Abstract

For a color-constant observer, a change in the spectral composition of the illumination is accompanied by a corresponding change in the chromaticity associated with an achromatic percept. However, maintaining color constancy for different regions of illumination within a scene implies the maintenance of multiple perceptual references. We investigated the features of a scene that enable the maintenance of separate perceptual references for two displaced but overlapping chromaticity distributions. The time-averaged, retinotopically localized stimulus was the primary determinant of color appearance judgments. However, spatial separation of test samples additionally served as a symbolic cue that allowed observers to maintain two separate perceptual references.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Morgan, “On the scaling of size judgements by orientational cues,” Vis. Res. 32, 1433–1445 (1992).
    [CrossRef]
  2. H. Helson, “Adaptation-level as frame of reference for prediction of psychophysical data,” Am. J. Psychol. 60, 1–29 (1947).
    [CrossRef]
  3. H. Helson, “Adaptation-level as a basis for a quantitative theory of frames of reference,” Psychol. Rev. 55, 297–313 (1948).
    [CrossRef]
  4. P. Lennie and M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–401 (1988).
  5. J. von Kries, “Beitrag zur Physiologie der Gesichtsempndungen [Transl. Physiology of visual sensations],” in Sources of Color Science, D. L. MacAdam, ed. (MIT Press, 1878), pp. 101–108.
  6. A. Stockman, M. Langendörfer, H. E. Smithson, and L. T. Sharpe, “Human cone light adaptation: from behavioral measurements to molecular mechanisms,” J. Vision 6(6), 1194–1213 (2006).
    [CrossRef]
  7. E. N. J. Pugh and J. D. Mollon, “A theory of the Pi1 and Pi3 color mechanisms of stiles,” Vis. Res. 19, 293–312 (1979).
    [CrossRef]
  8. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
    [CrossRef]
  9. C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008).
    [CrossRef]
  10. A. Kohn, “Visual adaptation: physiology, mechanisms, and functional benefits,” J. Neurophysiol. 97, 3155–3164 (2007).
    [CrossRef]
  11. I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict color constancy,” Vis. Neurosci. 23, 543–547 (2006).
  12. M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
    [CrossRef]
  13. D. Katz, The World of Colour (K. Paul, Trench, Trubner, 1935).
  14. B. H. Crawford, “Visual adaptation in relation to brief conditioning stimuli,” Proc. R. Soc. Lond. Ser. B 134, 283–302(1947).
    [CrossRef]
  15. D. Jameson, L. M. Hurvich, and F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
    [CrossRef]
  16. J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
    [CrossRef]
  17. P. B. Delahunt, M. A. Webster, L. Ma, and J. S. Werner, “Long-term renormalization of chromatic mechanisms following cataract surgery,” Vis. Neurosci. 21, 301–307 (2004).
    [CrossRef]
  18. D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. Lond. Ser. B 257, 115–121 (1994).
    [CrossRef]
  19. H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. Lond. Ser. B 360, 1329–1346 (2005).
    [CrossRef]
  20. D. I. A. MacLeod and S. He, “Visible flicker from invisible patterns,” Nature 361, 256–258 (1993).
    [CrossRef]
  21. S. He and D. I. A. MacLeod, “Local nonlinearity in S-cones and their estimated light-collecting apertures,” Vis. Res. 38, 1001–1006 (1998).
    [CrossRef]
  22. D. I. A. MacLeod, D. R. Williams, and W. Makous, “A visual nonlinearity fed by single cones,” Vis. Res. 32, 347–363 (1992).
    [CrossRef]
  23. S. J. Schein and R. Desimone, “Spectral properties of V4 neurons in the macaque,” J. Neurosci. 10, 3369–3389 (1990).
  24. A. C. Hurlbert and T. A. Poggio, “Synthesizing a color algorithm from examples,” Science 239, 482–485 (1988).
    [CrossRef]
  25. J. D. Mollon, B. C. Regan, and J. K. Bowmaker, “What is the function of the cone-rich rim of the retina?” Eye 12, 548–552 (1998).
    [CrossRef]
  26. M. D’Zmura and P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–72 (1986).
    [CrossRef]
  27. R. J. Lee, K. A. Dawson, and H. E. Smithson, “Slow updating of the achromatic point after a change in illumination,” J. Vision12(1), 1–22 (2012).
    [CrossRef]
  28. H. E. Smithson and Q. Zaidi, “Colour constancy in context: Roles for local adaptation and levels of reference,” J. Vision 4(8), 693–710 (2004).
    [CrossRef]
  29. A. D. D’Antona and S. K. Shevell, “Induced steady color shifts from temporally varying surrounds,” Vis. Neurosci. 23, 483–487(2006).
    [CrossRef]
  30. K. Koffka, Principles of Gestalt Psychology (Harcourt, Brace, and World, 1935).
  31. A. Gelb, “Die Farbenkonstanz der Sehdinge,” in Handbuch der normalen und pathologischen Psychologie, A. Bethe, G. V. Bergmann, G. Embden, and A. Ellinger, eds. (Springer-Verlag, 1929), pp. 594–678.
  32. M. J. Morgan, S. N. Watamaniuk, and S. P. McKee, “The use of an implicit standard for measuring discrimination thresholds,” Vis. Res. 40, 2341–2349 (2000).
    [CrossRef]
  33. S. X. Xian, and S. K. Shevell, “Changes in color appearance caused by perceptual grouping,” Vis. Neurosci. 21, 383–388 (2004).
    [CrossRef]
  34. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef]
  35. A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
    [CrossRef]
  36. J. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
    [CrossRef]
  37. F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293–1313 (2001).
    [CrossRef]
  38. D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
    [CrossRef]
  39. Q. Zaidi, B. Spehar, and J. DeBonet, “Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621(1997).
    [CrossRef]
  40. P. Monnier and S. K. Shevell, “Large shifts in color appearance from patterned chromatic backgrounds,” Nat. Neurosci. 6, 801–802 (2003).
    [CrossRef]
  41. D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
    [CrossRef]
  42. D. H. Foster, “Does colour constancy exist?,” Trends Cognit. Sci. 7, 439–443 (2003).
    [CrossRef]
  43. J. L. Barbur and K. Spang, “Colour constancy and conscious perception of changes of illuminant,” Neuropsychologia 46, 853–863 (2008).
    [CrossRef]
  44. R. O. Brown, “The world is not gray,” Investig. Ophthalmol. Vis. Sci. 35, 2165 (1994).
  45. F. W. Cornelissen and E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vis. Res. 35, 2431–48 (1995).
  46. E. Brenner, J. J. M. Granzier, and J. B. J. Smeets, “Perceiving colour at a glimpse: the relevance of where one fixates,” Vis. Res. 47, 2557–2568 (2007).
    [CrossRef]

2011

D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

2008

C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008).
[CrossRef]

J. L. Barbur and K. Spang, “Colour constancy and conscious perception of changes of illuminant,” Neuropsychologia 46, 853–863 (2008).
[CrossRef]

2007

E. Brenner, J. J. M. Granzier, and J. B. J. Smeets, “Perceiving colour at a glimpse: the relevance of where one fixates,” Vis. Res. 47, 2557–2568 (2007).
[CrossRef]

A. Kohn, “Visual adaptation: physiology, mechanisms, and functional benefits,” J. Neurophysiol. 97, 3155–3164 (2007).
[CrossRef]

2006

I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict color constancy,” Vis. Neurosci. 23, 543–547 (2006).

A. Stockman, M. Langendörfer, H. E. Smithson, and L. T. Sharpe, “Human cone light adaptation: from behavioral measurements to molecular mechanisms,” J. Vision 6(6), 1194–1213 (2006).
[CrossRef]

A. D. D’Antona and S. K. Shevell, “Induced steady color shifts from temporally varying surrounds,” Vis. Neurosci. 23, 483–487(2006).
[CrossRef]

2005

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. Lond. Ser. B 360, 1329–1346 (2005).
[CrossRef]

2004

P. B. Delahunt, M. A. Webster, L. Ma, and J. S. Werner, “Long-term renormalization of chromatic mechanisms following cataract surgery,” Vis. Neurosci. 21, 301–307 (2004).
[CrossRef]

H. E. Smithson and Q. Zaidi, “Colour constancy in context: Roles for local adaptation and levels of reference,” J. Vision 4(8), 693–710 (2004).
[CrossRef]

S. X. Xian, and S. K. Shevell, “Changes in color appearance caused by perceptual grouping,” Vis. Neurosci. 21, 383–388 (2004).
[CrossRef]

2003

D. H. Foster, “Does colour constancy exist?,” Trends Cognit. Sci. 7, 439–443 (2003).
[CrossRef]

P. Monnier and S. K. Shevell, “Large shifts in color appearance from patterned chromatic backgrounds,” Nat. Neurosci. 6, 801–802 (2003).
[CrossRef]

2002

J. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

2001

F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

2000

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[CrossRef]

M. J. Morgan, S. N. Watamaniuk, and S. P. McKee, “The use of an implicit standard for measuring discrimination thresholds,” Vis. Res. 40, 2341–2349 (2000).
[CrossRef]

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

1998

J. D. Mollon, B. C. Regan, and J. K. Bowmaker, “What is the function of the cone-rich rim of the retina?” Eye 12, 548–552 (1998).
[CrossRef]

S. He and D. I. A. MacLeod, “Local nonlinearity in S-cones and their estimated light-collecting apertures,” Vis. Res. 38, 1001–1006 (1998).
[CrossRef]

1997

1995

F. W. Cornelissen and E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vis. Res. 35, 2431–48 (1995).

1994

R. O. Brown, “The world is not gray,” Investig. Ophthalmol. Vis. Sci. 35, 2165 (1994).

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. Lond. Ser. B 257, 115–121 (1994).
[CrossRef]

1993

D. I. A. MacLeod and S. He, “Visible flicker from invisible patterns,” Nature 361, 256–258 (1993).
[CrossRef]

1992

M. J. Morgan, “On the scaling of size judgements by orientational cues,” Vis. Res. 32, 1433–1445 (1992).
[CrossRef]

D. I. A. MacLeod, D. R. Williams, and W. Makous, “A visual nonlinearity fed by single cones,” Vis. Res. 32, 347–363 (1992).
[CrossRef]

1990

S. J. Schein and R. Desimone, “Spectral properties of V4 neurons in the macaque,” J. Neurosci. 10, 3369–3389 (1990).

1988

A. C. Hurlbert and T. A. Poggio, “Synthesizing a color algorithm from examples,” Science 239, 482–485 (1988).
[CrossRef]

P. Lennie and M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–401 (1988).

1986

1982

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

1979

D. Jameson, L. M. Hurvich, and F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
[CrossRef]

E. N. J. Pugh and J. D. Mollon, “A theory of the Pi1 and Pi3 color mechanisms of stiles,” Vis. Res. 19, 293–312 (1979).
[CrossRef]

D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[CrossRef]

1948

H. Helson, “Adaptation-level as a basis for a quantitative theory of frames of reference,” Psychol. Rev. 55, 297–313 (1948).
[CrossRef]

1947

H. Helson, “Adaptation-level as frame of reference for prediction of psychophysical data,” Am. J. Psychol. 60, 1–29 (1947).
[CrossRef]

B. H. Crawford, “Visual adaptation in relation to brief conditioning stimuli,” Proc. R. Soc. Lond. Ser. B 134, 283–302(1947).
[CrossRef]

Amano, K.

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

Arend, L.

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

Barbur, J. L.

J. L. Barbur and K. Spang, “Colour constancy and conscious perception of changes of illuminant,” Neuropsychologia 46, 853–863 (2008).
[CrossRef]

Bowmaker, J. K.

J. D. Mollon, B. C. Regan, and J. K. Bowmaker, “What is the function of the cone-rich rim of the retina?” Eye 12, 548–552 (1998).
[CrossRef]

Boynton, R. M.

Brenner, E.

E. Brenner, J. J. M. Granzier, and J. B. J. Smeets, “Perceiving colour at a glimpse: the relevance of where one fixates,” Vis. Res. 47, 2557–2568 (2007).
[CrossRef]

F. W. Cornelissen and E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vis. Res. 35, 2431–48 (1995).

Brown, R. O.

R. O. Brown, “The world is not gray,” Investig. Ophthalmol. Vis. Sci. 35, 2165 (1994).

Carroll, J.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

Cornelissen, F. W.

F. W. Cornelissen and E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vis. Res. 35, 2431–48 (1995).

Crawford, B. H.

B. H. Crawford, “Visual adaptation in relation to brief conditioning stimuli,” Proc. R. Soc. Lond. Ser. B 134, 283–302(1947).
[CrossRef]

D’Antona, A. D.

A. D. D’Antona and S. K. Shevell, “Induced steady color shifts from temporally varying surrounds,” Vis. Neurosci. 23, 483–487(2006).
[CrossRef]

D’Zmura, M.

P. Lennie and M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–401 (1988).

M. D’Zmura and P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–72 (1986).
[CrossRef]

Daugirdiene, A.

I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict color constancy,” Vis. Neurosci. 23, 543–547 (2006).

Dawson, K. A.

R. J. Lee, K. A. Dawson, and H. E. Smithson, “Slow updating of the achromatic point after a change in illumination,” J. Vision12(1), 1–22 (2012).
[CrossRef]

DeBonet, J.

Delahunt, P. B.

P. B. Delahunt, M. A. Webster, L. Ma, and J. S. Werner, “Long-term renormalization of chromatic mechanisms following cataract surgery,” Vis. Neurosci. 21, 301–307 (2004).
[CrossRef]

Desimone, R.

S. J. Schein and R. Desimone, “Spectral properties of V4 neurons in the macaque,” J. Neurosci. 10, 3369–3389 (1990).

Dhruv, N. T.

C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008).
[CrossRef]

Foster, D. H.

D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

D. H. Foster, “Does colour constancy exist?,” Trends Cognit. Sci. 7, 439–443 (2003).
[CrossRef]

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. Lond. Ser. B 257, 115–121 (1994).
[CrossRef]

Foster, J. S.

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

Gelb, A.

A. Gelb, “Die Farbenkonstanz der Sehdinge,” in Handbuch der normalen und pathologischen Psychologie, A. Bethe, G. V. Bergmann, G. Embden, and A. Ellinger, eds. (Springer-Verlag, 1929), pp. 594–678.

Golz, J.

J. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

Granzier, J. J. M.

E. Brenner, J. J. M. Granzier, and J. B. J. Smeets, “Perceiving colour at a glimpse: the relevance of where one fixates,” Vis. Res. 47, 2557–2568 (2007).
[CrossRef]

He, S.

S. He and D. I. A. MacLeod, “Local nonlinearity in S-cones and their estimated light-collecting apertures,” Vis. Res. 38, 1001–1006 (1998).
[CrossRef]

D. I. A. MacLeod and S. He, “Visible flicker from invisible patterns,” Nature 361, 256–258 (1993).
[CrossRef]

Heeley, D. W.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Helson, H.

H. Helson, “Adaptation-level as a basis for a quantitative theory of frames of reference,” Psychol. Rev. 55, 297–313 (1948).
[CrossRef]

H. Helson, “Adaptation-level as frame of reference for prediction of psychophysical data,” Am. J. Psychol. 60, 1–29 (1947).
[CrossRef]

Hill, N. J.

F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

Hurlbert, A. C.

A. C. Hurlbert and T. A. Poggio, “Synthesizing a color algorithm from examples,” Science 239, 482–485 (1988).
[CrossRef]

Hurvich, L. M.

D. Jameson, L. M. Hurvich, and F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
[CrossRef]

Jameson, D.

D. Jameson, L. M. Hurvich, and F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
[CrossRef]

Katz, D.

D. Katz, The World of Colour (K. Paul, Trench, Trubner, 1935).

Koffka, K.

K. Koffka, Principles of Gestalt Psychology (Harcourt, Brace, and World, 1935).

Kohn, A.

A. Kohn, “Visual adaptation: physiology, mechanisms, and functional benefits,” J. Neurophysiol. 97, 3155–3164 (2007).
[CrossRef]

Krauskopf, J.

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Kulikowski, J. J.

I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict color constancy,” Vis. Neurosci. 23, 543–547 (2006).

Langendörfer, M.

A. Stockman, M. Langendörfer, H. E. Smithson, and L. T. Sharpe, “Human cone light adaptation: from behavioral measurements to molecular mechanisms,” J. Vision 6(6), 1194–1213 (2006).
[CrossRef]

Lee, R. J.

R. J. Lee, K. A. Dawson, and H. E. Smithson, “Slow updating of the achromatic point after a change in illumination,” J. Vision12(1), 1–22 (2012).
[CrossRef]

Lennie, P.

C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008).
[CrossRef]

P. Lennie and M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–401 (1988).

M. D’Zmura and P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–72 (1986).
[CrossRef]

Linnell, K. J.

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

Ma, L.

P. B. Delahunt, M. A. Webster, L. Ma, and J. S. Werner, “Long-term renormalization of chromatic mechanisms following cataract surgery,” Vis. Neurosci. 21, 301–307 (2004).
[CrossRef]

MacLeod, D. I. A.

J. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

S. He and D. I. A. MacLeod, “Local nonlinearity in S-cones and their estimated light-collecting apertures,” Vis. Res. 38, 1001–1006 (1998).
[CrossRef]

D. I. A. MacLeod and S. He, “Visible flicker from invisible patterns,” Nature 361, 256–258 (1993).
[CrossRef]

D. I. A. MacLeod, D. R. Williams, and W. Makous, “A visual nonlinearity fed by single cones,” Vis. Res. 32, 347–363 (1992).
[CrossRef]

D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[CrossRef]

Makous, W.

D. I. A. MacLeod, D. R. Williams, and W. Makous, “A visual nonlinearity fed by single cones,” Vis. Res. 32, 347–363 (1992).
[CrossRef]

McKee, S. P.

M. J. Morgan, S. N. Watamaniuk, and S. P. McKee, “The use of an implicit standard for measuring discrimination thresholds,” Vis. Res. 40, 2341–2349 (2000).
[CrossRef]

Mollon, J. D.

J. D. Mollon, B. C. Regan, and J. K. Bowmaker, “What is the function of the cone-rich rim of the retina?” Eye 12, 548–552 (1998).
[CrossRef]

E. N. J. Pugh and J. D. Mollon, “A theory of the Pi1 and Pi3 color mechanisms of stiles,” Vis. Res. 19, 293–312 (1979).
[CrossRef]

Monnier, P.

P. Monnier and S. K. Shevell, “Large shifts in color appearance from patterned chromatic backgrounds,” Nat. Neurosci. 6, 801–802 (2003).
[CrossRef]

Morgan, M. J.

M. J. Morgan, S. N. Watamaniuk, and S. P. McKee, “The use of an implicit standard for measuring discrimination thresholds,” Vis. Res. 40, 2341–2349 (2000).
[CrossRef]

M. J. Morgan, “On the scaling of size judgements by orientational cues,” Vis. Res. 32, 1433–1445 (1992).
[CrossRef]

Murray, I. J.

I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict color constancy,” Vis. Neurosci. 23, 543–547 (2006).

Nascimento, S. M. C.

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. Lond. Ser. B 257, 115–121 (1994).
[CrossRef]

Neitz, J.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

Neitz, M.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

Nieves, J. L.

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

Plet, S.

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

Poggio, T. A.

A. C. Hurlbert and T. A. Poggio, “Synthesizing a color algorithm from examples,” Science 239, 482–485 (1988).
[CrossRef]

Pugh, E. N. J.

E. N. J. Pugh and J. D. Mollon, “A theory of the Pi1 and Pi3 color mechanisms of stiles,” Vis. Res. 19, 293–312 (1979).
[CrossRef]

Regan, B. C.

J. D. Mollon, B. C. Regan, and J. K. Bowmaker, “What is the function of the cone-rich rim of the retina?” Eye 12, 548–552 (1998).
[CrossRef]

Schein, S. J.

S. J. Schein and R. Desimone, “Spectral properties of V4 neurons in the macaque,” J. Neurosci. 10, 3369–3389 (1990).

Sharpe, L. T.

A. Stockman, M. Langendörfer, H. E. Smithson, and L. T. Sharpe, “Human cone light adaptation: from behavioral measurements to molecular mechanisms,” J. Vision 6(6), 1194–1213 (2006).
[CrossRef]

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[CrossRef]

Shevell, S. K.

A. D. D’Antona and S. K. Shevell, “Induced steady color shifts from temporally varying surrounds,” Vis. Neurosci. 23, 483–487(2006).
[CrossRef]

S. X. Xian, and S. K. Shevell, “Changes in color appearance caused by perceptual grouping,” Vis. Neurosci. 21, 383–388 (2004).
[CrossRef]

P. Monnier and S. K. Shevell, “Large shifts in color appearance from patterned chromatic backgrounds,” Nat. Neurosci. 6, 801–802 (2003).
[CrossRef]

Smeets, J. B. J.

E. Brenner, J. J. M. Granzier, and J. B. J. Smeets, “Perceiving colour at a glimpse: the relevance of where one fixates,” Vis. Res. 47, 2557–2568 (2007).
[CrossRef]

Smithson, H. E.

A. Stockman, M. Langendörfer, H. E. Smithson, and L. T. Sharpe, “Human cone light adaptation: from behavioral measurements to molecular mechanisms,” J. Vision 6(6), 1194–1213 (2006).
[CrossRef]

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. Lond. Ser. B 360, 1329–1346 (2005).
[CrossRef]

H. E. Smithson and Q. Zaidi, “Colour constancy in context: Roles for local adaptation and levels of reference,” J. Vision 4(8), 693–710 (2004).
[CrossRef]

R. J. Lee, K. A. Dawson, and H. E. Smithson, “Slow updating of the achromatic point after a change in illumination,” J. Vision12(1), 1–22 (2012).
[CrossRef]

Solomon, S. G.

C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008).
[CrossRef]

Spang, K.

J. L. Barbur and K. Spang, “Colour constancy and conscious perception of changes of illuminant,” Neuropsychologia 46, 853–863 (2008).
[CrossRef]

Spehar, B.

Stanikunas, R.

I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict color constancy,” Vis. Neurosci. 23, 543–547 (2006).

Stockman, A.

A. Stockman, M. Langendörfer, H. E. Smithson, and L. T. Sharpe, “Human cone light adaptation: from behavioral measurements to molecular mechanisms,” J. Vision 6(6), 1194–1213 (2006).
[CrossRef]

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[CrossRef]

Tailby, C.

C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008).
[CrossRef]

Vaitkevicius, H.

I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict color constancy,” Vis. Neurosci. 23, 543–547 (2006).

Varner, F. D.

D. Jameson, L. M. Hurvich, and F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
[CrossRef]

von Kries, J.

J. von Kries, “Beitrag zur Physiologie der Gesichtsempndungen [Transl. Physiology of visual sensations],” in Sources of Color Science, D. L. MacAdam, ed. (MIT Press, 1878), pp. 101–108.

Watamaniuk, S. N.

M. J. Morgan, S. N. Watamaniuk, and S. P. McKee, “The use of an implicit standard for measuring discrimination thresholds,” Vis. Res. 40, 2341–2349 (2000).
[CrossRef]

Webster, M. A.

P. B. Delahunt, M. A. Webster, L. Ma, and J. S. Werner, “Long-term renormalization of chromatic mechanisms following cataract surgery,” Vis. Neurosci. 21, 301–307 (2004).
[CrossRef]

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

Werner, J. S.

P. B. Delahunt, M. A. Webster, L. Ma, and J. S. Werner, “Long-term renormalization of chromatic mechanisms following cataract surgery,” Vis. Neurosci. 21, 301–307 (2004).
[CrossRef]

Wichmann, F. A.

F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

Williams, D. R.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

D. I. A. MacLeod, D. R. Williams, and W. Makous, “A visual nonlinearity fed by single cones,” Vis. Res. 32, 347–363 (1992).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

Wilson, J. A.

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

Xian, S. X.

S. X. Xian, and S. K. Shevell, “Changes in color appearance caused by perceptual grouping,” Vis. Neurosci. 21, 383–388 (2004).
[CrossRef]

Yamauchi, Y.

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

Zaidi, Q.

H. E. Smithson and Q. Zaidi, “Colour constancy in context: Roles for local adaptation and levels of reference,” J. Vision 4(8), 693–710 (2004).
[CrossRef]

Q. Zaidi, B. Spehar, and J. DeBonet, “Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes,” J. Opt. Soc. Am. A 14, 2608–2621(1997).
[CrossRef]

Am. J. Psychol.

H. Helson, “Adaptation-level as frame of reference for prediction of psychophysical data,” Am. J. Psychol. 60, 1–29 (1947).
[CrossRef]

Crit. Rev. Neurobiol.

P. Lennie and M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–401 (1988).

Eye

J. D. Mollon, B. C. Regan, and J. K. Bowmaker, “What is the function of the cone-rich rim of the retina?” Eye 12, 548–552 (1998).
[CrossRef]

Investig. Ophthalmol. Vis. Sci.

R. O. Brown, “The world is not gray,” Investig. Ophthalmol. Vis. Sci. 35, 2165 (1994).

J. Neurophysiol.

A. Kohn, “Visual adaptation: physiology, mechanisms, and functional benefits,” J. Neurophysiol. 97, 3155–3164 (2007).
[CrossRef]

J. Neurosci.

C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008).
[CrossRef]

S. J. Schein and R. Desimone, “Spectral properties of V4 neurons in the macaque,” J. Neurosci. 10, 3369–3389 (1990).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Vision

H. E. Smithson and Q. Zaidi, “Colour constancy in context: Roles for local adaptation and levels of reference,” J. Vision 4(8), 693–710 (2004).
[CrossRef]

A. Stockman, M. Langendörfer, H. E. Smithson, and L. T. Sharpe, “Human cone light adaptation: from behavioral measurements to molecular mechanisms,” J. Vision 6(6), 1194–1213 (2006).
[CrossRef]

Nat. Neurosci.

P. Monnier and S. K. Shevell, “Large shifts in color appearance from patterned chromatic backgrounds,” Nat. Neurosci. 6, 801–802 (2003).
[CrossRef]

Nature

J. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637–640 (2002).
[CrossRef]

D. I. A. MacLeod and S. He, “Visible flicker from invisible patterns,” Nature 361, 256–258 (1993).
[CrossRef]

Neuron

J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002).
[CrossRef]

Neuropsychologia

J. L. Barbur and K. Spang, “Colour constancy and conscious perception of changes of illuminant,” Neuropsychologia 46, 853–863 (2008).
[CrossRef]

Percept. Psychophys.

F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293–1313 (2001).
[CrossRef]

Philos. Trans. R. Soc. Lond. Ser. B

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. Lond. Ser. B 360, 1329–1346 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. USA

D. Jameson, L. M. Hurvich, and F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
[CrossRef]

D. H. Foster, S. M. C. Nascimento, K. Amano, L. Arend, K. J. Linnell, J. L. Nieves, S. Plet, and J. S. Foster, “Parallel detection of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98, 8151–8156 (2001).
[CrossRef]

Proc. R. Soc. Lond. Ser. B

B. H. Crawford, “Visual adaptation in relation to brief conditioning stimuli,” Proc. R. Soc. Lond. Ser. B 134, 283–302(1947).
[CrossRef]

D. H. Foster and S. M. C. Nascimento, “Relational colour constancy from invariant cone-excitation ratios,” Proc. R. Soc. Lond. Ser. B 257, 115–121 (1994).
[CrossRef]

Psychol. Rev.

H. Helson, “Adaptation-level as a basis for a quantitative theory of frames of reference,” Psychol. Rev. 55, 297–313 (1948).
[CrossRef]

Science

A. C. Hurlbert and T. A. Poggio, “Synthesizing a color algorithm from examples,” Science 239, 482–485 (1988).
[CrossRef]

Trends Cognit. Sci.

D. H. Foster, “Does colour constancy exist?,” Trends Cognit. Sci. 7, 439–443 (2003).
[CrossRef]

Vis. Neurosci.

S. X. Xian, and S. K. Shevell, “Changes in color appearance caused by perceptual grouping,” Vis. Neurosci. 21, 383–388 (2004).
[CrossRef]

A. D. D’Antona and S. K. Shevell, “Induced steady color shifts from temporally varying surrounds,” Vis. Neurosci. 23, 483–487(2006).
[CrossRef]

P. B. Delahunt, M. A. Webster, L. Ma, and J. S. Werner, “Long-term renormalization of chromatic mechanisms following cataract surgery,” Vis. Neurosci. 21, 301–307 (2004).
[CrossRef]

I. J. Murray, A. Daugirdiene, R. Stanikunas, H. Vaitkevicius, and J. J. Kulikowski, “Cone contrasts do not predict color constancy,” Vis. Neurosci. 23, 543–547 (2006).

Vis. Res.

M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000).
[CrossRef]

E. N. J. Pugh and J. D. Mollon, “A theory of the Pi1 and Pi3 color mechanisms of stiles,” Vis. Res. 19, 293–312 (1979).
[CrossRef]

J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982).
[CrossRef]

M. J. Morgan, “On the scaling of size judgements by orientational cues,” Vis. Res. 32, 1433–1445 (1992).
[CrossRef]

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000).
[CrossRef]

D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011).
[CrossRef]

S. He and D. I. A. MacLeod, “Local nonlinearity in S-cones and their estimated light-collecting apertures,” Vis. Res. 38, 1001–1006 (1998).
[CrossRef]

D. I. A. MacLeod, D. R. Williams, and W. Makous, “A visual nonlinearity fed by single cones,” Vis. Res. 32, 347–363 (1992).
[CrossRef]

M. J. Morgan, S. N. Watamaniuk, and S. P. McKee, “The use of an implicit standard for measuring discrimination thresholds,” Vis. Res. 40, 2341–2349 (2000).
[CrossRef]

F. W. Cornelissen and E. Brenner, “Simultaneous colour constancy revisited: an analysis of viewing strategies,” Vis. Res. 35, 2431–48 (1995).

E. Brenner, J. J. M. Granzier, and J. B. J. Smeets, “Perceiving colour at a glimpse: the relevance of where one fixates,” Vis. Res. 47, 2557–2568 (2007).
[CrossRef]

Other

R. J. Lee, K. A. Dawson, and H. E. Smithson, “Slow updating of the achromatic point after a change in illumination,” J. Vision12(1), 1–22 (2012).
[CrossRef]

K. Koffka, Principles of Gestalt Psychology (Harcourt, Brace, and World, 1935).

A. Gelb, “Die Farbenkonstanz der Sehdinge,” in Handbuch der normalen und pathologischen Psychologie, A. Bethe, G. V. Bergmann, G. Embden, and A. Ellinger, eds. (Springer-Verlag, 1929), pp. 594–678.

J. von Kries, “Beitrag zur Physiologie der Gesichtsempndungen [Transl. Physiology of visual sensations],” in Sources of Color Science, D. L. MacAdam, ed. (MIT Press, 1878), pp. 101–108.

D. Katz, The World of Colour (K. Paul, Trench, Trubner, 1935).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Top: schematic representation of the stimulus layouts for the nine experimental conditions. The shading indicates the set of chromaticities that were used in each location. The backgrounds were covered with ellipses whose chromaticities were drawn from the set indicated, and examples are shown in Fig. 2. The small squares show test-patch locations. The small black dots show fixation targets. On each trial only a single test patch and the adjacent fixation target were used. Bottom: measured shifts in the point of subjective equality (PSE) for four observers, expressed as a proportion of the difference between the mean chromaticities of the two chromatic sets. Each panel shows data from one condition, as above. Error bars show 95% confidence intervals on the difference between the PSEs derived from fitted psychometric functions. The horizontal blue lines (upper line in all but AI, BI, and AC) indicate the mean shifts across all observers in each condition. The horizontal red lines indicate the shifts predicted if the PSE is determined by the time-averaged chromaticity displayed at the retinotopic location of the test patch.

Fig. 2.
Fig. 2.

Top plot shows the chromaticities used in the experiment. Means of important sets of chromaticities are indicated, and are used to make predictions based on adaptation to the time-averaged chromaticity in different conditions. The images below are examples of the spatial layout of our stimulus surrounds. The top image represents a surround composed of chromaticities from the green-biased set, and the one below is composed of chromaticities from the red-biased set. The center image is made of chromaticities from both sets. The bottom two images show how the surround pattern was divided so that one-half of the display was composed of green-biased chromaticities and the chromaticities in the other half were offset to make them red-biased.

Fig. 3.
Fig. 3.

Measured shifts in the PSE, as in Fig. 1, for all eight observers in the two conditions in which all observers collected data: DC and EC. Data from both conditions are on the same plot, with data from condition DC shown by the left-hand bar in each pair, and the data from condition EC shown by the right-hand bar. Error bars show 95% confidence intervals, as before.

Fig. 4.
Fig. 4.

Slopes of the fitted psychometric functions at f(rA)=0.5 and f(rB)=0.5 for conditions CI (left panel) and AC (right panel). Error bars again show 95% confidence intervals on these fitted values. Each pair of bars shows the slopes for one observer, and within each pair the green and pink bars show the slope of the curves fitted to the classification probabilities for the green- and red-biased sets, respectively.

Fig. 5.
Fig. 5.

Calculated shifts in the PSE for conditions DC (top plot) and EC (bottom plot). Within each pair of bars, the left-hand (gray) bar indicates the shift calculated using only classifications made on presentations in which the test chromaticity was from the set not used in the previous presentation. The right-hand (white) bar indicates the shift calculated using only classifications made on presentations in which the test chromaticity was from the same set as in the previous presentation. Error bars show 95% confidence intervals, as before.

Metrics