Abstract

The application of adaptive optics to vision science creates the potential to directly probe the link between the retinal mosaic and visual perception. However, interrogation on a cellular level requires small, threshold stimuli and therefore an implicit detection model. Unfortunately the parameters governing detection at cone threshold are poorly constrained, and whether or not appearance judgments interact with detectability under these conditions is unknown. We tested the assumption that subjects can report stimulus appearance without compromising sensitivity by having four subjects rate either detection certainty, color appearance, or both, for small, brief, monochromatic (580 nm) point stimuli presented to the dark adapted fovea. Reporting color, either alone or in conjunction with detection certainty, did not impair detection. Sensitivity actually increased in the simultaneous reporting task, while color reports were effectively unaltered. These results suggest that 1. color mechanisms contain information relevant for detection at cone threshold, 2. subjects cannot voluntarily make full use of this information in a simple detection task, and 3. simultaneous reporting is a viable method of investigating multiple stimulus attributes for small threshold stimuli.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Young, “On the theory of light and colours,” Phil. Trans. R. Soc. London 92, 12–48 (1802).
  2. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
    [CrossRef]
  3. H. J. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
    [CrossRef]
  4. D. R. Williams, “The invisible cone mosaic,” in Advances in Photoreception: Proceedings of a Symposium on Frontiers of Visual Science (National Academy Press, 1990), pp. 135–148.
  5. D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, and O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg and B. B. Lee, eds. (Plenum, 1991), pp. 11–22.
  6. H. J. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same photopigment,” J. Vision 5(5), 5, 444–454 (2005).
  7. D. H. Brainard, D. R. Williams, and H. J. Hofer, “Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots,” J. Vision 8(5), 15, 1–23 (2008).
  8. J. Krauskopf, “On identifying detectors,” In Visual Psychophysics and Physiology, J. C. Armstrong and J. Krauskopf, eds. (Academic, 1978), pp. 283–295.
  9. S. Otake, P. D. Gowdy, and C. M. Cicerone, “The spatial arrangement of L and M cones in the peripheral human retina,” Vision Res. 40, 677–693 (2000).
  10. F. H. C. Marriott, “The foveal absolute visual threshold for short flashes and small fields,” J. Physiol. 169, 416–423 (1963).
  11. P. E. King-Smith and D. Carden, “Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717(1976).
    [CrossRef]
  12. K. T. Mullen and J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733–742 (1990).
    [CrossRef]
  13. B. B. Lee, H. Sun, and A. Valberg, “Segregation of chromatic and luminance signals using a novel grating stimulus,” J. Physiol. 589, 59–73 (2011).
    [CrossRef]
  14. S. A. Klein, “Double-judgment psychophysics: problems and solutions,” J. Opt. Soc. Am. A 2, 1560–1585 (1985).
    [CrossRef]
  15. M. C. Morrone, V. Denti, and D. Spinelli, “Different attentional resources modulate the gain mechanisms for color and luminance mechanisms,” Vision Res. 44, 1389–1401 (2004).
  16. J. Duncan and I. Nimmo-Smith, “Objects and attributes in divided attention: surface and boundary systems,” Percept. Psychophys. 58, 1076–1084 (1996).
  17. C. M. Cicerone and J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea,” Vision Res. 26, 115–128 (1989).
  18. J. D. Rattle, “Effect of target size on monocular fixation,” Opt. Acta 16, 183–190 (1969).
    [CrossRef]
  19. R. W. Ditchburn, Eye Movements and Visual Perception(Clarendon, 1973).
  20. D. E. Koenig and H. J. Hofer, “The absolute threshold of cone vision,” J. Vision 11(1), 21, 1–24 (2011).
  21. D. H. Brainard, “The psychophysics toolbox,” Spatial Vis. 10, 433–436 (1997).
  22. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442 (1997).
  23. D. McNicol, A Primer of Signal Detection Theory (Lawrence Erlbaum , 2005).
  24. G. A. Gescheider, Psychophysics: The Fundamentals(Lawrence Erlbaum , 1997).
  25. I. Abramov, J. Gordon, and H. Chan, “Color appearance: properties of the uniform appearance diagram derived from hue and saturation scaling,” Atten. Percept. Psychophys. 71, 632–643 (2009).
  26. J. Krauskopf and R. Srebro, “Spectral sensitivity of color mechanisms: Derivation form fluctuations of color appearance near threshold,” Science 150, 1477–1479 (1965).
    [CrossRef]
  27. M. A. Bouman and P. L. Walraven, “Some color naming experiments for red and green monochromatic lights,” J. Opt. Soc. Am. 47, 834–839 (1957).
    [CrossRef]
  28. H. G. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
    [CrossRef]
  29. H. Spitzer, R. Desimone, and J. Moran, “Increased attention enhances both behavioral and neuronal performance,” Science 240, 338–340 (1988).
    [CrossRef]
  30. J. Nachmias and A. Weber, “Discrimination of simple and complex gratings,” Vision Res. 15, 217–223 (1975).
  31. C. S. Furchner, J. P. Thomas, and F. W. Campbell, “Detection and discrimination of simple and complex patterns at low spatial frequencies,” Vision Res. 17, 827–836 (1977).
  32. D. Alais, C. Morrone, and D. Burr, “Separate attentional resources for vision and audition,” Proc. R. Soc. B 273, 1339–1345 (2006).
    [CrossRef]
  33. A. Chaparro, C. F. Stromeyer, R. E. Kronauer, and R. T. Eskew, “Separable red-green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1993).
  34. K. T. Mullen and M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994).
    [CrossRef]
  35. K. T. Mullen and M. J. Sankeralli, “Evidence for the stochastic independence of the blue-yellow, red-green and luminance detection mechanisms revealed by subthreshold summation,” Vision Res. 39, 733–745 (1999).
  36. M. A. Finkelstein and D. C. Hood, “Opponent-color cells can influence detection of small, brief lights,” Vision Res. 22, 89–95 (1982).
  37. M. A. Finkelstein and D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
  38. S. K. Andersen, M. M. Müller, and S. A. Hillyard, “Color-selective attention need not be mediated by spatial attention,” J. Vision 9(6), 2, 7 (2009).
  39. G. Sperling, “The information available in brief visual presentations,” Psychol. Mon. 74, 1–29 (1960).
    [CrossRef]
  40. I. Phillips, “Attention and iconic memory,” in Attention: Philosophical and Psychological Essays, C. Mole, D. Smithies, and W. Wu, eds. (Oxford University, 2011), pp. 204–227.

2011 (2)

D. E. Koenig and H. J. Hofer, “The absolute threshold of cone vision,” J. Vision 11(1), 21, 1–24 (2011).

B. B. Lee, H. Sun, and A. Valberg, “Segregation of chromatic and luminance signals using a novel grating stimulus,” J. Physiol. 589, 59–73 (2011).
[CrossRef]

2009 (2)

S. K. Andersen, M. M. Müller, and S. A. Hillyard, “Color-selective attention need not be mediated by spatial attention,” J. Vision 9(6), 2, 7 (2009).

I. Abramov, J. Gordon, and H. Chan, “Color appearance: properties of the uniform appearance diagram derived from hue and saturation scaling,” Atten. Percept. Psychophys. 71, 632–643 (2009).

2008 (1)

D. H. Brainard, D. R. Williams, and H. J. Hofer, “Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots,” J. Vision 8(5), 15, 1–23 (2008).

2006 (1)

D. Alais, C. Morrone, and D. Burr, “Separate attentional resources for vision and audition,” Proc. R. Soc. B 273, 1339–1345 (2006).
[CrossRef]

2005 (2)

H. J. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

H. J. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same photopigment,” J. Vision 5(5), 5, 444–454 (2005).

2004 (1)

M. C. Morrone, V. Denti, and D. Spinelli, “Different attentional resources modulate the gain mechanisms for color and luminance mechanisms,” Vision Res. 44, 1389–1401 (2004).

2000 (1)

S. Otake, P. D. Gowdy, and C. M. Cicerone, “The spatial arrangement of L and M cones in the peripheral human retina,” Vision Res. 40, 677–693 (2000).

1999 (2)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

K. T. Mullen and M. J. Sankeralli, “Evidence for the stochastic independence of the blue-yellow, red-green and luminance detection mechanisms revealed by subthreshold summation,” Vision Res. 39, 733–745 (1999).

1997 (2)

D. H. Brainard, “The psychophysics toolbox,” Spatial Vis. 10, 433–436 (1997).

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442 (1997).

1996 (1)

J. Duncan and I. Nimmo-Smith, “Objects and attributes in divided attention: surface and boundary systems,” Percept. Psychophys. 58, 1076–1084 (1996).

1994 (1)

1993 (1)

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, and R. T. Eskew, “Separable red-green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1993).

1990 (1)

1989 (1)

C. M. Cicerone and J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea,” Vision Res. 26, 115–128 (1989).

1988 (1)

H. Spitzer, R. Desimone, and J. Moran, “Increased attention enhances both behavioral and neuronal performance,” Science 240, 338–340 (1988).
[CrossRef]

1985 (1)

1984 (1)

M. A. Finkelstein and D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).

1982 (1)

M. A. Finkelstein and D. C. Hood, “Opponent-color cells can influence detection of small, brief lights,” Vision Res. 22, 89–95 (1982).

1977 (1)

C. S. Furchner, J. P. Thomas, and F. W. Campbell, “Detection and discrimination of simple and complex patterns at low spatial frequencies,” Vision Res. 17, 827–836 (1977).

1976 (1)

1975 (1)

J. Nachmias and A. Weber, “Discrimination of simple and complex gratings,” Vision Res. 15, 217–223 (1975).

1971 (1)

H. G. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef]

1969 (1)

J. D. Rattle, “Effect of target size on monocular fixation,” Opt. Acta 16, 183–190 (1969).
[CrossRef]

1965 (1)

J. Krauskopf and R. Srebro, “Spectral sensitivity of color mechanisms: Derivation form fluctuations of color appearance near threshold,” Science 150, 1477–1479 (1965).
[CrossRef]

1963 (1)

F. H. C. Marriott, “The foveal absolute visual threshold for short flashes and small fields,” J. Physiol. 169, 416–423 (1963).

1960 (1)

G. Sperling, “The information available in brief visual presentations,” Psychol. Mon. 74, 1–29 (1960).
[CrossRef]

1957 (1)

1802 (1)

T. Young, “On the theory of light and colours,” Phil. Trans. R. Soc. London 92, 12–48 (1802).

Abramov, I.

I. Abramov, J. Gordon, and H. Chan, “Color appearance: properties of the uniform appearance diagram derived from hue and saturation scaling,” Atten. Percept. Psychophys. 71, 632–643 (2009).

Alais, D.

D. Alais, C. Morrone, and D. Burr, “Separate attentional resources for vision and audition,” Proc. R. Soc. B 273, 1339–1345 (2006).
[CrossRef]

Andersen, S. K.

S. K. Andersen, M. M. Müller, and S. A. Hillyard, “Color-selective attention need not be mediated by spatial attention,” J. Vision 9(6), 2, 7 (2009).

Bouman, M. A.

Brainard, D.

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, and O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg and B. B. Lee, eds. (Plenum, 1991), pp. 11–22.

Brainard, D. H.

D. H. Brainard, D. R. Williams, and H. J. Hofer, “Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots,” J. Vision 8(5), 15, 1–23 (2008).

D. H. Brainard, “The psychophysics toolbox,” Spatial Vis. 10, 433–436 (1997).

Burr, D.

D. Alais, C. Morrone, and D. Burr, “Separate attentional resources for vision and audition,” Proc. R. Soc. B 273, 1339–1345 (2006).
[CrossRef]

Campbell, F. W.

C. S. Furchner, J. P. Thomas, and F. W. Campbell, “Detection and discrimination of simple and complex patterns at low spatial frequencies,” Vision Res. 17, 827–836 (1977).

Carden, D.

Carroll, J.

H. J. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

Chan, H.

I. Abramov, J. Gordon, and H. Chan, “Color appearance: properties of the uniform appearance diagram derived from hue and saturation scaling,” Atten. Percept. Psychophys. 71, 632–643 (2009).

Chaparro, A.

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, and R. T. Eskew, “Separable red-green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1993).

Cicerone, C. M.

S. Otake, P. D. Gowdy, and C. M. Cicerone, “The spatial arrangement of L and M cones in the peripheral human retina,” Vision Res. 40, 677–693 (2000).

C. M. Cicerone and J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea,” Vision Res. 26, 115–128 (1989).

Denti, V.

M. C. Morrone, V. Denti, and D. Spinelli, “Different attentional resources modulate the gain mechanisms for color and luminance mechanisms,” Vision Res. 44, 1389–1401 (2004).

Desimone, R.

H. Spitzer, R. Desimone, and J. Moran, “Increased attention enhances both behavioral and neuronal performance,” Science 240, 338–340 (1988).
[CrossRef]

Ditchburn, R. W.

R. W. Ditchburn, Eye Movements and Visual Perception(Clarendon, 1973).

Duncan, J.

J. Duncan and I. Nimmo-Smith, “Objects and attributes in divided attention: surface and boundary systems,” Percept. Psychophys. 58, 1076–1084 (1996).

Eskew, R. T.

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, and R. T. Eskew, “Separable red-green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1993).

Finkelstein, M. A.

M. A. Finkelstein and D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).

M. A. Finkelstein and D. C. Hood, “Opponent-color cells can influence detection of small, brief lights,” Vision Res. 22, 89–95 (1982).

Furchner, C. S.

C. S. Furchner, J. P. Thomas, and F. W. Campbell, “Detection and discrimination of simple and complex patterns at low spatial frequencies,” Vision Res. 17, 827–836 (1977).

Gescheider, G. A.

G. A. Gescheider, Psychophysics: The Fundamentals(Lawrence Erlbaum , 1997).

Gordon, J.

I. Abramov, J. Gordon, and H. Chan, “Color appearance: properties of the uniform appearance diagram derived from hue and saturation scaling,” Atten. Percept. Psychophys. 71, 632–643 (2009).

Gowdy, P. D.

S. Otake, P. D. Gowdy, and C. M. Cicerone, “The spatial arrangement of L and M cones in the peripheral human retina,” Vision Res. 40, 677–693 (2000).

Haake, W.

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, and O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg and B. B. Lee, eds. (Plenum, 1991), pp. 11–22.

Harwerth, R. S.

H. G. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef]

Hillyard, S. A.

S. K. Andersen, M. M. Müller, and S. A. Hillyard, “Color-selective attention need not be mediated by spatial attention,” J. Vision 9(6), 2, 7 (2009).

Hofer, H. J.

D. E. Koenig and H. J. Hofer, “The absolute threshold of cone vision,” J. Vision 11(1), 21, 1–24 (2011).

D. H. Brainard, D. R. Williams, and H. J. Hofer, “Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots,” J. Vision 8(5), 15, 1–23 (2008).

H. J. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

H. J. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same photopigment,” J. Vision 5(5), 5, 444–454 (2005).

Hood, D. C.

M. A. Finkelstein and D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).

M. A. Finkelstein and D. C. Hood, “Opponent-color cells can influence detection of small, brief lights,” Vision Res. 22, 89–95 (1982).

King-Smith, P. E.

Klein, S. A.

Koenig, D. E.

D. E. Koenig and H. J. Hofer, “The absolute threshold of cone vision,” J. Vision 11(1), 21, 1–24 (2011).

Krauskopf, J.

J. Krauskopf and R. Srebro, “Spectral sensitivity of color mechanisms: Derivation form fluctuations of color appearance near threshold,” Science 150, 1477–1479 (1965).
[CrossRef]

J. Krauskopf, “On identifying detectors,” In Visual Psychophysics and Physiology, J. C. Armstrong and J. Krauskopf, eds. (Academic, 1978), pp. 283–295.

Kronauer, R. E.

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, and R. T. Eskew, “Separable red-green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1993).

Kulikowski, J. J.

Lee, B. B.

B. B. Lee, H. Sun, and A. Valberg, “Segregation of chromatic and luminance signals using a novel grating stimulus,” J. Physiol. 589, 59–73 (2011).
[CrossRef]

Losada, M. A.

Marriott, F. H. C.

F. H. C. Marriott, “The foveal absolute visual threshold for short flashes and small fields,” J. Physiol. 169, 416–423 (1963).

McNicol, D.

D. McNicol, A Primer of Signal Detection Theory (Lawrence Erlbaum , 2005).

Moran, J.

H. Spitzer, R. Desimone, and J. Moran, “Increased attention enhances both behavioral and neuronal performance,” Science 240, 338–340 (1988).
[CrossRef]

Morrone, C.

D. Alais, C. Morrone, and D. Burr, “Separate attentional resources for vision and audition,” Proc. R. Soc. B 273, 1339–1345 (2006).
[CrossRef]

Morrone, M. C.

M. C. Morrone, V. Denti, and D. Spinelli, “Different attentional resources modulate the gain mechanisms for color and luminance mechanisms,” Vision Res. 44, 1389–1401 (2004).

Mullen, K. T.

K. T. Mullen and M. J. Sankeralli, “Evidence for the stochastic independence of the blue-yellow, red-green and luminance detection mechanisms revealed by subthreshold summation,” Vision Res. 39, 733–745 (1999).

K. T. Mullen and M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994).
[CrossRef]

K. T. Mullen and J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733–742 (1990).
[CrossRef]

Müller, M. M.

S. K. Andersen, M. M. Müller, and S. A. Hillyard, “Color-selective attention need not be mediated by spatial attention,” J. Vision 9(6), 2, 7 (2009).

Nachmias, J.

J. Nachmias and A. Weber, “Discrimination of simple and complex gratings,” Vision Res. 15, 217–223 (1975).

Neitz, J.

H. J. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

Neitz, M.

H. J. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

Nerger, J. L.

C. M. Cicerone and J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea,” Vision Res. 26, 115–128 (1989).

Nimmo-Smith, I.

J. Duncan and I. Nimmo-Smith, “Objects and attributes in divided attention: surface and boundary systems,” Percept. Psychophys. 58, 1076–1084 (1996).

Otake, S.

S. Otake, P. D. Gowdy, and C. M. Cicerone, “The spatial arrangement of L and M cones in the peripheral human retina,” Vision Res. 40, 677–693 (2000).

Packer, O.

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, and O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg and B. B. Lee, eds. (Plenum, 1991), pp. 11–22.

Pelli, D. G.

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442 (1997).

Phillips, I.

I. Phillips, “Attention and iconic memory,” in Attention: Philosophical and Psychological Essays, C. Mole, D. Smithies, and W. Wu, eds. (Oxford University, 2011), pp. 204–227.

Rattle, J. D.

J. D. Rattle, “Effect of target size on monocular fixation,” Opt. Acta 16, 183–190 (1969).
[CrossRef]

Roorda, A.

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

Sankeralli, M. J.

K. T. Mullen and M. J. Sankeralli, “Evidence for the stochastic independence of the blue-yellow, red-green and luminance detection mechanisms revealed by subthreshold summation,” Vision Res. 39, 733–745 (1999).

Sekiguchi, N.

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, and O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg and B. B. Lee, eds. (Plenum, 1991), pp. 11–22.

Singer, B.

H. J. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same photopigment,” J. Vision 5(5), 5, 444–454 (2005).

Sperling, G.

G. Sperling, “The information available in brief visual presentations,” Psychol. Mon. 74, 1–29 (1960).
[CrossRef]

Sperling, H. G.

H. G. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef]

Spinelli, D.

M. C. Morrone, V. Denti, and D. Spinelli, “Different attentional resources modulate the gain mechanisms for color and luminance mechanisms,” Vision Res. 44, 1389–1401 (2004).

Spitzer, H.

H. Spitzer, R. Desimone, and J. Moran, “Increased attention enhances both behavioral and neuronal performance,” Science 240, 338–340 (1988).
[CrossRef]

Srebro, R.

J. Krauskopf and R. Srebro, “Spectral sensitivity of color mechanisms: Derivation form fluctuations of color appearance near threshold,” Science 150, 1477–1479 (1965).
[CrossRef]

Stromeyer, C. F.

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, and R. T. Eskew, “Separable red-green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1993).

Sun, H.

B. B. Lee, H. Sun, and A. Valberg, “Segregation of chromatic and luminance signals using a novel grating stimulus,” J. Physiol. 589, 59–73 (2011).
[CrossRef]

Thomas, J. P.

C. S. Furchner, J. P. Thomas, and F. W. Campbell, “Detection and discrimination of simple and complex patterns at low spatial frequencies,” Vision Res. 17, 827–836 (1977).

Valberg, A.

B. B. Lee, H. Sun, and A. Valberg, “Segregation of chromatic and luminance signals using a novel grating stimulus,” J. Physiol. 589, 59–73 (2011).
[CrossRef]

Walraven, P. L.

Weber, A.

J. Nachmias and A. Weber, “Discrimination of simple and complex gratings,” Vision Res. 15, 217–223 (1975).

Williams, D. R.

D. H. Brainard, D. R. Williams, and H. J. Hofer, “Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots,” J. Vision 8(5), 15, 1–23 (2008).

H. J. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

H. J. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same photopigment,” J. Vision 5(5), 5, 444–454 (2005).

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, and O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg and B. B. Lee, eds. (Plenum, 1991), pp. 11–22.

D. R. Williams, “The invisible cone mosaic,” in Advances in Photoreception: Proceedings of a Symposium on Frontiers of Visual Science (National Academy Press, 1990), pp. 135–148.

Young, T.

T. Young, “On the theory of light and colours,” Phil. Trans. R. Soc. London 92, 12–48 (1802).

Atten. Percept. Psychophys. (1)

I. Abramov, J. Gordon, and H. Chan, “Color appearance: properties of the uniform appearance diagram derived from hue and saturation scaling,” Atten. Percept. Psychophys. 71, 632–643 (2009).

J. Neurosci. (1)

H. J. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

J. Physiol. (2)

B. B. Lee, H. Sun, and A. Valberg, “Segregation of chromatic and luminance signals using a novel grating stimulus,” J. Physiol. 589, 59–73 (2011).
[CrossRef]

F. H. C. Marriott, “The foveal absolute visual threshold for short flashes and small fields,” J. Physiol. 169, 416–423 (1963).

J. Vision (4)

H. J. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same photopigment,” J. Vision 5(5), 5, 444–454 (2005).

D. H. Brainard, D. R. Williams, and H. J. Hofer, “Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots,” J. Vision 8(5), 15, 1–23 (2008).

D. E. Koenig and H. J. Hofer, “The absolute threshold of cone vision,” J. Vision 11(1), 21, 1–24 (2011).

S. K. Andersen, M. M. Müller, and S. A. Hillyard, “Color-selective attention need not be mediated by spatial attention,” J. Vision 9(6), 2, 7 (2009).

Nature (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

Opt. Acta (1)

J. D. Rattle, “Effect of target size on monocular fixation,” Opt. Acta 16, 183–190 (1969).
[CrossRef]

Percept. Psychophys. (1)

J. Duncan and I. Nimmo-Smith, “Objects and attributes in divided attention: surface and boundary systems,” Percept. Psychophys. 58, 1076–1084 (1996).

Phil. Trans. R. Soc. London (1)

T. Young, “On the theory of light and colours,” Phil. Trans. R. Soc. London 92, 12–48 (1802).

Proc. R. Soc. B (1)

D. Alais, C. Morrone, and D. Burr, “Separate attentional resources for vision and audition,” Proc. R. Soc. B 273, 1339–1345 (2006).
[CrossRef]

Psychol. Mon. (1)

G. Sperling, “The information available in brief visual presentations,” Psychol. Mon. 74, 1–29 (1960).
[CrossRef]

Science (3)

J. Krauskopf and R. Srebro, “Spectral sensitivity of color mechanisms: Derivation form fluctuations of color appearance near threshold,” Science 150, 1477–1479 (1965).
[CrossRef]

H. G. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef]

H. Spitzer, R. Desimone, and J. Moran, “Increased attention enhances both behavioral and neuronal performance,” Science 240, 338–340 (1988).
[CrossRef]

Spatial Vis. (2)

D. H. Brainard, “The psychophysics toolbox,” Spatial Vis. 10, 433–436 (1997).

D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spatial Vis. 10, 437–442 (1997).

Vision Res. (9)

C. M. Cicerone and J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea,” Vision Res. 26, 115–128 (1989).

M. C. Morrone, V. Denti, and D. Spinelli, “Different attentional resources modulate the gain mechanisms for color and luminance mechanisms,” Vision Res. 44, 1389–1401 (2004).

J. Nachmias and A. Weber, “Discrimination of simple and complex gratings,” Vision Res. 15, 217–223 (1975).

C. S. Furchner, J. P. Thomas, and F. W. Campbell, “Detection and discrimination of simple and complex patterns at low spatial frequencies,” Vision Res. 17, 827–836 (1977).

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, and R. T. Eskew, “Separable red-green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1993).

K. T. Mullen and M. J. Sankeralli, “Evidence for the stochastic independence of the blue-yellow, red-green and luminance detection mechanisms revealed by subthreshold summation,” Vision Res. 39, 733–745 (1999).

M. A. Finkelstein and D. C. Hood, “Opponent-color cells can influence detection of small, brief lights,” Vision Res. 22, 89–95 (1982).

M. A. Finkelstein and D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).

S. Otake, P. D. Gowdy, and C. M. Cicerone, “The spatial arrangement of L and M cones in the peripheral human retina,” Vision Res. 40, 677–693 (2000).

Other (7)

I. Phillips, “Attention and iconic memory,” in Attention: Philosophical and Psychological Essays, C. Mole, D. Smithies, and W. Wu, eds. (Oxford University, 2011), pp. 204–227.

J. Krauskopf, “On identifying detectors,” In Visual Psychophysics and Physiology, J. C. Armstrong and J. Krauskopf, eds. (Academic, 1978), pp. 283–295.

D. R. Williams, “The invisible cone mosaic,” in Advances in Photoreception: Proceedings of a Symposium on Frontiers of Visual Science (National Academy Press, 1990), pp. 135–148.

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, and O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg and B. B. Lee, eds. (Plenum, 1991), pp. 11–22.

R. W. Ditchburn, Eye Movements and Visual Perception(Clarendon, 1973).

D. McNicol, A Primer of Signal Detection Theory (Lawrence Erlbaum , 2005).

G. A. Gescheider, Psychophysics: The Fundamentals(Lawrence Erlbaum , 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Receiver operating characteristic (ROC) analysis and determination of discriminability, Δm. (a) Typical ROC curves for subject 1, from rating-only data. (b) ROC curves for the same subject on a double probability plot and with a sample estimation of discriminability from linear fits to the low intensity curve—Δm equals z(S|n) on the ROC curve where z(S|s) equals zero (dashed lines). p(S|s) and p(S|n) are the correct detection and false positive rates and z(S|s) and z(S|n) are their inverse normal distribution transformations. Here slopes fitting ROC data on double probability plots are less than one, as is expected with Poisson rather than Gaussian distributions. Gray line is a slope of one for comparison.

Fig. 2.
Fig. 2.

Uniform Appearance Diagram showing typical color responses for one subject (subject 1). Green-red (ordinate) versus yellow-blue (abscissa) differences are plotted for all nonblank intensities (40–95% seen) reported with the color-only response scheme. Data have been arcsine transformed for uniform variance [25]. Boldness of the data points reflects the relative number of stimuli with the same color rating. Saturated hue responses fall along the outer perimeter and white responses fall at the origin. Background color is for illustrative purposes only.

Fig. 3.
Fig. 3.

There is no significant difference between detection thresholds in the detection-only (blue) and color-only (red) conditions. Detection-only thresholds are interpolated at the same false positive rate as employed in the color-only condition, error bars reflect the 95% confidence intervals estimated as described in the Methods section.

Fig. 4.
Fig. 4.

(a) Detection thresholds are not higher in the simultaneous rating condition (green) than in the detection-only rating condition (blue) and are significantly lower for subjects 2 and 4. To facilitate comparison with Fig. 3, thresholds in Fig. 4 are also interpolated at the color-only criterion, error bars reflect the 95% confidence intervals estimated as described in the Methods section. (b) On average, discriminability increases in the simultaneous rating condition compared with the detection-only condition. Ordinate is the percent change in discriminability between detection-only (Δmd) and simultaneous (Δms) rating conditions [100×(ΔmdΔms)/Δmd]. Error bars are one standard error of the mean across subjects. The three leftmost bars are the mean across subjects at each intensity and the rightmost bar is the overall mean across subjects and intensities.

Fig. 5.
Fig. 5.

(a) Detection thresholds are not significantly different in the simultaneous detection-size rating condition (green) than in the detection-only rating condition (blue). Error bars reflect the 95% confidence intervals estimated as described in the Methods section. (b) On average, discriminability (Δm) was not significantly different between conditions for the two subjects. Ordinate is the percent change in discriminability between detection-only (Δmd) and simultaneous (Δms) rating conditions [100×(ΔmdΔms)/Δmd]. Error bars are one standard error of the mean across subjects.

Fig. 6.
Fig. 6.

Color ratings averaged across sessions are not significantly different between the color-only condition (black) and simultaneous rating condition (white), except along the yellow-blue axis at high intensity for subject 4 (arrows, panel D). This difference may be the result of the difference in sensitivity in the two conditions, which typically manifests along the yellow-blue axis. Error bars are one standard error of the mean of the arcsine transformed green-red and yellow-blue rating differences. The axes have been truncated to ±5 to better display the average values. Background color is for illustrative purposes only. Data include all seen stimuli (rated 2 or more in the simultaneous rating condition) and excludes false positive responses.

Fig. 7.
Fig. 7.

Typical variability in subjective ratings usage as a function of intensity. Subjective ratings for each intensity range from 2 (‘unsure’) to 5 (‘bright spot seen’). Data are from one simultaneous rating session (subject 1). Stimuli of any intensity (low, med, high) may attain any subjective brightness.

Fig. 8.
Fig. 8.

Red, green, yellow, blue, and white responses (corresponding color segments, except gray segments incorporate white, gray, or uncertain hue responses) as a proportion of total hue response for each nonzero stimulus intensity (subjects 1–4, A–D), and each subjective detection criterion (subjects 1–4, E–H). For subjects 1, 2, and 4 the proportion of yellow (blue) tends to increase (decrease) with increasing intensity, a trend toward veridical hue for a 580 nm stimulus.

Tables (3)

Tables Icon

Table 1. Color Ratings on Each Trial Summed to 10 and Distributed among Red, Green, Yellow, Blue, and Whitea

Tables Icon

Table 2. False Positive Rates (%) for all Three Conditions (Mean ±1SD across Sessions, Except Subject 3 with only Two Sessions)a

Tables Icon

Table 3. Differences in Mean Hue Ratings in the Yellow-Blue and Green-Red Directions (after Arcsine Transformation for Uniform Variance) in the Color-Only and Simultaneous Conditions (Color-Only Minus Simultaneous)a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p(S|s)=100·[p(S|s)p(S|n)100p(S|n)],
Δm=SNNσn,
RHue=10·[2·arcsin((RHue/10)0.5)π],

Metrics