Abstract

Psychophysical data have shown that under mesopic conditions cones and rods can interact, improving color vision. Since electrophysiological data have suggested that rods of dichromatic marmosets appear to be active at higher luminance, we aimed to investigate the effect of different levels of sunlight on the foraging abilities of male dichromatic marmosets. Captive marmosets were observed under three different conditions, with respect to their performance in detecting colored food items against a green background. Compared to high and low light intensities, intermediate luminosities significantly increased detection of orange targets by male dichromats, an indication of rod intrusion.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Jacobs, “The distribution and nature of color vision among the mammals,” Biol. Rev. Camb. Philos. Soc. 68, 413–471 (1993).
  2. J. K. Bowmaker, “Evolution of color vision in vertebrates,” Eye 12, 541–547 (1998).
    [CrossRef]
  3. J. D. Mollon, J. K. Bowmaker, and G. H. Jacobs, “Variations of color vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. B 222, 373–399 (1984).
    [CrossRef]
  4. G. H. Jacobs, J. Neitz, and M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vision Res. 27, 2089–2100 (1987).
    [CrossRef]
  5. M. J. Tovée, J. K. Bowmaker, and J. D. Mollon, “The relationship between cone pigments and behavioral sensitivity in a New World monkey (Callithrix jacchus jacchus),” Vision Res. 32, 867–878 (1992).
    [CrossRef]
  6. A. Kelber, M. Vorobyev, and D. Osorio, “Animal colour vision—behavioural tests and physiological concepts,” Biol. Rev. Camb. Philos. Soc. 78, 81–118 (2003).
  7. G. H. Jacobs, “Progress toward understanding the evolution of primate color vision,” Evol. Anthropol. 1, 132–135 (2002).
  8. C. A. Arrese, L. D. Beazley, and C. Neumeyer, “Behavioural evidence for marsupial trichromacy,” Curr. Biol. 16, R193–R194 (2006).
    [CrossRef]
  9. G. H. Jacobs and J. F. Deegan, “Uniformity of colour vision in Old World monkeys,” Proc. R. Soc. B 266, 2023–2028 (1999).
    [CrossRef]
  10. G. H. Jacobs, “New World monkeys and color,” Int. J. Primatol. 28, 729–759 (2007).
    [CrossRef]
  11. D. M. A. Pessoa, C. Tomaz, and V. F. Pessoa, “Color vision in marmosets and tamarins: behavioral evidence,” Am. J. Primatol. 67, 487–495 (2005).
  12. N. G. Caine and N. I. Mundy, “Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependent on food color,” Proc. R. Soc. B 267, 439–444 (2000).
    [CrossRef]
  13. D. M. Hunt, A. J. Williams, J. K. Bowmaker, and J. D. Mollon, “Structure and evolution of the polymorphic photopigment gene of the marmoset,” Vision Res. 33, 147–154 (1993).
    [CrossRef]
  14. G. H. Jacobs, J. Neitz, and M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
    [CrossRef]
  15. G. H. Jacobs and J. F. Deegan, “Cone pigment variation in four genera of New World monkeys,” Vision Res. 43, 227–236(2003).
    [CrossRef]
  16. G. V. Paramei, D. L. Bimler, and C. R. Cavonius, Effect of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
    [CrossRef]
  17. D. M. A. Pessoa, M. F. P. Araujo, C. Tomaz, and V. F. Pessoa, “Color discrimination learning in black-handed tamarin (Saguinus midas niger),” Primates 44, 413–418 (2003).
    [CrossRef]
  18. D. M. A. Pessoa, J. F. Cunha, C. Tomaz, and V. F. Pessoa, “Colour discrimination in the black-tufted-ear marmoset (Callithrix penicillata): ecological implications,” Folia Primatologica 76, 125–134 (2005).
    [CrossRef]
  19. D. M. A. Pessoa, E. S. Perini, L. S. Carvalho, C. Tomaz, and V. F. Pessoa, “Color vision in Leontopithecus chrysomelas: a behavioral study,” Int. J. Primatol. 26, 147–158 (2005).
    [CrossRef]
  20. S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
    [CrossRef]
  21. A. K. Surridge and N. I. Mundy, “Trans-specific evolution of opsin alleles and the maintenance of trichromatic color vision in Callitrichine primates,” Mol. Ecol. 11, 2157–2169 (2002).
    [CrossRef]
  22. S. Zeki, Inner Vision (Oxford University, 1999).
  23. K. R. Gegenfurtner and D. C. Kiper, “Color vision,” Annu. Rev. Neurosci. 26, 181–206 (2003).
    [CrossRef]
  24. M. J. McMahon and D. I. A. MacLeod, “Dichromatic color vision at high light levels: red/green discrimination using the blue-sensitive mechanism,” Vision Res. 38, 973–983 (1998).
    [CrossRef]
  25. G. V. Paramei, D. L. Bimler, and C. R. Cavonius, “Effect of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
    [CrossRef]
  26. V. C. Smith and J. Pokorny, “Large-field trichromacy in protanopes and deuteranopes,” J. Opt. Soc. Am. 67, 213–220(1977).
    [CrossRef]
  27. B. Stabell and U. Stabell, Duplicity Theory of Vision: From Newton to the Present (Cambridge University, 2009).
  28. S. Verhulst and F. W. Maes, “Scotopic vision in colour-blinds,” Vision Res. 38, 3387–3390 (1998).
    [CrossRef]
  29. H. R. Blackwell and O. M. Blackwell, “Rod and cone receptor mechanisms in typical and atypical congenital achromatopsia,” Vision Res. 1, 62–107 (1961).
    [CrossRef]
  30. S. L. Buck, R. Knight, G. Fowler, and B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
    [CrossRef]
  31. S. L. Buck, L. P. Thomas, N. Hillyer, and E. M. Samuelson, “Do rods influence the hue of foveal stimuli?” Vis. Neurosci. 23, 519–523 (2006).
  32. D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vision Res. 48, 2586–2592 (2008).
    [CrossRef]
  33. R. Knight, S. L. Buck, G. A. Fowler, and A. Nguyen, “Rods affect S-cone discrimination on the Farnsworth-Munsell 100-hue test,” Vision Res. 38, 3477–3481 (1998).
    [CrossRef]
  34. B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rods inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997).
    [CrossRef]
  35. S. Weiss, J. Kremers, and J. Maurer, “Interaction between rod and cone signals in response of lateral geniculate neurons in dichromatic marmosets (Callithrix jacchus),” Vis. Neurosci. 15, 931–943 (1998).
  36. A. Kurtenbach, S. Meierkord, and J. Kremers, “Spectral sensitivities in dichromats and trichromats at mesopic retinal illuminances,” J. Opt. Soc. Am. A 16, 1541–1548 (1999).
    [CrossRef]
  37. R. W. Sussman and W. G. Kinzey, “The ecological role of the Callitrichidae: a review,” Am. J. Phys. Anthropol. 64, 419–449 (1984).
  38. E. S. Perini, V. F. Pessoa, and D. M. A. Pessoa, “Detection of fruit by the Cerrado’s marmoset (Callithrix penicillata): modeling color signals for different background scenarios and ambient light intensities,” J. Exp. Zool. A 311A, 289–302 (2009).
  39. N. G. Caine, D. Osorio, and N. I. Mundy, “A foraging advantage for dichromatic marmosets (Callithrix geoffroyi) at low light intensity,” Biol. Lett. 6, 36–38 (2010).
    [CrossRef]
  40. C. Hiramatsu, A. D. Melin, F. Aureli, C. M. Schaffner, M. Vorobyev, Y. Matsumoto, and S. Kawamura, “Importance of achromatic contrast in short-range fruit foraging of primates,” PLoS One 3, e3356 (2008).
  41. N. Yamashita, K. E. Stoner, P. Riba-Hernandez, N. J. Dominy, and P. W. Lucas, “Light levels used during feeding by primate species with different color vision phenotypes,” Behav. Ecol. Sociobiol. 58, 618–629 (2005).
    [CrossRef]
  42. D. Osorio, A. C. Smith, M. Vorobyev, and H. M. Buchanan-Smith, “Detection of fruit and the selection of primate visual pigments for color vision,” Am. Nat. 164, 696–708(2004).
    [CrossRef]
  43. A. D. Melin, L. M. Fedigan, C. Hiramatsu, C. L. Sendall, and S. Kawamura, “Effects of color vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus,” Animal Behav. 73, 205–214(2007).
    [CrossRef]
  44. A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).
  45. M. J. Morgan, A. Adam, and J. D. Mollon, “Dichromats detect colour-camouflaged objects that are not detected by trichromats,” Proc. R. Soc. B 248, 291–295 (1992).
    [CrossRef]
  46. A. C. Smith, H. M. Buchanan-Smith, A. K. Surridge, D. Osorio, and N. I. Mundy, “The effect of color vision status on the detection and selection of fruits by tamarins (Saguinus spp.),” J. Exp. Biol. 206, 3159–3165 (2003).
    [CrossRef]

2010 (1)

N. G. Caine, D. Osorio, and N. I. Mundy, “A foraging advantage for dichromatic marmosets (Callithrix geoffroyi) at low light intensity,” Biol. Lett. 6, 36–38 (2010).
[CrossRef]

2009 (1)

E. S. Perini, V. F. Pessoa, and D. M. A. Pessoa, “Detection of fruit by the Cerrado’s marmoset (Callithrix penicillata): modeling color signals for different background scenarios and ambient light intensities,” J. Exp. Zool. A 311A, 289–302 (2009).

2008 (2)

C. Hiramatsu, A. D. Melin, F. Aureli, C. M. Schaffner, M. Vorobyev, Y. Matsumoto, and S. Kawamura, “Importance of achromatic contrast in short-range fruit foraging of primates,” PLoS One 3, e3356 (2008).

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vision Res. 48, 2586–2592 (2008).
[CrossRef]

2007 (2)

G. H. Jacobs, “New World monkeys and color,” Int. J. Primatol. 28, 729–759 (2007).
[CrossRef]

A. D. Melin, L. M. Fedigan, C. Hiramatsu, C. L. Sendall, and S. Kawamura, “Effects of color vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus,” Animal Behav. 73, 205–214(2007).
[CrossRef]

2006 (2)

S. L. Buck, L. P. Thomas, N. Hillyer, and E. M. Samuelson, “Do rods influence the hue of foveal stimuli?” Vis. Neurosci. 23, 519–523 (2006).

C. A. Arrese, L. D. Beazley, and C. Neumeyer, “Behavioural evidence for marsupial trichromacy,” Curr. Biol. 16, R193–R194 (2006).
[CrossRef]

2005 (5)

D. M. A. Pessoa, C. Tomaz, and V. F. Pessoa, “Color vision in marmosets and tamarins: behavioral evidence,” Am. J. Primatol. 67, 487–495 (2005).

N. Yamashita, K. E. Stoner, P. Riba-Hernandez, N. J. Dominy, and P. W. Lucas, “Light levels used during feeding by primate species with different color vision phenotypes,” Behav. Ecol. Sociobiol. 58, 618–629 (2005).
[CrossRef]

D. M. A. Pessoa, J. F. Cunha, C. Tomaz, and V. F. Pessoa, “Colour discrimination in the black-tufted-ear marmoset (Callithrix penicillata): ecological implications,” Folia Primatologica 76, 125–134 (2005).
[CrossRef]

D. M. A. Pessoa, E. S. Perini, L. S. Carvalho, C. Tomaz, and V. F. Pessoa, “Color vision in Leontopithecus chrysomelas: a behavioral study,” Int. J. Primatol. 26, 147–158 (2005).
[CrossRef]

A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).

2004 (1)

D. Osorio, A. C. Smith, M. Vorobyev, and H. M. Buchanan-Smith, “Detection of fruit and the selection of primate visual pigments for color vision,” Am. Nat. 164, 696–708(2004).
[CrossRef]

2003 (5)

K. R. Gegenfurtner and D. C. Kiper, “Color vision,” Annu. Rev. Neurosci. 26, 181–206 (2003).
[CrossRef]

G. H. Jacobs and J. F. Deegan, “Cone pigment variation in four genera of New World monkeys,” Vision Res. 43, 227–236(2003).
[CrossRef]

D. M. A. Pessoa, M. F. P. Araujo, C. Tomaz, and V. F. Pessoa, “Color discrimination learning in black-handed tamarin (Saguinus midas niger),” Primates 44, 413–418 (2003).
[CrossRef]

A. Kelber, M. Vorobyev, and D. Osorio, “Animal colour vision—behavioural tests and physiological concepts,” Biol. Rev. Camb. Philos. Soc. 78, 81–118 (2003).

A. C. Smith, H. M. Buchanan-Smith, A. K. Surridge, D. Osorio, and N. I. Mundy, “The effect of color vision status on the detection and selection of fruits by tamarins (Saguinus spp.),” J. Exp. Biol. 206, 3159–3165 (2003).
[CrossRef]

2002 (2)

G. H. Jacobs, “Progress toward understanding the evolution of primate color vision,” Evol. Anthropol. 1, 132–135 (2002).

A. K. Surridge and N. I. Mundy, “Trans-specific evolution of opsin alleles and the maintenance of trichromatic color vision in Callitrichine primates,” Mol. Ecol. 11, 2157–2169 (2002).
[CrossRef]

2000 (1)

N. G. Caine and N. I. Mundy, “Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependent on food color,” Proc. R. Soc. B 267, 439–444 (2000).
[CrossRef]

1999 (2)

1998 (9)

J. K. Bowmaker, “Evolution of color vision in vertebrates,” Eye 12, 541–547 (1998).
[CrossRef]

G. V. Paramei, D. L. Bimler, and C. R. Cavonius, Effect of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
[CrossRef]

S. L. Buck, R. Knight, G. Fowler, and B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
[CrossRef]

M. J. McMahon and D. I. A. MacLeod, “Dichromatic color vision at high light levels: red/green discrimination using the blue-sensitive mechanism,” Vision Res. 38, 973–983 (1998).
[CrossRef]

G. V. Paramei, D. L. Bimler, and C. R. Cavonius, “Effect of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
[CrossRef]

S. Verhulst and F. W. Maes, “Scotopic vision in colour-blinds,” Vision Res. 38, 3387–3390 (1998).
[CrossRef]

R. Knight, S. L. Buck, G. A. Fowler, and A. Nguyen, “Rods affect S-cone discrimination on the Farnsworth-Munsell 100-hue test,” Vision Res. 38, 3477–3481 (1998).
[CrossRef]

S. Weiss, J. Kremers, and J. Maurer, “Interaction between rod and cone signals in response of lateral geniculate neurons in dichromatic marmosets (Callithrix jacchus),” Vis. Neurosci. 15, 931–943 (1998).

1997 (1)

B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rods inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997).
[CrossRef]

1993 (3)

D. M. Hunt, A. J. Williams, J. K. Bowmaker, and J. D. Mollon, “Structure and evolution of the polymorphic photopigment gene of the marmoset,” Vision Res. 33, 147–154 (1993).
[CrossRef]

G. H. Jacobs, J. Neitz, and M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
[CrossRef]

G. H. Jacobs, “The distribution and nature of color vision among the mammals,” Biol. Rev. Camb. Philos. Soc. 68, 413–471 (1993).

1992 (2)

M. J. Tovée, J. K. Bowmaker, and J. D. Mollon, “The relationship between cone pigments and behavioral sensitivity in a New World monkey (Callithrix jacchus jacchus),” Vision Res. 32, 867–878 (1992).
[CrossRef]

M. J. Morgan, A. Adam, and J. D. Mollon, “Dichromats detect colour-camouflaged objects that are not detected by trichromats,” Proc. R. Soc. B 248, 291–295 (1992).
[CrossRef]

1987 (1)

G. H. Jacobs, J. Neitz, and M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vision Res. 27, 2089–2100 (1987).
[CrossRef]

1984 (2)

J. D. Mollon, J. K. Bowmaker, and G. H. Jacobs, “Variations of color vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. B 222, 373–399 (1984).
[CrossRef]

R. W. Sussman and W. G. Kinzey, “The ecological role of the Callitrichidae: a review,” Am. J. Phys. Anthropol. 64, 419–449 (1984).

1977 (1)

1961 (1)

H. R. Blackwell and O. M. Blackwell, “Rod and cone receptor mechanisms in typical and atypical congenital achromatopsia,” Vision Res. 1, 62–107 (1961).
[CrossRef]

Abee, C. R.

S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
[CrossRef]

Adam, A.

M. J. Morgan, A. Adam, and J. D. Mollon, “Dichromats detect colour-camouflaged objects that are not detected by trichromats,” Proc. R. Soc. B 248, 291–295 (1992).
[CrossRef]

Araujo, M. F. P.

D. M. A. Pessoa, M. F. P. Araujo, C. Tomaz, and V. F. Pessoa, “Color discrimination learning in black-handed tamarin (Saguinus midas niger),” Primates 44, 413–418 (2003).
[CrossRef]

Arrese, C. A.

C. A. Arrese, L. D. Beazley, and C. Neumeyer, “Behavioural evidence for marsupial trichromacy,” Curr. Biol. 16, R193–R194 (2006).
[CrossRef]

Aureli, F.

C. Hiramatsu, A. D. Melin, F. Aureli, C. M. Schaffner, M. Vorobyev, Y. Matsumoto, and S. Kawamura, “Importance of achromatic contrast in short-range fruit foraging of primates,” PLoS One 3, e3356 (2008).

Beazley, L. D.

C. A. Arrese, L. D. Beazley, and C. Neumeyer, “Behavioural evidence for marsupial trichromacy,” Curr. Biol. 16, R193–R194 (2006).
[CrossRef]

Bimler, D. L.

G. V. Paramei, D. L. Bimler, and C. R. Cavonius, Effect of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
[CrossRef]

G. V. Paramei, D. L. Bimler, and C. R. Cavonius, “Effect of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
[CrossRef]

Blackwell, H. R.

H. R. Blackwell and O. M. Blackwell, “Rod and cone receptor mechanisms in typical and atypical congenital achromatopsia,” Vision Res. 1, 62–107 (1961).
[CrossRef]

Blackwell, O. M.

H. R. Blackwell and O. M. Blackwell, “Rod and cone receptor mechanisms in typical and atypical congenital achromatopsia,” Vision Res. 1, 62–107 (1961).
[CrossRef]

Boissinot, S.

S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
[CrossRef]

Bowmaker, J. K.

J. K. Bowmaker, “Evolution of color vision in vertebrates,” Eye 12, 541–547 (1998).
[CrossRef]

D. M. Hunt, A. J. Williams, J. K. Bowmaker, and J. D. Mollon, “Structure and evolution of the polymorphic photopigment gene of the marmoset,” Vision Res. 33, 147–154 (1993).
[CrossRef]

M. J. Tovée, J. K. Bowmaker, and J. D. Mollon, “The relationship between cone pigments and behavioral sensitivity in a New World monkey (Callithrix jacchus jacchus),” Vision Res. 32, 867–878 (1992).
[CrossRef]

J. D. Mollon, J. K. Bowmaker, and G. H. Jacobs, “Variations of color vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. B 222, 373–399 (1984).
[CrossRef]

Buchanan-Smith, H. M.

D. Osorio, A. C. Smith, M. Vorobyev, and H. M. Buchanan-Smith, “Detection of fruit and the selection of primate visual pigments for color vision,” Am. Nat. 164, 696–708(2004).
[CrossRef]

A. C. Smith, H. M. Buchanan-Smith, A. K. Surridge, D. Osorio, and N. I. Mundy, “The effect of color vision status on the detection and selection of fruits by tamarins (Saguinus spp.),” J. Exp. Biol. 206, 3159–3165 (2003).
[CrossRef]

Buck, S. L.

S. L. Buck, L. P. Thomas, N. Hillyer, and E. M. Samuelson, “Do rods influence the hue of foveal stimuli?” Vis. Neurosci. 23, 519–523 (2006).

S. L. Buck, R. Knight, G. Fowler, and B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

R. Knight, S. L. Buck, G. A. Fowler, and A. Nguyen, “Rods affect S-cone discrimination on the Farnsworth-Munsell 100-hue test,” Vision Res. 38, 3477–3481 (1998).
[CrossRef]

Caine, N. G.

N. G. Caine, D. Osorio, and N. I. Mundy, “A foraging advantage for dichromatic marmosets (Callithrix geoffroyi) at low light intensity,” Biol. Lett. 6, 36–38 (2010).
[CrossRef]

N. G. Caine and N. I. Mundy, “Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependent on food color,” Proc. R. Soc. B 267, 439–444 (2000).
[CrossRef]

Cao, D.

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vision Res. 48, 2586–2592 (2008).
[CrossRef]

Carvalho, L. S.

D. M. A. Pessoa, E. S. Perini, L. S. Carvalho, C. Tomaz, and V. F. Pessoa, “Color vision in Leontopithecus chrysomelas: a behavioral study,” Int. J. Primatol. 26, 147–158 (2005).
[CrossRef]

Cavonius, C. R.

G. V. Paramei, D. L. Bimler, and C. R. Cavonius, “Effect of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
[CrossRef]

G. V. Paramei, D. L. Bimler, and C. R. Cavonius, Effect of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
[CrossRef]

Cowing, J. A.

S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
[CrossRef]

Crognale, M.

G. H. Jacobs, J. Neitz, and M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vision Res. 27, 2089–2100 (1987).
[CrossRef]

Cunha, J. F.

D. M. A. Pessoa, J. F. Cunha, C. Tomaz, and V. F. Pessoa, “Colour discrimination in the black-tufted-ear marmoset (Callithrix penicillata): ecological implications,” Folia Primatologica 76, 125–134 (2005).
[CrossRef]

Deegan, J. F.

G. H. Jacobs and J. F. Deegan, “Cone pigment variation in four genera of New World monkeys,” Vision Res. 43, 227–236(2003).
[CrossRef]

G. H. Jacobs and J. F. Deegan, “Uniformity of colour vision in Old World monkeys,” Proc. R. Soc. B 266, 2023–2028 (1999).
[CrossRef]

Dominy, N. J.

N. Yamashita, K. E. Stoner, P. Riba-Hernandez, N. J. Dominy, and P. W. Lucas, “Light levels used during feeding by primate species with different color vision phenotypes,” Behav. Ecol. Sociobiol. 58, 618–629 (2005).
[CrossRef]

Dulai, K. S.

S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
[CrossRef]

Fedigan, L. M.

A. D. Melin, L. M. Fedigan, C. Hiramatsu, C. L. Sendall, and S. Kawamura, “Effects of color vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus,” Animal Behav. 73, 205–214(2007).
[CrossRef]

Fowler, G.

S. L. Buck, R. Knight, G. Fowler, and B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

Fowler, G. A.

R. Knight, S. L. Buck, G. A. Fowler, and A. Nguyen, “Rods affect S-cone discrimination on the Farnsworth-Munsell 100-hue test,” Vision Res. 38, 3477–3481 (1998).
[CrossRef]

Fujita, K.

A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).

Gegenfurtner, K. R.

K. R. Gegenfurtner and D. C. Kiper, “Color vision,” Annu. Rev. Neurosci. 26, 181–206 (2003).
[CrossRef]

Hasegawa, T.

A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).

Hewett-Emmett, D.

S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
[CrossRef]

Hillyer, N.

S. L. Buck, L. P. Thomas, N. Hillyer, and E. M. Samuelson, “Do rods influence the hue of foveal stimuli?” Vis. Neurosci. 23, 519–523 (2006).

Hiramatsu, C.

C. Hiramatsu, A. D. Melin, F. Aureli, C. M. Schaffner, M. Vorobyev, Y. Matsumoto, and S. Kawamura, “Importance of achromatic contrast in short-range fruit foraging of primates,” PLoS One 3, e3356 (2008).

A. D. Melin, L. M. Fedigan, C. Hiramatsu, C. L. Sendall, and S. Kawamura, “Effects of color vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus,” Animal Behav. 73, 205–214(2007).
[CrossRef]

A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).

Hunt, B.

S. L. Buck, R. Knight, G. Fowler, and B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

Hunt, D. M.

S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
[CrossRef]

D. M. Hunt, A. J. Williams, J. K. Bowmaker, and J. D. Mollon, “Structure and evolution of the polymorphic photopigment gene of the marmoset,” Vision Res. 33, 147–154 (1993).
[CrossRef]

Jacobs, G. H.

G. H. Jacobs, “New World monkeys and color,” Int. J. Primatol. 28, 729–759 (2007).
[CrossRef]

G. H. Jacobs and J. F. Deegan, “Cone pigment variation in four genera of New World monkeys,” Vision Res. 43, 227–236(2003).
[CrossRef]

G. H. Jacobs, “Progress toward understanding the evolution of primate color vision,” Evol. Anthropol. 1, 132–135 (2002).

G. H. Jacobs and J. F. Deegan, “Uniformity of colour vision in Old World monkeys,” Proc. R. Soc. B 266, 2023–2028 (1999).
[CrossRef]

G. H. Jacobs, J. Neitz, and M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
[CrossRef]

G. H. Jacobs, “The distribution and nature of color vision among the mammals,” Biol. Rev. Camb. Philos. Soc. 68, 413–471 (1993).

G. H. Jacobs, J. Neitz, and M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vision Res. 27, 2089–2100 (1987).
[CrossRef]

J. D. Mollon, J. K. Bowmaker, and G. H. Jacobs, “Variations of color vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. B 222, 373–399 (1984).
[CrossRef]

Kawamura, S.

C. Hiramatsu, A. D. Melin, F. Aureli, C. M. Schaffner, M. Vorobyev, Y. Matsumoto, and S. Kawamura, “Importance of achromatic contrast in short-range fruit foraging of primates,” PLoS One 3, e3356 (2008).

A. D. Melin, L. M. Fedigan, C. Hiramatsu, C. L. Sendall, and S. Kawamura, “Effects of color vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus,” Animal Behav. 73, 205–214(2007).
[CrossRef]

A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).

Kelber, A.

A. Kelber, M. Vorobyev, and D. Osorio, “Animal colour vision—behavioural tests and physiological concepts,” Biol. Rev. Camb. Philos. Soc. 78, 81–118 (2003).

Kinzey, W. G.

R. W. Sussman and W. G. Kinzey, “The ecological role of the Callitrichidae: a review,” Am. J. Phys. Anthropol. 64, 419–449 (1984).

Kiper, D. C.

K. R. Gegenfurtner and D. C. Kiper, “Color vision,” Annu. Rev. Neurosci. 26, 181–206 (2003).
[CrossRef]

Knight, R.

S. L. Buck, R. Knight, G. Fowler, and B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

R. Knight, S. L. Buck, G. A. Fowler, and A. Nguyen, “Rods affect S-cone discrimination on the Farnsworth-Munsell 100-hue test,” Vision Res. 38, 3477–3481 (1998).
[CrossRef]

Kremers, J.

A. Kurtenbach, S. Meierkord, and J. Kremers, “Spectral sensitivities in dichromats and trichromats at mesopic retinal illuminances,” J. Opt. Soc. Am. A 16, 1541–1548 (1999).
[CrossRef]

S. Weiss, J. Kremers, and J. Maurer, “Interaction between rod and cone signals in response of lateral geniculate neurons in dichromatic marmosets (Callithrix jacchus),” Vis. Neurosci. 15, 931–943 (1998).

B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rods inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997).
[CrossRef]

Kuroshima, H.

A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).

Kurtenbach, A.

Lee, B. B.

B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rods inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997).
[CrossRef]

Li, W. H.

S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
[CrossRef]

Lucas, P. W.

N. Yamashita, K. E. Stoner, P. Riba-Hernandez, N. J. Dominy, and P. W. Lucas, “Light levels used during feeding by primate species with different color vision phenotypes,” Behav. Ecol. Sociobiol. 58, 618–629 (2005).
[CrossRef]

MacLeod, D. I. A.

M. J. McMahon and D. I. A. MacLeod, “Dichromatic color vision at high light levels: red/green discrimination using the blue-sensitive mechanism,” Vision Res. 38, 973–983 (1998).
[CrossRef]

Maes, F. W.

S. Verhulst and F. W. Maes, “Scotopic vision in colour-blinds,” Vision Res. 38, 3387–3390 (1998).
[CrossRef]

Matsumoto, Y.

C. Hiramatsu, A. D. Melin, F. Aureli, C. M. Schaffner, M. Vorobyev, Y. Matsumoto, and S. Kawamura, “Importance of achromatic contrast in short-range fruit foraging of primates,” PLoS One 3, e3356 (2008).

Maurer, J.

S. Weiss, J. Kremers, and J. Maurer, “Interaction between rod and cone signals in response of lateral geniculate neurons in dichromatic marmosets (Callithrix jacchus),” Vis. Neurosci. 15, 931–943 (1998).

McMahon, M. J.

M. J. McMahon and D. I. A. MacLeod, “Dichromatic color vision at high light levels: red/green discrimination using the blue-sensitive mechanism,” Vision Res. 38, 973–983 (1998).
[CrossRef]

Meierkord, S.

Melin, A. D.

C. Hiramatsu, A. D. Melin, F. Aureli, C. M. Schaffner, M. Vorobyev, Y. Matsumoto, and S. Kawamura, “Importance of achromatic contrast in short-range fruit foraging of primates,” PLoS One 3, e3356 (2008).

A. D. Melin, L. M. Fedigan, C. Hiramatsu, C. L. Sendall, and S. Kawamura, “Effects of color vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus,” Animal Behav. 73, 205–214(2007).
[CrossRef]

Mikami, A.

A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).

Mollon, J. D.

D. M. Hunt, A. J. Williams, J. K. Bowmaker, and J. D. Mollon, “Structure and evolution of the polymorphic photopigment gene of the marmoset,” Vision Res. 33, 147–154 (1993).
[CrossRef]

M. J. Morgan, A. Adam, and J. D. Mollon, “Dichromats detect colour-camouflaged objects that are not detected by trichromats,” Proc. R. Soc. B 248, 291–295 (1992).
[CrossRef]

M. J. Tovée, J. K. Bowmaker, and J. D. Mollon, “The relationship between cone pigments and behavioral sensitivity in a New World monkey (Callithrix jacchus jacchus),” Vision Res. 32, 867–878 (1992).
[CrossRef]

J. D. Mollon, J. K. Bowmaker, and G. H. Jacobs, “Variations of color vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. B 222, 373–399 (1984).
[CrossRef]

Morgan, M. J.

M. J. Morgan, A. Adam, and J. D. Mollon, “Dichromats detect colour-camouflaged objects that are not detected by trichromats,” Proc. R. Soc. B 248, 291–295 (1992).
[CrossRef]

Mori, Y.

A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).

Mundy, N. I.

N. G. Caine, D. Osorio, and N. I. Mundy, “A foraging advantage for dichromatic marmosets (Callithrix geoffroyi) at low light intensity,” Biol. Lett. 6, 36–38 (2010).
[CrossRef]

A. C. Smith, H. M. Buchanan-Smith, A. K. Surridge, D. Osorio, and N. I. Mundy, “The effect of color vision status on the detection and selection of fruits by tamarins (Saguinus spp.),” J. Exp. Biol. 206, 3159–3165 (2003).
[CrossRef]

A. K. Surridge and N. I. Mundy, “Trans-specific evolution of opsin alleles and the maintenance of trichromatic color vision in Callitrichine primates,” Mol. Ecol. 11, 2157–2169 (2002).
[CrossRef]

N. G. Caine and N. I. Mundy, “Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependent on food color,” Proc. R. Soc. B 267, 439–444 (2000).
[CrossRef]

Nagano, K.

A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).

Neitz, J.

G. H. Jacobs, J. Neitz, and M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
[CrossRef]

G. H. Jacobs, J. Neitz, and M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vision Res. 27, 2089–2100 (1987).
[CrossRef]

Neitz, M.

G. H. Jacobs, J. Neitz, and M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
[CrossRef]

Neumeyer, C.

C. A. Arrese, L. D. Beazley, and C. Neumeyer, “Behavioural evidence for marsupial trichromacy,” Curr. Biol. 16, R193–R194 (2006).
[CrossRef]

Nguyen, A.

R. Knight, S. L. Buck, G. A. Fowler, and A. Nguyen, “Rods affect S-cone discrimination on the Farnsworth-Munsell 100-hue test,” Vision Res. 38, 3477–3481 (1998).
[CrossRef]

Osorio, D.

N. G. Caine, D. Osorio, and N. I. Mundy, “A foraging advantage for dichromatic marmosets (Callithrix geoffroyi) at low light intensity,” Biol. Lett. 6, 36–38 (2010).
[CrossRef]

D. Osorio, A. C. Smith, M. Vorobyev, and H. M. Buchanan-Smith, “Detection of fruit and the selection of primate visual pigments for color vision,” Am. Nat. 164, 696–708(2004).
[CrossRef]

A. Kelber, M. Vorobyev, and D. Osorio, “Animal colour vision—behavioural tests and physiological concepts,” Biol. Rev. Camb. Philos. Soc. 78, 81–118 (2003).

A. C. Smith, H. M. Buchanan-Smith, A. K. Surridge, D. Osorio, and N. I. Mundy, “The effect of color vision status on the detection and selection of fruits by tamarins (Saguinus spp.),” J. Exp. Biol. 206, 3159–3165 (2003).
[CrossRef]

Paramei, G. V.

G. V. Paramei, D. L. Bimler, and C. R. Cavonius, “Effect of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
[CrossRef]

G. V. Paramei, D. L. Bimler, and C. R. Cavonius, Effect of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
[CrossRef]

Perini, E. S.

E. S. Perini, V. F. Pessoa, and D. M. A. Pessoa, “Detection of fruit by the Cerrado’s marmoset (Callithrix penicillata): modeling color signals for different background scenarios and ambient light intensities,” J. Exp. Zool. A 311A, 289–302 (2009).

D. M. A. Pessoa, E. S. Perini, L. S. Carvalho, C. Tomaz, and V. F. Pessoa, “Color vision in Leontopithecus chrysomelas: a behavioral study,” Int. J. Primatol. 26, 147–158 (2005).
[CrossRef]

Pessoa, D. M. A.

E. S. Perini, V. F. Pessoa, and D. M. A. Pessoa, “Detection of fruit by the Cerrado’s marmoset (Callithrix penicillata): modeling color signals for different background scenarios and ambient light intensities,” J. Exp. Zool. A 311A, 289–302 (2009).

D. M. A. Pessoa, E. S. Perini, L. S. Carvalho, C. Tomaz, and V. F. Pessoa, “Color vision in Leontopithecus chrysomelas: a behavioral study,” Int. J. Primatol. 26, 147–158 (2005).
[CrossRef]

D. M. A. Pessoa, J. F. Cunha, C. Tomaz, and V. F. Pessoa, “Colour discrimination in the black-tufted-ear marmoset (Callithrix penicillata): ecological implications,” Folia Primatologica 76, 125–134 (2005).
[CrossRef]

D. M. A. Pessoa, C. Tomaz, and V. F. Pessoa, “Color vision in marmosets and tamarins: behavioral evidence,” Am. J. Primatol. 67, 487–495 (2005).

D. M. A. Pessoa, M. F. P. Araujo, C. Tomaz, and V. F. Pessoa, “Color discrimination learning in black-handed tamarin (Saguinus midas niger),” Primates 44, 413–418 (2003).
[CrossRef]

Pessoa, V. F.

E. S. Perini, V. F. Pessoa, and D. M. A. Pessoa, “Detection of fruit by the Cerrado’s marmoset (Callithrix penicillata): modeling color signals for different background scenarios and ambient light intensities,” J. Exp. Zool. A 311A, 289–302 (2009).

D. M. A. Pessoa, E. S. Perini, L. S. Carvalho, C. Tomaz, and V. F. Pessoa, “Color vision in Leontopithecus chrysomelas: a behavioral study,” Int. J. Primatol. 26, 147–158 (2005).
[CrossRef]

D. M. A. Pessoa, C. Tomaz, and V. F. Pessoa, “Color vision in marmosets and tamarins: behavioral evidence,” Am. J. Primatol. 67, 487–495 (2005).

D. M. A. Pessoa, J. F. Cunha, C. Tomaz, and V. F. Pessoa, “Colour discrimination in the black-tufted-ear marmoset (Callithrix penicillata): ecological implications,” Folia Primatologica 76, 125–134 (2005).
[CrossRef]

D. M. A. Pessoa, M. F. P. Araujo, C. Tomaz, and V. F. Pessoa, “Color discrimination learning in black-handed tamarin (Saguinus midas niger),” Primates 44, 413–418 (2003).
[CrossRef]

Pokorny, J.

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vision Res. 48, 2586–2592 (2008).
[CrossRef]

B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rods inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997).
[CrossRef]

V. C. Smith and J. Pokorny, “Large-field trichromacy in protanopes and deuteranopes,” J. Opt. Soc. Am. 67, 213–220(1977).
[CrossRef]

Riba-Hernandez, P.

N. Yamashita, K. E. Stoner, P. Riba-Hernandez, N. J. Dominy, and P. W. Lucas, “Light levels used during feeding by primate species with different color vision phenotypes,” Behav. Ecol. Sociobiol. 58, 618–629 (2005).
[CrossRef]

Saito, A.

A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).

Sampaio, I.

S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
[CrossRef]

Samuelson, E. M.

S. L. Buck, L. P. Thomas, N. Hillyer, and E. M. Samuelson, “Do rods influence the hue of foveal stimuli?” Vis. Neurosci. 23, 519–523 (2006).

Schaffner, C. M.

C. Hiramatsu, A. D. Melin, F. Aureli, C. M. Schaffner, M. Vorobyev, Y. Matsumoto, and S. Kawamura, “Importance of achromatic contrast in short-range fruit foraging of primates,” PLoS One 3, e3356 (2008).

Schneider, H.

S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
[CrossRef]

Schneider, M. P.

S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
[CrossRef]

Sendall, C. L.

A. D. Melin, L. M. Fedigan, C. Hiramatsu, C. L. Sendall, and S. Kawamura, “Effects of color vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus,” Animal Behav. 73, 205–214(2007).
[CrossRef]

Shyue, S. K.

S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
[CrossRef]

Smith, A. C.

D. Osorio, A. C. Smith, M. Vorobyev, and H. M. Buchanan-Smith, “Detection of fruit and the selection of primate visual pigments for color vision,” Am. Nat. 164, 696–708(2004).
[CrossRef]

A. C. Smith, H. M. Buchanan-Smith, A. K. Surridge, D. Osorio, and N. I. Mundy, “The effect of color vision status on the detection and selection of fruits by tamarins (Saguinus spp.),” J. Exp. Biol. 206, 3159–3165 (2003).
[CrossRef]

Smith, V. C.

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vision Res. 48, 2586–2592 (2008).
[CrossRef]

B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rods inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997).
[CrossRef]

V. C. Smith and J. Pokorny, “Large-field trichromacy in protanopes and deuteranopes,” J. Opt. Soc. Am. 67, 213–220(1977).
[CrossRef]

Sperling, H. G.

S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
[CrossRef]

Stabell, B.

B. Stabell and U. Stabell, Duplicity Theory of Vision: From Newton to the Present (Cambridge University, 2009).

Stabell, U.

B. Stabell and U. Stabell, Duplicity Theory of Vision: From Newton to the Present (Cambridge University, 2009).

Stoner, K. E.

N. Yamashita, K. E. Stoner, P. Riba-Hernandez, N. J. Dominy, and P. W. Lucas, “Light levels used during feeding by primate species with different color vision phenotypes,” Behav. Ecol. Sociobiol. 58, 618–629 (2005).
[CrossRef]

Surridge, A. K.

A. C. Smith, H. M. Buchanan-Smith, A. K. Surridge, D. Osorio, and N. I. Mundy, “The effect of color vision status on the detection and selection of fruits by tamarins (Saguinus spp.),” J. Exp. Biol. 206, 3159–3165 (2003).
[CrossRef]

A. K. Surridge and N. I. Mundy, “Trans-specific evolution of opsin alleles and the maintenance of trichromatic color vision in Callitrichine primates,” Mol. Ecol. 11, 2157–2169 (2002).
[CrossRef]

Suryobroto, B.

A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).

Sussman, R. W.

R. W. Sussman and W. G. Kinzey, “The ecological role of the Callitrichidae: a review,” Am. J. Phys. Anthropol. 64, 419–449 (1984).

Teramoto, M.

A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).

Thomas, L. P.

S. L. Buck, L. P. Thomas, N. Hillyer, and E. M. Samuelson, “Do rods influence the hue of foveal stimuli?” Vis. Neurosci. 23, 519–523 (2006).

Tomaz, C.

D. M. A. Pessoa, E. S. Perini, L. S. Carvalho, C. Tomaz, and V. F. Pessoa, “Color vision in Leontopithecus chrysomelas: a behavioral study,” Int. J. Primatol. 26, 147–158 (2005).
[CrossRef]

D. M. A. Pessoa, C. Tomaz, and V. F. Pessoa, “Color vision in marmosets and tamarins: behavioral evidence,” Am. J. Primatol. 67, 487–495 (2005).

D. M. A. Pessoa, J. F. Cunha, C. Tomaz, and V. F. Pessoa, “Colour discrimination in the black-tufted-ear marmoset (Callithrix penicillata): ecological implications,” Folia Primatologica 76, 125–134 (2005).
[CrossRef]

D. M. A. Pessoa, M. F. P. Araujo, C. Tomaz, and V. F. Pessoa, “Color discrimination learning in black-handed tamarin (Saguinus midas niger),” Primates 44, 413–418 (2003).
[CrossRef]

Tovée, M. J.

M. J. Tovée, J. K. Bowmaker, and J. D. Mollon, “The relationship between cone pigments and behavioral sensitivity in a New World monkey (Callithrix jacchus jacchus),” Vision Res. 32, 867–878 (1992).
[CrossRef]

Ueno, Y.

A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).

Verhulst, S.

S. Verhulst and F. W. Maes, “Scotopic vision in colour-blinds,” Vision Res. 38, 3387–3390 (1998).
[CrossRef]

Vorobyev, M.

C. Hiramatsu, A. D. Melin, F. Aureli, C. M. Schaffner, M. Vorobyev, Y. Matsumoto, and S. Kawamura, “Importance of achromatic contrast in short-range fruit foraging of primates,” PLoS One 3, e3356 (2008).

D. Osorio, A. C. Smith, M. Vorobyev, and H. M. Buchanan-Smith, “Detection of fruit and the selection of primate visual pigments for color vision,” Am. Nat. 164, 696–708(2004).
[CrossRef]

A. Kelber, M. Vorobyev, and D. Osorio, “Animal colour vision—behavioural tests and physiological concepts,” Biol. Rev. Camb. Philos. Soc. 78, 81–118 (2003).

Weiss, S.

S. Weiss, J. Kremers, and J. Maurer, “Interaction between rod and cone signals in response of lateral geniculate neurons in dichromatic marmosets (Callithrix jacchus),” Vis. Neurosci. 15, 931–943 (1998).

Widayati, K. A.

A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).

Williams, A. J.

D. M. Hunt, A. J. Williams, J. K. Bowmaker, and J. D. Mollon, “Structure and evolution of the polymorphic photopigment gene of the marmoset,” Vision Res. 33, 147–154 (1993).
[CrossRef]

Williams, L.

S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
[CrossRef]

Yamashita, N.

N. Yamashita, K. E. Stoner, P. Riba-Hernandez, N. J. Dominy, and P. W. Lucas, “Light levels used during feeding by primate species with different color vision phenotypes,” Behav. Ecol. Sociobiol. 58, 618–629 (2005).
[CrossRef]

Zeki, S.

S. Zeki, Inner Vision (Oxford University, 1999).

Zele, A. J.

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vision Res. 48, 2586–2592 (2008).
[CrossRef]

Am. J. Phys. Anthropol. (1)

R. W. Sussman and W. G. Kinzey, “The ecological role of the Callitrichidae: a review,” Am. J. Phys. Anthropol. 64, 419–449 (1984).

Am. J. Primatol. (2)

D. M. A. Pessoa, C. Tomaz, and V. F. Pessoa, “Color vision in marmosets and tamarins: behavioral evidence,” Am. J. Primatol. 67, 487–495 (2005).

A. Saito, A. Mikami, S. Kawamura, Y. Ueno, C. Hiramatsu, K. A. Widayati, B. Suryobroto, M. Teramoto, Y. Mori, K. Nagano, K. Fujita, H. Kuroshima, and T. Hasegawa, “Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates,” Am. J. Primatol. 67, 425–436 (2005).

Am. Nat. (1)

D. Osorio, A. C. Smith, M. Vorobyev, and H. M. Buchanan-Smith, “Detection of fruit and the selection of primate visual pigments for color vision,” Am. Nat. 164, 696–708(2004).
[CrossRef]

Animal Behav. (1)

A. D. Melin, L. M. Fedigan, C. Hiramatsu, C. L. Sendall, and S. Kawamura, “Effects of color vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus,” Animal Behav. 73, 205–214(2007).
[CrossRef]

Annu. Rev. Neurosci. (1)

K. R. Gegenfurtner and D. C. Kiper, “Color vision,” Annu. Rev. Neurosci. 26, 181–206 (2003).
[CrossRef]

Behav. Ecol. Sociobiol. (1)

N. Yamashita, K. E. Stoner, P. Riba-Hernandez, N. J. Dominy, and P. W. Lucas, “Light levels used during feeding by primate species with different color vision phenotypes,” Behav. Ecol. Sociobiol. 58, 618–629 (2005).
[CrossRef]

Biol. Lett. (1)

N. G. Caine, D. Osorio, and N. I. Mundy, “A foraging advantage for dichromatic marmosets (Callithrix geoffroyi) at low light intensity,” Biol. Lett. 6, 36–38 (2010).
[CrossRef]

Biol. Rev. Camb. Philos. Soc. (2)

G. H. Jacobs, “The distribution and nature of color vision among the mammals,” Biol. Rev. Camb. Philos. Soc. 68, 413–471 (1993).

A. Kelber, M. Vorobyev, and D. Osorio, “Animal colour vision—behavioural tests and physiological concepts,” Biol. Rev. Camb. Philos. Soc. 78, 81–118 (2003).

Curr. Biol. (1)

C. A. Arrese, L. D. Beazley, and C. Neumeyer, “Behavioural evidence for marsupial trichromacy,” Curr. Biol. 16, R193–R194 (2006).
[CrossRef]

Evol. Anthropol. (1)

G. H. Jacobs, “Progress toward understanding the evolution of primate color vision,” Evol. Anthropol. 1, 132–135 (2002).

Eye (1)

J. K. Bowmaker, “Evolution of color vision in vertebrates,” Eye 12, 541–547 (1998).
[CrossRef]

Folia Primatologica (1)

D. M. A. Pessoa, J. F. Cunha, C. Tomaz, and V. F. Pessoa, “Colour discrimination in the black-tufted-ear marmoset (Callithrix penicillata): ecological implications,” Folia Primatologica 76, 125–134 (2005).
[CrossRef]

Int. J. Primatol. (2)

D. M. A. Pessoa, E. S. Perini, L. S. Carvalho, C. Tomaz, and V. F. Pessoa, “Color vision in Leontopithecus chrysomelas: a behavioral study,” Int. J. Primatol. 26, 147–158 (2005).
[CrossRef]

G. H. Jacobs, “New World monkeys and color,” Int. J. Primatol. 28, 729–759 (2007).
[CrossRef]

J. Exp. Biol. (1)

A. C. Smith, H. M. Buchanan-Smith, A. K. Surridge, D. Osorio, and N. I. Mundy, “The effect of color vision status on the detection and selection of fruits by tamarins (Saguinus spp.),” J. Exp. Biol. 206, 3159–3165 (2003).
[CrossRef]

J. Exp. Zool. A (1)

E. S. Perini, V. F. Pessoa, and D. M. A. Pessoa, “Detection of fruit by the Cerrado’s marmoset (Callithrix penicillata): modeling color signals for different background scenarios and ambient light intensities,” J. Exp. Zool. A 311A, 289–302 (2009).

J. Mol. Evol. (1)

S. K. Shyue, S. Boissinot, H. Schneider, I. Sampaio, M. P. Schneider, C. R. Abee, L. Williams, D. Hewett-Emmett, H. G. Sperling, J. A. Cowing, K. S. Dulai, D. M. Hunt, and W. H. Li, “Molecular genetics of spectral tuning in New World monkey color vision,” J. Mol. Evol. 46, 697–702 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Mol. Ecol. (1)

A. K. Surridge and N. I. Mundy, “Trans-specific evolution of opsin alleles and the maintenance of trichromatic color vision in Callitrichine primates,” Mol. Ecol. 11, 2157–2169 (2002).
[CrossRef]

PLoS One (1)

C. Hiramatsu, A. D. Melin, F. Aureli, C. M. Schaffner, M. Vorobyev, Y. Matsumoto, and S. Kawamura, “Importance of achromatic contrast in short-range fruit foraging of primates,” PLoS One 3, e3356 (2008).

Primates (1)

D. M. A. Pessoa, M. F. P. Araujo, C. Tomaz, and V. F. Pessoa, “Color discrimination learning in black-handed tamarin (Saguinus midas niger),” Primates 44, 413–418 (2003).
[CrossRef]

Proc. R. Soc. B (4)

N. G. Caine and N. I. Mundy, “Demonstration of a foraging advantage for trichromatic marmosets (Callithrix geoffroyi) dependent on food color,” Proc. R. Soc. B 267, 439–444 (2000).
[CrossRef]

J. D. Mollon, J. K. Bowmaker, and G. H. Jacobs, “Variations of color vision in a New World primate can be explained by polymorphism of retinal photopigments,” Proc. R. Soc. B 222, 373–399 (1984).
[CrossRef]

G. H. Jacobs and J. F. Deegan, “Uniformity of colour vision in Old World monkeys,” Proc. R. Soc. B 266, 2023–2028 (1999).
[CrossRef]

M. J. Morgan, A. Adam, and J. D. Mollon, “Dichromats detect colour-camouflaged objects that are not detected by trichromats,” Proc. R. Soc. B 248, 291–295 (1992).
[CrossRef]

Vis. Neurosci. (2)

S. Weiss, J. Kremers, and J. Maurer, “Interaction between rod and cone signals in response of lateral geniculate neurons in dichromatic marmosets (Callithrix jacchus),” Vis. Neurosci. 15, 931–943 (1998).

S. L. Buck, L. P. Thomas, N. Hillyer, and E. M. Samuelson, “Do rods influence the hue of foveal stimuli?” Vis. Neurosci. 23, 519–523 (2006).

Vision Res. (14)

D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vision Res. 48, 2586–2592 (2008).
[CrossRef]

R. Knight, S. L. Buck, G. A. Fowler, and A. Nguyen, “Rods affect S-cone discrimination on the Farnsworth-Munsell 100-hue test,” Vision Res. 38, 3477–3481 (1998).
[CrossRef]

B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rods inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997).
[CrossRef]

S. Verhulst and F. W. Maes, “Scotopic vision in colour-blinds,” Vision Res. 38, 3387–3390 (1998).
[CrossRef]

H. R. Blackwell and O. M. Blackwell, “Rod and cone receptor mechanisms in typical and atypical congenital achromatopsia,” Vision Res. 1, 62–107 (1961).
[CrossRef]

S. L. Buck, R. Knight, G. Fowler, and B. Hunt, “Rod influence on hue-scaling functions,” Vision Res. 38, 3259–3263 (1998).
[CrossRef]

M. J. McMahon and D. I. A. MacLeod, “Dichromatic color vision at high light levels: red/green discrimination using the blue-sensitive mechanism,” Vision Res. 38, 973–983 (1998).
[CrossRef]

G. V. Paramei, D. L. Bimler, and C. R. Cavonius, “Effect of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
[CrossRef]

G. H. Jacobs, J. Neitz, and M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vision Res. 27, 2089–2100 (1987).
[CrossRef]

M. J. Tovée, J. K. Bowmaker, and J. D. Mollon, “The relationship between cone pigments and behavioral sensitivity in a New World monkey (Callithrix jacchus jacchus),” Vision Res. 32, 867–878 (1992).
[CrossRef]

D. M. Hunt, A. J. Williams, J. K. Bowmaker, and J. D. Mollon, “Structure and evolution of the polymorphic photopigment gene of the marmoset,” Vision Res. 33, 147–154 (1993).
[CrossRef]

G. H. Jacobs, J. Neitz, and M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
[CrossRef]

G. H. Jacobs and J. F. Deegan, “Cone pigment variation in four genera of New World monkeys,” Vision Res. 43, 227–236(2003).
[CrossRef]

G. V. Paramei, D. L. Bimler, and C. R. Cavonius, Effect of luminance on color perception of protanopes,” Vision Res. 38, 3397–3401 (1998).
[CrossRef]

Other (2)

S. Zeki, Inner Vision (Oxford University, 1999).

B. Stabell and U. Stabell, Duplicity Theory of Vision: From Newton to the Present (Cambridge University, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Stimuli reflectance spectra. Gray lines represent the reflectance spectra from green background elements of four different brightness intensities. Blue, green, and orange lines represent, respectively, the reflectance spectra of blue, green, and orange food targets at two different brightness levels.

Fig. 2.
Fig. 2.

Experimental setup. Top picture shows the plastic trays arranged on the enclosure floor while one subject is foraging for targets. Bottom pictures show three different tasks that were presented to the animals (orange target, blue target, and green target).

Fig. 3.
Fig. 3.

Chromaticity of background elements and targets. The horizontal and the vertical axes indicate x and y values of the CIE1931 chromaticity diagram, respectively. Dotted lines indicate protan and deutan confusion lines.

Fig. 4.
Fig. 4.

Mean percentage of time spent on foraging by 14 male marmosets (Callithrix jacchus). Foraging tasks: (HB) high luminosity/blue targets, (IB) intermediate luminosity/blue targets, (LB) low luminosity/blue targets, (HO) high luminosity/orange targets, (IO) intermediate luminosity/orange targets, (LO) low luminosity/orange targets, (HG) high luminosity/green targets, (IG) intermediate luminosity/green targets, and (LG) low luminosity/green targets. Asterisks indicate statistical differences for p<0.05.

Fig. 5.
Fig. 5.

Mean number of targets captured per minute of foraging behavior by 14 male marmosets (Callithrix jacchus). Other conventions as in Fig. 4.

Tables (2)

Tables Icon

Table 1. Diurnal Variation in Illuminance (lux) Measured in an Atlantic Forest Fragment (6°5’S, 35°12’W) Inhabited by Wild Groups of Callithrix Jacchus

Tables Icon

Table 2. Luminosity Ranges Used in the Experiments and their Natural Equivalents

Metrics