-green color vision defects. The CAD revealed a small (10%) increase in the red-green thresholds for the trichromatic subjects and a similar increase in the blue-yellow thresholds for the dichromats. The other two color vision tests did not reveal any significant change in chromatic thresholds. The CAD results for the trichromats were consistent with a rotation of the discrimination ellipse counterclockwise with little change in the elliptical area. This alteration in the color discrimination ellipse can occur when retinal illumination is lowered.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. C. Smith, J. T. Ernest, and J. Pokorny, “Effect of hypoxia on FM 100-hue test performance,” Mod. Prob. Ophthalmol. 17, 248–256 (1976).
  2. A. J. Vingrys and L. F. Garner, “The effect of a moderate level of hypoxia on human color vision,” Doc. Ophthalmol. 66, 171–185 (1987).
    [CrossRef]
  3. J. P. Richalet, G. Duval-Arnould, B. Darnaud, A. Keromes, and V. Rutgers, “Modification of colour vision in the green/red axis in acute and chronic hypoxia explored with a portable anomaloscope,” Aviat. Space Environ. Med. 59, 620–623 (1988).
  4. J. P. Richalet, V. Rutgers, P. Bouchet, J. C. Rymer, A. Keromes, G. Duval-Arnould, and C. Rathat, “Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude,” Aviat. Space Environ. Med. 60, 105–111 (1989).
  5. H. Brandl and B. Lachenmayr, “Abhängigkeit der Empfindlichkeit im zentralen Gesichtsfeld von der Hämoglobin-Sauerstoff-Sättigung,” Ophthalmologe 91, 151–155 (1994).
  6. N. A. Schellart, M. Pollen, and A. van der Kley, “Effect of dysoxia and moderate air-hyperbarism on red-green color sensitivity,” Undersea Hyperb. Med. J. 24, 7–13 (1997).
  7. C. Bouquet, B. Gardette, C. Gortan, P. Therme, and J. H. Abraini, “Color discrimination under chronic hypoxic conditions (simulated climb “Everest-Comex 97”),” Percept. Mot. Skills 90, 169–179 (2000).
    [CrossRef]
  8. S. Karakucuk, A. O. Oner, S. Goktas, E. Siki, and O. Kose, “Color vision changes in young subjects acutely exposed to 3,000 m altitude,” Aviat. Space Environ. Med. 75, 364–366 (2004).
  9. D. M. Connolly, J. L. Barbur, S. L. Hosking, and I. R. Moorhead, “Mild hypoxia impairs chromatic sensitivity in the mesopic range,” Invest. Ophthalmol. Vis. Sci. 49, 820–827 (2008).
    [CrossRef]
  10. D. M. Connolly, “Oxygenation state and twilight vision at 2438 m,” Aviat. Space Environ. Med. 82, 2–8 (2011).
  11. I. Schmidt, “Farbensinnuntersuchungen an normalen and anomalen trichromaten im unterdruck,” Farbensinnprufungen Luftfahrt 2, 55–68 (1937).
  12. J. L. Kobrick, “Effects of hypoxia and acetazolamide on color sensitivity zones in the visual field,” J. Appl. Physiol. 28, 741–747 (1970).
  13. J. T. Ernest and A. E. Krill, “The effect of hypoxia on visual function. Psychophysical studies,” Invest. Ophthalmol. Vis. Sci. 10, 323–328 (1971).
  14. J. L. Kobrick, H. Zwick, C. E. Witt, and J. A. Devine, “Effects of extended hypoxia on night vision,” Aviat. Space Environ. Med. 55, 191–195 (1984).
  15. D. M. Connolly and J. L. Barbur, “Low contrast acuity at photopic and mesopic luminance under mild hypoxia, normoxia, and hyperoxia,” Aviat. Space Environ. Med. 80, 933–940(2009).
  16. J. D. Mollon and B. C. Regan, Cambridge Colour Test Handbook, version 1.0 (Cambridge Research Systems, 1999).
  17. B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279–1299 (1994).
    [CrossRef]
  18. J. L. Barbur, A. J. Harlow, and G. T. Plant, “Insights into the different exploits of colour in the visual cortex,” Proc. R. Soc. B 258, 327–334 (1994).
    [CrossRef]
  19. J. L. Barbur, “Double-blind sight revealed through the processing of color and luminance contrast defined motion signals,” Prog. Brain Res. 144, 243–259 (2003).
    [CrossRef]
  20. B. J. Jennings and J. L. Barbur, “Colour detection thresholds as a function of chromatic adaptation and light level,” Ophthalmic Physiol. Opt. 30, 560–567 (2010).
    [CrossRef]
  21. J. L. Barbur, M. Rodriguez-Carmona, and J. A. Harlow, “ Establishing the statistical limits of “normal” chromatic sensitivity,” in Proceedings of the ISCC/CIE Expert Symposium ’06–75 Years of the CIE Standard Observer (CIE, 2006), pp 168–171.
  22. J. Rabin, “Cone-specific measures of human color vision,” Invest. Ophthalmol. Vis. Sci. 37, 2771–2774 (1996).
  23. J. Ernsting, “Respiratory physiology,” in Aviation Medicine, J. Ernsting and P. King, eds. (Butterworths, 1988), pp. 27–44.
  24. W. R. J. Brown, “The influence of luminance level on visual sensitivity to color differences,” J. Opt. Soc. Am. 41, 684–688 (1951).
    [CrossRef]
  25. P. L. Walraven and M. A. Bouman, “Fluctuation theory of colour discrimination of normal trichromats,” Vision Res. 6, 567–586 (1966).
    [CrossRef]
  26. H. Rahn, A. B. Otis, M. Hodge, M. A. Epstein, S. W. Hunter, and W. O. Fenn, “The effects of hypocapnia on performance,” J. Aviat. Med. 17, 164–172 (1946).
  27. A. Otis, H. Rahn, M. A. Epstein, and W. O. Fenn, “Performance as related to composition of alveolar air,” Am. J. Physiol. 146, 207–221 (1946).
  28. T. J. Crow and G. R. Kelman, “Psychological effects of mild acute hypoxia,” Br. J. Anaesth. 45, 335–337 (1973).
    [CrossRef]

2011 (1)

D. M. Connolly, “Oxygenation state and twilight vision at 2438 m,” Aviat. Space Environ. Med. 82, 2–8 (2011).

2010 (1)

B. J. Jennings and J. L. Barbur, “Colour detection thresholds as a function of chromatic adaptation and light level,” Ophthalmic Physiol. Opt. 30, 560–567 (2010).
[CrossRef]

2009 (1)

D. M. Connolly and J. L. Barbur, “Low contrast acuity at photopic and mesopic luminance under mild hypoxia, normoxia, and hyperoxia,” Aviat. Space Environ. Med. 80, 933–940(2009).

2008 (1)

D. M. Connolly, J. L. Barbur, S. L. Hosking, and I. R. Moorhead, “Mild hypoxia impairs chromatic sensitivity in the mesopic range,” Invest. Ophthalmol. Vis. Sci. 49, 820–827 (2008).
[CrossRef]

2004 (1)

S. Karakucuk, A. O. Oner, S. Goktas, E. Siki, and O. Kose, “Color vision changes in young subjects acutely exposed to 3,000 m altitude,” Aviat. Space Environ. Med. 75, 364–366 (2004).

2003 (1)

J. L. Barbur, “Double-blind sight revealed through the processing of color and luminance contrast defined motion signals,” Prog. Brain Res. 144, 243–259 (2003).
[CrossRef]

2000 (1)

C. Bouquet, B. Gardette, C. Gortan, P. Therme, and J. H. Abraini, “Color discrimination under chronic hypoxic conditions (simulated climb “Everest-Comex 97”),” Percept. Mot. Skills 90, 169–179 (2000).
[CrossRef]

1997 (1)

N. A. Schellart, M. Pollen, and A. van der Kley, “Effect of dysoxia and moderate air-hyperbarism on red-green color sensitivity,” Undersea Hyperb. Med. J. 24, 7–13 (1997).

1996 (1)

J. Rabin, “Cone-specific measures of human color vision,” Invest. Ophthalmol. Vis. Sci. 37, 2771–2774 (1996).

1994 (3)

H. Brandl and B. Lachenmayr, “Abhängigkeit der Empfindlichkeit im zentralen Gesichtsfeld von der Hämoglobin-Sauerstoff-Sättigung,” Ophthalmologe 91, 151–155 (1994).

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279–1299 (1994).
[CrossRef]

J. L. Barbur, A. J. Harlow, and G. T. Plant, “Insights into the different exploits of colour in the visual cortex,” Proc. R. Soc. B 258, 327–334 (1994).
[CrossRef]

1989 (1)

J. P. Richalet, V. Rutgers, P. Bouchet, J. C. Rymer, A. Keromes, G. Duval-Arnould, and C. Rathat, “Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude,” Aviat. Space Environ. Med. 60, 105–111 (1989).

1988 (1)

J. P. Richalet, G. Duval-Arnould, B. Darnaud, A. Keromes, and V. Rutgers, “Modification of colour vision in the green/red axis in acute and chronic hypoxia explored with a portable anomaloscope,” Aviat. Space Environ. Med. 59, 620–623 (1988).

1987 (1)

A. J. Vingrys and L. F. Garner, “The effect of a moderate level of hypoxia on human color vision,” Doc. Ophthalmol. 66, 171–185 (1987).
[CrossRef]

1984 (1)

J. L. Kobrick, H. Zwick, C. E. Witt, and J. A. Devine, “Effects of extended hypoxia on night vision,” Aviat. Space Environ. Med. 55, 191–195 (1984).

1976 (1)

V. C. Smith, J. T. Ernest, and J. Pokorny, “Effect of hypoxia on FM 100-hue test performance,” Mod. Prob. Ophthalmol. 17, 248–256 (1976).

1973 (1)

T. J. Crow and G. R. Kelman, “Psychological effects of mild acute hypoxia,” Br. J. Anaesth. 45, 335–337 (1973).
[CrossRef]

1971 (1)

J. T. Ernest and A. E. Krill, “The effect of hypoxia on visual function. Psychophysical studies,” Invest. Ophthalmol. Vis. Sci. 10, 323–328 (1971).

1970 (1)

J. L. Kobrick, “Effects of hypoxia and acetazolamide on color sensitivity zones in the visual field,” J. Appl. Physiol. 28, 741–747 (1970).

1966 (1)

P. L. Walraven and M. A. Bouman, “Fluctuation theory of colour discrimination of normal trichromats,” Vision Res. 6, 567–586 (1966).
[CrossRef]

1951 (1)

1946 (2)

H. Rahn, A. B. Otis, M. Hodge, M. A. Epstein, S. W. Hunter, and W. O. Fenn, “The effects of hypocapnia on performance,” J. Aviat. Med. 17, 164–172 (1946).

A. Otis, H. Rahn, M. A. Epstein, and W. O. Fenn, “Performance as related to composition of alveolar air,” Am. J. Physiol. 146, 207–221 (1946).

1937 (1)

I. Schmidt, “Farbensinnuntersuchungen an normalen and anomalen trichromaten im unterdruck,” Farbensinnprufungen Luftfahrt 2, 55–68 (1937).

Abraini, J. H.

C. Bouquet, B. Gardette, C. Gortan, P. Therme, and J. H. Abraini, “Color discrimination under chronic hypoxic conditions (simulated climb “Everest-Comex 97”),” Percept. Mot. Skills 90, 169–179 (2000).
[CrossRef]

Barbur, J. L.

B. J. Jennings and J. L. Barbur, “Colour detection thresholds as a function of chromatic adaptation and light level,” Ophthalmic Physiol. Opt. 30, 560–567 (2010).
[CrossRef]

D. M. Connolly and J. L. Barbur, “Low contrast acuity at photopic and mesopic luminance under mild hypoxia, normoxia, and hyperoxia,” Aviat. Space Environ. Med. 80, 933–940(2009).

D. M. Connolly, J. L. Barbur, S. L. Hosking, and I. R. Moorhead, “Mild hypoxia impairs chromatic sensitivity in the mesopic range,” Invest. Ophthalmol. Vis. Sci. 49, 820–827 (2008).
[CrossRef]

J. L. Barbur, “Double-blind sight revealed through the processing of color and luminance contrast defined motion signals,” Prog. Brain Res. 144, 243–259 (2003).
[CrossRef]

J. L. Barbur, A. J. Harlow, and G. T. Plant, “Insights into the different exploits of colour in the visual cortex,” Proc. R. Soc. B 258, 327–334 (1994).
[CrossRef]

J. L. Barbur, M. Rodriguez-Carmona, and J. A. Harlow, “ Establishing the statistical limits of “normal” chromatic sensitivity,” in Proceedings of the ISCC/CIE Expert Symposium ’06–75 Years of the CIE Standard Observer (CIE, 2006), pp 168–171.

Bouchet, P.

J. P. Richalet, V. Rutgers, P. Bouchet, J. C. Rymer, A. Keromes, G. Duval-Arnould, and C. Rathat, “Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude,” Aviat. Space Environ. Med. 60, 105–111 (1989).

Bouman, M. A.

P. L. Walraven and M. A. Bouman, “Fluctuation theory of colour discrimination of normal trichromats,” Vision Res. 6, 567–586 (1966).
[CrossRef]

Bouquet, C.

C. Bouquet, B. Gardette, C. Gortan, P. Therme, and J. H. Abraini, “Color discrimination under chronic hypoxic conditions (simulated climb “Everest-Comex 97”),” Percept. Mot. Skills 90, 169–179 (2000).
[CrossRef]

Brandl, H.

H. Brandl and B. Lachenmayr, “Abhängigkeit der Empfindlichkeit im zentralen Gesichtsfeld von der Hämoglobin-Sauerstoff-Sättigung,” Ophthalmologe 91, 151–155 (1994).

Brown, W. R. J.

Connolly, D. M.

D. M. Connolly, “Oxygenation state and twilight vision at 2438 m,” Aviat. Space Environ. Med. 82, 2–8 (2011).

D. M. Connolly and J. L. Barbur, “Low contrast acuity at photopic and mesopic luminance under mild hypoxia, normoxia, and hyperoxia,” Aviat. Space Environ. Med. 80, 933–940(2009).

D. M. Connolly, J. L. Barbur, S. L. Hosking, and I. R. Moorhead, “Mild hypoxia impairs chromatic sensitivity in the mesopic range,” Invest. Ophthalmol. Vis. Sci. 49, 820–827 (2008).
[CrossRef]

Crow, T. J.

T. J. Crow and G. R. Kelman, “Psychological effects of mild acute hypoxia,” Br. J. Anaesth. 45, 335–337 (1973).
[CrossRef]

Darnaud, B.

J. P. Richalet, G. Duval-Arnould, B. Darnaud, A. Keromes, and V. Rutgers, “Modification of colour vision in the green/red axis in acute and chronic hypoxia explored with a portable anomaloscope,” Aviat. Space Environ. Med. 59, 620–623 (1988).

Devine, J. A.

J. L. Kobrick, H. Zwick, C. E. Witt, and J. A. Devine, “Effects of extended hypoxia on night vision,” Aviat. Space Environ. Med. 55, 191–195 (1984).

Duval-Arnould, G.

J. P. Richalet, V. Rutgers, P. Bouchet, J. C. Rymer, A. Keromes, G. Duval-Arnould, and C. Rathat, “Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude,” Aviat. Space Environ. Med. 60, 105–111 (1989).

J. P. Richalet, G. Duval-Arnould, B. Darnaud, A. Keromes, and V. Rutgers, “Modification of colour vision in the green/red axis in acute and chronic hypoxia explored with a portable anomaloscope,” Aviat. Space Environ. Med. 59, 620–623 (1988).

Epstein, M. A.

A. Otis, H. Rahn, M. A. Epstein, and W. O. Fenn, “Performance as related to composition of alveolar air,” Am. J. Physiol. 146, 207–221 (1946).

H. Rahn, A. B. Otis, M. Hodge, M. A. Epstein, S. W. Hunter, and W. O. Fenn, “The effects of hypocapnia on performance,” J. Aviat. Med. 17, 164–172 (1946).

Ernest, J. T.

V. C. Smith, J. T. Ernest, and J. Pokorny, “Effect of hypoxia on FM 100-hue test performance,” Mod. Prob. Ophthalmol. 17, 248–256 (1976).

J. T. Ernest and A. E. Krill, “The effect of hypoxia on visual function. Psychophysical studies,” Invest. Ophthalmol. Vis. Sci. 10, 323–328 (1971).

Ernsting, J.

J. Ernsting, “Respiratory physiology,” in Aviation Medicine, J. Ernsting and P. King, eds. (Butterworths, 1988), pp. 27–44.

Fenn, W. O.

H. Rahn, A. B. Otis, M. Hodge, M. A. Epstein, S. W. Hunter, and W. O. Fenn, “The effects of hypocapnia on performance,” J. Aviat. Med. 17, 164–172 (1946).

A. Otis, H. Rahn, M. A. Epstein, and W. O. Fenn, “Performance as related to composition of alveolar air,” Am. J. Physiol. 146, 207–221 (1946).

Gardette, B.

C. Bouquet, B. Gardette, C. Gortan, P. Therme, and J. H. Abraini, “Color discrimination under chronic hypoxic conditions (simulated climb “Everest-Comex 97”),” Percept. Mot. Skills 90, 169–179 (2000).
[CrossRef]

Garner, L. F.

A. J. Vingrys and L. F. Garner, “The effect of a moderate level of hypoxia on human color vision,” Doc. Ophthalmol. 66, 171–185 (1987).
[CrossRef]

Goktas, S.

S. Karakucuk, A. O. Oner, S. Goktas, E. Siki, and O. Kose, “Color vision changes in young subjects acutely exposed to 3,000 m altitude,” Aviat. Space Environ. Med. 75, 364–366 (2004).

Gortan, C.

C. Bouquet, B. Gardette, C. Gortan, P. Therme, and J. H. Abraini, “Color discrimination under chronic hypoxic conditions (simulated climb “Everest-Comex 97”),” Percept. Mot. Skills 90, 169–179 (2000).
[CrossRef]

Harlow, A. J.

J. L. Barbur, A. J. Harlow, and G. T. Plant, “Insights into the different exploits of colour in the visual cortex,” Proc. R. Soc. B 258, 327–334 (1994).
[CrossRef]

Harlow, J. A.

J. L. Barbur, M. Rodriguez-Carmona, and J. A. Harlow, “ Establishing the statistical limits of “normal” chromatic sensitivity,” in Proceedings of the ISCC/CIE Expert Symposium ’06–75 Years of the CIE Standard Observer (CIE, 2006), pp 168–171.

Hodge, M.

H. Rahn, A. B. Otis, M. Hodge, M. A. Epstein, S. W. Hunter, and W. O. Fenn, “The effects of hypocapnia on performance,” J. Aviat. Med. 17, 164–172 (1946).

Hosking, S. L.

D. M. Connolly, J. L. Barbur, S. L. Hosking, and I. R. Moorhead, “Mild hypoxia impairs chromatic sensitivity in the mesopic range,” Invest. Ophthalmol. Vis. Sci. 49, 820–827 (2008).
[CrossRef]

Hunter, S. W.

H. Rahn, A. B. Otis, M. Hodge, M. A. Epstein, S. W. Hunter, and W. O. Fenn, “The effects of hypocapnia on performance,” J. Aviat. Med. 17, 164–172 (1946).

Jennings, B. J.

B. J. Jennings and J. L. Barbur, “Colour detection thresholds as a function of chromatic adaptation and light level,” Ophthalmic Physiol. Opt. 30, 560–567 (2010).
[CrossRef]

Karakucuk, S.

S. Karakucuk, A. O. Oner, S. Goktas, E. Siki, and O. Kose, “Color vision changes in young subjects acutely exposed to 3,000 m altitude,” Aviat. Space Environ. Med. 75, 364–366 (2004).

Kelman, G. R.

T. J. Crow and G. R. Kelman, “Psychological effects of mild acute hypoxia,” Br. J. Anaesth. 45, 335–337 (1973).
[CrossRef]

Keromes, A.

J. P. Richalet, V. Rutgers, P. Bouchet, J. C. Rymer, A. Keromes, G. Duval-Arnould, and C. Rathat, “Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude,” Aviat. Space Environ. Med. 60, 105–111 (1989).

J. P. Richalet, G. Duval-Arnould, B. Darnaud, A. Keromes, and V. Rutgers, “Modification of colour vision in the green/red axis in acute and chronic hypoxia explored with a portable anomaloscope,” Aviat. Space Environ. Med. 59, 620–623 (1988).

Kobrick, J. L.

J. L. Kobrick, H. Zwick, C. E. Witt, and J. A. Devine, “Effects of extended hypoxia on night vision,” Aviat. Space Environ. Med. 55, 191–195 (1984).

J. L. Kobrick, “Effects of hypoxia and acetazolamide on color sensitivity zones in the visual field,” J. Appl. Physiol. 28, 741–747 (1970).

Kose, O.

S. Karakucuk, A. O. Oner, S. Goktas, E. Siki, and O. Kose, “Color vision changes in young subjects acutely exposed to 3,000 m altitude,” Aviat. Space Environ. Med. 75, 364–366 (2004).

Krill, A. E.

J. T. Ernest and A. E. Krill, “The effect of hypoxia on visual function. Psychophysical studies,” Invest. Ophthalmol. Vis. Sci. 10, 323–328 (1971).

Lachenmayr, B.

H. Brandl and B. Lachenmayr, “Abhängigkeit der Empfindlichkeit im zentralen Gesichtsfeld von der Hämoglobin-Sauerstoff-Sättigung,” Ophthalmologe 91, 151–155 (1994).

Mollon, J. D.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279–1299 (1994).
[CrossRef]

J. D. Mollon and B. C. Regan, Cambridge Colour Test Handbook, version 1.0 (Cambridge Research Systems, 1999).

Moorhead, I. R.

D. M. Connolly, J. L. Barbur, S. L. Hosking, and I. R. Moorhead, “Mild hypoxia impairs chromatic sensitivity in the mesopic range,” Invest. Ophthalmol. Vis. Sci. 49, 820–827 (2008).
[CrossRef]

Oner, A. O.

S. Karakucuk, A. O. Oner, S. Goktas, E. Siki, and O. Kose, “Color vision changes in young subjects acutely exposed to 3,000 m altitude,” Aviat. Space Environ. Med. 75, 364–366 (2004).

Otis, A.

A. Otis, H. Rahn, M. A. Epstein, and W. O. Fenn, “Performance as related to composition of alveolar air,” Am. J. Physiol. 146, 207–221 (1946).

Otis, A. B.

H. Rahn, A. B. Otis, M. Hodge, M. A. Epstein, S. W. Hunter, and W. O. Fenn, “The effects of hypocapnia on performance,” J. Aviat. Med. 17, 164–172 (1946).

Plant, G. T.

J. L. Barbur, A. J. Harlow, and G. T. Plant, “Insights into the different exploits of colour in the visual cortex,” Proc. R. Soc. B 258, 327–334 (1994).
[CrossRef]

Pokorny, J.

V. C. Smith, J. T. Ernest, and J. Pokorny, “Effect of hypoxia on FM 100-hue test performance,” Mod. Prob. Ophthalmol. 17, 248–256 (1976).

Pollen, M.

N. A. Schellart, M. Pollen, and A. van der Kley, “Effect of dysoxia and moderate air-hyperbarism on red-green color sensitivity,” Undersea Hyperb. Med. J. 24, 7–13 (1997).

Rabin, J.

J. Rabin, “Cone-specific measures of human color vision,” Invest. Ophthalmol. Vis. Sci. 37, 2771–2774 (1996).

Rahn, H.

H. Rahn, A. B. Otis, M. Hodge, M. A. Epstein, S. W. Hunter, and W. O. Fenn, “The effects of hypocapnia on performance,” J. Aviat. Med. 17, 164–172 (1946).

A. Otis, H. Rahn, M. A. Epstein, and W. O. Fenn, “Performance as related to composition of alveolar air,” Am. J. Physiol. 146, 207–221 (1946).

Rathat, C.

J. P. Richalet, V. Rutgers, P. Bouchet, J. C. Rymer, A. Keromes, G. Duval-Arnould, and C. Rathat, “Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude,” Aviat. Space Environ. Med. 60, 105–111 (1989).

Reffin, J. P.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279–1299 (1994).
[CrossRef]

Regan, B. C.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279–1299 (1994).
[CrossRef]

J. D. Mollon and B. C. Regan, Cambridge Colour Test Handbook, version 1.0 (Cambridge Research Systems, 1999).

Richalet, J. P.

J. P. Richalet, V. Rutgers, P. Bouchet, J. C. Rymer, A. Keromes, G. Duval-Arnould, and C. Rathat, “Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude,” Aviat. Space Environ. Med. 60, 105–111 (1989).

J. P. Richalet, G. Duval-Arnould, B. Darnaud, A. Keromes, and V. Rutgers, “Modification of colour vision in the green/red axis in acute and chronic hypoxia explored with a portable anomaloscope,” Aviat. Space Environ. Med. 59, 620–623 (1988).

Rodriguez-Carmona, M.

J. L. Barbur, M. Rodriguez-Carmona, and J. A. Harlow, “ Establishing the statistical limits of “normal” chromatic sensitivity,” in Proceedings of the ISCC/CIE Expert Symposium ’06–75 Years of the CIE Standard Observer (CIE, 2006), pp 168–171.

Rutgers, V.

J. P. Richalet, V. Rutgers, P. Bouchet, J. C. Rymer, A. Keromes, G. Duval-Arnould, and C. Rathat, “Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude,” Aviat. Space Environ. Med. 60, 105–111 (1989).

J. P. Richalet, G. Duval-Arnould, B. Darnaud, A. Keromes, and V. Rutgers, “Modification of colour vision in the green/red axis in acute and chronic hypoxia explored with a portable anomaloscope,” Aviat. Space Environ. Med. 59, 620–623 (1988).

Rymer, J. C.

J. P. Richalet, V. Rutgers, P. Bouchet, J. C. Rymer, A. Keromes, G. Duval-Arnould, and C. Rathat, “Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude,” Aviat. Space Environ. Med. 60, 105–111 (1989).

Schellart, N. A.

N. A. Schellart, M. Pollen, and A. van der Kley, “Effect of dysoxia and moderate air-hyperbarism on red-green color sensitivity,” Undersea Hyperb. Med. J. 24, 7–13 (1997).

Schmidt, I.

I. Schmidt, “Farbensinnuntersuchungen an normalen and anomalen trichromaten im unterdruck,” Farbensinnprufungen Luftfahrt 2, 55–68 (1937).

Siki, E.

S. Karakucuk, A. O. Oner, S. Goktas, E. Siki, and O. Kose, “Color vision changes in young subjects acutely exposed to 3,000 m altitude,” Aviat. Space Environ. Med. 75, 364–366 (2004).

Smith, V. C.

V. C. Smith, J. T. Ernest, and J. Pokorny, “Effect of hypoxia on FM 100-hue test performance,” Mod. Prob. Ophthalmol. 17, 248–256 (1976).

Therme, P.

C. Bouquet, B. Gardette, C. Gortan, P. Therme, and J. H. Abraini, “Color discrimination under chronic hypoxic conditions (simulated climb “Everest-Comex 97”),” Percept. Mot. Skills 90, 169–179 (2000).
[CrossRef]

van der Kley, A.

N. A. Schellart, M. Pollen, and A. van der Kley, “Effect of dysoxia and moderate air-hyperbarism on red-green color sensitivity,” Undersea Hyperb. Med. J. 24, 7–13 (1997).

Vingrys, A. J.

A. J. Vingrys and L. F. Garner, “The effect of a moderate level of hypoxia on human color vision,” Doc. Ophthalmol. 66, 171–185 (1987).
[CrossRef]

Walraven, P. L.

P. L. Walraven and M. A. Bouman, “Fluctuation theory of colour discrimination of normal trichromats,” Vision Res. 6, 567–586 (1966).
[CrossRef]

Witt, C. E.

J. L. Kobrick, H. Zwick, C. E. Witt, and J. A. Devine, “Effects of extended hypoxia on night vision,” Aviat. Space Environ. Med. 55, 191–195 (1984).

Zwick, H.

J. L. Kobrick, H. Zwick, C. E. Witt, and J. A. Devine, “Effects of extended hypoxia on night vision,” Aviat. Space Environ. Med. 55, 191–195 (1984).

Am. J. Physiol. (1)

A. Otis, H. Rahn, M. A. Epstein, and W. O. Fenn, “Performance as related to composition of alveolar air,” Am. J. Physiol. 146, 207–221 (1946).

Aviat. Space Environ. Med. (6)

J. P. Richalet, G. Duval-Arnould, B. Darnaud, A. Keromes, and V. Rutgers, “Modification of colour vision in the green/red axis in acute and chronic hypoxia explored with a portable anomaloscope,” Aviat. Space Environ. Med. 59, 620–623 (1988).

J. P. Richalet, V. Rutgers, P. Bouchet, J. C. Rymer, A. Keromes, G. Duval-Arnould, and C. Rathat, “Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude,” Aviat. Space Environ. Med. 60, 105–111 (1989).

S. Karakucuk, A. O. Oner, S. Goktas, E. Siki, and O. Kose, “Color vision changes in young subjects acutely exposed to 3,000 m altitude,” Aviat. Space Environ. Med. 75, 364–366 (2004).

D. M. Connolly, “Oxygenation state and twilight vision at 2438 m,” Aviat. Space Environ. Med. 82, 2–8 (2011).

J. L. Kobrick, H. Zwick, C. E. Witt, and J. A. Devine, “Effects of extended hypoxia on night vision,” Aviat. Space Environ. Med. 55, 191–195 (1984).

D. M. Connolly and J. L. Barbur, “Low contrast acuity at photopic and mesopic luminance under mild hypoxia, normoxia, and hyperoxia,” Aviat. Space Environ. Med. 80, 933–940(2009).

Br. J. Anaesth. (1)

T. J. Crow and G. R. Kelman, “Psychological effects of mild acute hypoxia,” Br. J. Anaesth. 45, 335–337 (1973).
[CrossRef]

Doc. Ophthalmol. (1)

A. J. Vingrys and L. F. Garner, “The effect of a moderate level of hypoxia on human color vision,” Doc. Ophthalmol. 66, 171–185 (1987).
[CrossRef]

Farbensinnprufungen Luftfahrt (1)

I. Schmidt, “Farbensinnuntersuchungen an normalen and anomalen trichromaten im unterdruck,” Farbensinnprufungen Luftfahrt 2, 55–68 (1937).

Invest. Ophthalmol. Vis. Sci. (3)

J. T. Ernest and A. E. Krill, “The effect of hypoxia on visual function. Psychophysical studies,” Invest. Ophthalmol. Vis. Sci. 10, 323–328 (1971).

D. M. Connolly, J. L. Barbur, S. L. Hosking, and I. R. Moorhead, “Mild hypoxia impairs chromatic sensitivity in the mesopic range,” Invest. Ophthalmol. Vis. Sci. 49, 820–827 (2008).
[CrossRef]

J. Rabin, “Cone-specific measures of human color vision,” Invest. Ophthalmol. Vis. Sci. 37, 2771–2774 (1996).

J. Appl. Physiol. (1)

J. L. Kobrick, “Effects of hypoxia and acetazolamide on color sensitivity zones in the visual field,” J. Appl. Physiol. 28, 741–747 (1970).

J. Aviat. Med. (1)

H. Rahn, A. B. Otis, M. Hodge, M. A. Epstein, S. W. Hunter, and W. O. Fenn, “The effects of hypocapnia on performance,” J. Aviat. Med. 17, 164–172 (1946).

J. Opt. Soc. Am. (1)

Mod. Prob. Ophthalmol. (1)

V. C. Smith, J. T. Ernest, and J. Pokorny, “Effect of hypoxia on FM 100-hue test performance,” Mod. Prob. Ophthalmol. 17, 248–256 (1976).

Ophthalmic Physiol. Opt. (1)

B. J. Jennings and J. L. Barbur, “Colour detection thresholds as a function of chromatic adaptation and light level,” Ophthalmic Physiol. Opt. 30, 560–567 (2010).
[CrossRef]

Ophthalmologe (1)

H. Brandl and B. Lachenmayr, “Abhängigkeit der Empfindlichkeit im zentralen Gesichtsfeld von der Hämoglobin-Sauerstoff-Sättigung,” Ophthalmologe 91, 151–155 (1994).

Percept. Mot. Skills (1)

C. Bouquet, B. Gardette, C. Gortan, P. Therme, and J. H. Abraini, “Color discrimination under chronic hypoxic conditions (simulated climb “Everest-Comex 97”),” Percept. Mot. Skills 90, 169–179 (2000).
[CrossRef]

Proc. R. Soc. B (1)

J. L. Barbur, A. J. Harlow, and G. T. Plant, “Insights into the different exploits of colour in the visual cortex,” Proc. R. Soc. B 258, 327–334 (1994).
[CrossRef]

Prog. Brain Res. (1)

J. L. Barbur, “Double-blind sight revealed through the processing of color and luminance contrast defined motion signals,” Prog. Brain Res. 144, 243–259 (2003).
[CrossRef]

Undersea Hyperb. Med. J. (1)

N. A. Schellart, M. Pollen, and A. van der Kley, “Effect of dysoxia and moderate air-hyperbarism on red-green color sensitivity,” Undersea Hyperb. Med. J. 24, 7–13 (1997).

Vision Res. (2)

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vision Res. 34, 1279–1299 (1994).
[CrossRef]

P. L. Walraven and M. A. Bouman, “Fluctuation theory of colour discrimination of normal trichromats,” Vision Res. 6, 567–586 (1966).
[CrossRef]

Other (3)

J. L. Barbur, M. Rodriguez-Carmona, and J. A. Harlow, “ Establishing the statistical limits of “normal” chromatic sensitivity,” in Proceedings of the ISCC/CIE Expert Symposium ’06–75 Years of the CIE Standard Observer (CIE, 2006), pp 168–171.

J. Ernsting, “Respiratory physiology,” in Aviation Medicine, J. Ernsting and P. King, eds. (Butterworths, 1988), pp. 27–44.

J. D. Mollon and B. C. Regan, Cambridge Colour Test Handbook, version 1.0 (Cambridge Research Systems, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Relative change in the CCT thresholds at 3780 for the color-normal and the two color-defective groups. Red-green vectors are 0° and 180°; blue-yellow vectors are 90° and 270°. Error bars are ±1.0 standard error of the mean.

Fig. 2.
Fig. 2.

Relative change in the CA––D thresholds at 3780 m to ground for the color-normals (black), anomalous trichromats (dark gray), and dichromats (gray). Error bars are ±1.0 standard error of the mean.

Fig. 3.
Fig. 3.

Mean relative change in the cone contrast sensitivities for the color-normals, anomalous trichromats, and dichromats at 3780 m. Data are based on the average of the right and left results for each individual. Error bars are ±1.0 standard error of the mean.

Fig. 4.
Fig. 4.

Scatter plot of the change in the CAD test red-green (left) and blue-yellow thresholds with percentage SaO2 at 3780 m. The regression lines are based on all subjects.

Tables (2)

Tables Icon

Table 1. Number of Participants that Took Each Test and their Color Vision Status

Tables Icon

Table 2. Summary of the Multiple Regression Results for the Change in the CAD Blue-Yellow Threshold

Metrics