Abstract

Success in visually searching for a small object or target in a natural scene depends on many factors, including the spatial structure of the scene and the pattern of observers’ eye movements. The aim of this study was to determine to what extent local color properties of natural scenes can account for target-detection performance. A computer-controlled high-resolution color monitor was used to present images of natural scenes containing a small, randomly located, shaded gray sphere, which served as the target. Observers’ gaze position was simultaneously monitored with an infrared video eye-tracker. About 60% of the adjusted variance in observers’ detection performance was accounted for by local color properties, namely, lightness and the red-green and blue-yellow components of chroma. A similar level of variance was accounted for by observers’ fixations. These results suggest that local color can be as influential as gaze position in determining observers’ search performance in natural scenes.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Wolfe, M. L.-H. Võ, K. K. Evans, and M. R. Greene, “Visual search in scenes involves selective and nonselective pathways,” Trends Cogn. Sci. 15, 77–84 (2011).
    [CrossRef]
  2. R. van der Lans, R. Pieters, and M. Wedel, “Eye-movement analysis of search effectiveness,” J. Am. Stat. Assoc. 103, 452–461 (2008).
    [CrossRef]
  3. M. J. Bravo and K. Nakayama, “The role of attention in different visual-search tasks,” Percept. Psychophys. 51, 465–472 (1992).
    [CrossRef]
  4. J. M. Wolfe, “Visual search in continuous, naturalistic stimuli,” Vision Res. 34, 1187–1195 (1994).
    [CrossRef]
  5. X. Chen and G. J. Zelinsky, “Real-world visual search is dominated by top-down guidance,” Vision Res. 46, 4118–4133 (2006).
    [CrossRef]
  6. J. M. Henderson, G. L. Malcolm, and C. Schandl, “Searching in the dark: cognitive relevance drives attention in real-world scenes,” Psychon. B. Rev. 16, 850–856 (2009).
  7. A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Henderson, “Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search,” Psychol. Rev. 113, 766–786 (2006).
    [CrossRef]
  8. P. G. Lovell, I. D. Gilchrist, D. J. Tolhurst, and T. Troscianko, “Search for gross illumination discrepancies in images of natural objects,” J. Vision 9(1), 37 (2009).
    [CrossRef]
  9. A. Treisman and S. Sato, “Conjunction search revisited,” J. Exp. Psychol. Hum. Percept. Perform. 16, 459–478 (1990).
  10. A. L. Nagy and G. Thomas, “Distractor heterogeneity, attention, and color in visual search,” Vision Res. 43, 1541–1552 (2003).
    [CrossRef]
  11. D. H. Foster and P. A. Ward, “Asymmetries in oriented-line detection indicate two orthogonal filters in early vision,” Proc. R. Soc. B 243, 75–81 (1991).
    [CrossRef]
  12. J. Duncan and G. W. Humphreys, “Visual search and stimulus similarity,” Psychol. Rev. 96, 433–458 (1989).
    [CrossRef]
  13. D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).
  14. B. L. Cole and K.-Y. Lian, “Search for coloured objects in natural surroundings by people with abnormal colour vision,” Clin. Exp. Optom. 89, 144–149 (2006).
  15. L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998).
    [CrossRef]
  16. T. Foulsham and G. Underwood, “What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition,” J. Vision 8(2), 6 (2008).
    [CrossRef]
  17. G. J. Zelinsky, W. Zhang, B. Yu, X. Chen, and D. Samaras, “The role of top-down and bottom-up processes in guiding eye movements during visual search,” in Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, eds. (MIT Press, 2006), pp. 1569–1576.
  18. P. Reinagel and A. M. Zador, “Natural scene statistics at the centre of gaze,” Netw. Comput. Neural Syst. 10, 341–350(1999).
  19. D. J. Parkhurst and E. Niebur, “Scene content selected by active vision,” Spatial Vis. 16, 125–154 (2003).
    [CrossRef]
  20. W. Einhäuser and P. König, “Does luminance-contrast contribute to a saliency map for overt visual attention?,” Eur. J. Neurosci. 17, 1089–1097 (2003).
    [CrossRef]
  21. S. K. Mannan, K. H. Ruddock, and D. S. Wooding, “The relationship between the locations of spatial features and those of fixations made during visual examination of briefly presented images,” Spatial Vis. 10, 165–188 (1996).
    [CrossRef]
  22. G. Krieger, I. Rentschler, G. Hauske, K. Schill, and C. Zetzsche, “Object and scene analysis by saccadic eye-movements: an investigation with higher-order statistics,” Spatial Vis. 13, 201–214 (2000).
    [CrossRef]
  23. W. Kienzle, F. A. Wichmann, B. Schölkopf, and M. O. Franz, “A nonparametric approach to bottom-up visual saliency,” in Advances in Neural Information Processing Systems 19, B. Schölkopf, J. Platt, and T. Hoffman, eds. (MIT Press, 2007), pp. 689–696.
  24. H.-P. Frey, C. Honey, and P. König, “What’s color got to do with it? The influence of color on visual attention in different categories,” J. Vision 8(14), 6 (2008).
    [CrossRef]
  25. H.-P. Frey, K. Wirz, V. Willenbockel, T. Betz, C. Schreiber, T. Troscianko, and P. König, “Beyond correlation: do color features influence attention in rainforest?” Front. Hum. Neurosci. 5, 36 (2011).
  26. W. Einhäuser, U. Rutishauser, and C. Koch, “Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli,” J. Vision 8(2), 2 (2008).
  27. B. W. Tatler, “The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions,” J. Vision 7(14), 4(2007).
    [CrossRef]
  28. D. H. Foster, K. Amano, S. M. C. Nascimento, and M. J. Foster, “Frequency of metamerism in natural scenes,” J. Opt. Soc. Am. A 23, 2359–2372 (2006).
  29. CIE, Technical Committee 1-48, “Colorimetry,” 3rd ed., CIE 15:2004 (Commission Internationale de l’Eclairage, 2004).
  30. H. Corbin, J. Carter, E. P. Reese, and J. Volkmann, Experiments on Visual Search 1956–1957 (Psychological Research Unit, Mount Holyoke College, 1958).
  31. D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, 1966).
  32. W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Stat. Assoc. 74, 829–836(1979).
    [CrossRef]
  33. T. J. Hastie and R. J. Tibshirani, Generalized Additive Models, CRC Monographs on Statistics & Applied Probability(Chapman & Hall/CRC, 1990).
  34. M. Böhme, M. Dorr, C. Krause, T. Martinetz, and E. Barth, “Eye movement predictions on natural videos,” Neurocomput. 69, 1996–2004 (2006).
    [CrossRef]
  35. M. Nyström and K. Holmqvist, “An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data,” Behav. Res. Methods 42, 188–204 (2010).
    [CrossRef]
  36. E. Vig, M. Dorr, and E. Barth, “Efficient visual coding and the predictability of eye movements on natural movies,” Spatial Vis. 22, 397–408 (2009).
    [CrossRef]
  37. M. S. Mould, D. H. Foster, K. Amano, and J. P. Oakley, “A simple nonparametric method for classifying eye fixation,” Vision Res. (submitted). doi:10.1016/j.visres.2011.12.006
  38. E. Vig, Institute for Neuro- and Bioinformatics, University of Lübeck, Germany (personal communication, 2010).
  39. M. Melgosa, R. Huertas, and R. S. Berns, “Performance of recent advanced color-difference formulas using the standardized residual sum of squares index,” J. Opt. Soc. Am. A 25, 1828–1834 (2008).
    [CrossRef]
  40. M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31, 320–330 (2006).
    [CrossRef]
  41. CIE, Technical Committee 8-01, “A colour appearance model for colour management systems: CIECAM02,” CIE 159:2004 (Commission Internationale de l’Eclairage, 2004).
  42. M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
    [CrossRef]
  43. D. B. Montgomery and D. G. Morrison, “A note on adjusting R2,” J. Finance 28, 1009–1013 (1973).
  44. A. Delorme, G. Richard, and M. Fabre-Thorpe, “Ultra-rapid categorisation of natural scenes does not rely on colour cues: a study in monkeys and humans,” Vision Res. 40, 2187–2200 (2000).
    [CrossRef]
  45. A. Oliva and P. G. Schyns, “Diagnostic colors mediate scene recognition,” Cogn. Psychol. 41, 176–210 (2000).
  46. D. Parkhurst, K. Law, and E. Niebur, “Modeling the role of salience in the allocation of overt visual attention,” Vision Res. 42, 107–123 (2002).
    [CrossRef]
  47. T. J. Andrews and D. M. Coppola, “Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments,” Vision Res. 39, 2947–2953(1999).
    [CrossRef]
  48. M. S. Castelhano and J. M. Henderson, “Stable individual differences across images in human saccadic eye movements,” Can. J. Exp. Psychol. 62, 1–14 (2008).
    [CrossRef]
  49. D. H. Foster, K. Amano, and S. M. C. Nascimento, “Color constancy in natural scenes explained by global image statistics,” Vis. Neurosci. 23, 341–349 (2006).
  50. P. W. Lucas, N. J. Dominy, P. Riba-Hernandez, K. E. Stoner, N. Yamashita, E. Loría-Calderón, W. Petersen-Pereira, Y. Rojas-Durán, R. Salas-Pena, S. Solis-Madrigal, D. Osorio, and B. W. Darvell, “Evolution and function of routine trichromatic vision in primates,” Evolution 57, 2636–2643 (2003).
  51. P. Sumner and J. D. Mollon, “Catarrhine photopigments are optimized for detecting targets against a foliage background,” J. Exp. Biol. 203, 1963–1986 (2000).
  52. F. A. Wichmann, L. T. Sharpe, and K. R. Gegenfurtner, “The contributions of color to recognition memory for natural scenes,” J. Exp. Psychol. Learn. Mem. Cogn. 28, 509–520(2002).
  53. K. Amano, K. Uchikawa, and I. Kuriki, “Characteristics of color memory for natural scenes,” J. Opt. Soc. Am. A 19, 1501–1514 (2002).
    [CrossRef]
  54. M. S. Castelhano and J. M. Henderson, “The influence of color on the perception of scene gist,” J. Exp. Psychol. Hum. Percept. Perform. 34, 660–675 (2008).

2011 (2)

J. M. Wolfe, M. L.-H. Võ, K. K. Evans, and M. R. Greene, “Visual search in scenes involves selective and nonselective pathways,” Trends Cogn. Sci. 15, 77–84 (2011).
[CrossRef]

H.-P. Frey, K. Wirz, V. Willenbockel, T. Betz, C. Schreiber, T. Troscianko, and P. König, “Beyond correlation: do color features influence attention in rainforest?” Front. Hum. Neurosci. 5, 36 (2011).

2010 (2)

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

M. Nyström and K. Holmqvist, “An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data,” Behav. Res. Methods 42, 188–204 (2010).
[CrossRef]

2009 (3)

E. Vig, M. Dorr, and E. Barth, “Efficient visual coding and the predictability of eye movements on natural movies,” Spatial Vis. 22, 397–408 (2009).
[CrossRef]

J. M. Henderson, G. L. Malcolm, and C. Schandl, “Searching in the dark: cognitive relevance drives attention in real-world scenes,” Psychon. B. Rev. 16, 850–856 (2009).

P. G. Lovell, I. D. Gilchrist, D. J. Tolhurst, and T. Troscianko, “Search for gross illumination discrepancies in images of natural objects,” J. Vision 9(1), 37 (2009).
[CrossRef]

2008 (7)

R. van der Lans, R. Pieters, and M. Wedel, “Eye-movement analysis of search effectiveness,” J. Am. Stat. Assoc. 103, 452–461 (2008).
[CrossRef]

T. Foulsham and G. Underwood, “What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition,” J. Vision 8(2), 6 (2008).
[CrossRef]

W. Einhäuser, U. Rutishauser, and C. Koch, “Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli,” J. Vision 8(2), 2 (2008).

H.-P. Frey, C. Honey, and P. König, “What’s color got to do with it? The influence of color on visual attention in different categories,” J. Vision 8(14), 6 (2008).
[CrossRef]

M. S. Castelhano and J. M. Henderson, “Stable individual differences across images in human saccadic eye movements,” Can. J. Exp. Psychol. 62, 1–14 (2008).
[CrossRef]

M. S. Castelhano and J. M. Henderson, “The influence of color on the perception of scene gist,” J. Exp. Psychol. Hum. Percept. Perform. 34, 660–675 (2008).

M. Melgosa, R. Huertas, and R. S. Berns, “Performance of recent advanced color-difference formulas using the standardized residual sum of squares index,” J. Opt. Soc. Am. A 25, 1828–1834 (2008).
[CrossRef]

2007 (1)

B. W. Tatler, “The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions,” J. Vision 7(14), 4(2007).
[CrossRef]

2006 (7)

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31, 320–330 (2006).
[CrossRef]

D. H. Foster, K. Amano, and S. M. C. Nascimento, “Color constancy in natural scenes explained by global image statistics,” Vis. Neurosci. 23, 341–349 (2006).

B. L. Cole and K.-Y. Lian, “Search for coloured objects in natural surroundings by people with abnormal colour vision,” Clin. Exp. Optom. 89, 144–149 (2006).

X. Chen and G. J. Zelinsky, “Real-world visual search is dominated by top-down guidance,” Vision Res. 46, 4118–4133 (2006).
[CrossRef]

A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Henderson, “Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search,” Psychol. Rev. 113, 766–786 (2006).
[CrossRef]

M. Böhme, M. Dorr, C. Krause, T. Martinetz, and E. Barth, “Eye movement predictions on natural videos,” Neurocomput. 69, 1996–2004 (2006).
[CrossRef]

D. H. Foster, K. Amano, S. M. C. Nascimento, and M. J. Foster, “Frequency of metamerism in natural scenes,” J. Opt. Soc. Am. A 23, 2359–2372 (2006).

2003 (4)

A. L. Nagy and G. Thomas, “Distractor heterogeneity, attention, and color in visual search,” Vision Res. 43, 1541–1552 (2003).
[CrossRef]

D. J. Parkhurst and E. Niebur, “Scene content selected by active vision,” Spatial Vis. 16, 125–154 (2003).
[CrossRef]

W. Einhäuser and P. König, “Does luminance-contrast contribute to a saliency map for overt visual attention?,” Eur. J. Neurosci. 17, 1089–1097 (2003).
[CrossRef]

P. W. Lucas, N. J. Dominy, P. Riba-Hernandez, K. E. Stoner, N. Yamashita, E. Loría-Calderón, W. Petersen-Pereira, Y. Rojas-Durán, R. Salas-Pena, S. Solis-Madrigal, D. Osorio, and B. W. Darvell, “Evolution and function of routine trichromatic vision in primates,” Evolution 57, 2636–2643 (2003).

2002 (3)

D. Parkhurst, K. Law, and E. Niebur, “Modeling the role of salience in the allocation of overt visual attention,” Vision Res. 42, 107–123 (2002).
[CrossRef]

F. A. Wichmann, L. T. Sharpe, and K. R. Gegenfurtner, “The contributions of color to recognition memory for natural scenes,” J. Exp. Psychol. Learn. Mem. Cogn. 28, 509–520(2002).

K. Amano, K. Uchikawa, and I. Kuriki, “Characteristics of color memory for natural scenes,” J. Opt. Soc. Am. A 19, 1501–1514 (2002).
[CrossRef]

2001 (1)

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

2000 (4)

G. Krieger, I. Rentschler, G. Hauske, K. Schill, and C. Zetzsche, “Object and scene analysis by saccadic eye-movements: an investigation with higher-order statistics,” Spatial Vis. 13, 201–214 (2000).
[CrossRef]

A. Delorme, G. Richard, and M. Fabre-Thorpe, “Ultra-rapid categorisation of natural scenes does not rely on colour cues: a study in monkeys and humans,” Vision Res. 40, 2187–2200 (2000).
[CrossRef]

A. Oliva and P. G. Schyns, “Diagnostic colors mediate scene recognition,” Cogn. Psychol. 41, 176–210 (2000).

P. Sumner and J. D. Mollon, “Catarrhine photopigments are optimized for detecting targets against a foliage background,” J. Exp. Biol. 203, 1963–1986 (2000).

1999 (2)

T. J. Andrews and D. M. Coppola, “Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments,” Vision Res. 39, 2947–2953(1999).
[CrossRef]

P. Reinagel and A. M. Zador, “Natural scene statistics at the centre of gaze,” Netw. Comput. Neural Syst. 10, 341–350(1999).

1998 (1)

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998).
[CrossRef]

1996 (1)

S. K. Mannan, K. H. Ruddock, and D. S. Wooding, “The relationship between the locations of spatial features and those of fixations made during visual examination of briefly presented images,” Spatial Vis. 10, 165–188 (1996).
[CrossRef]

1994 (1)

J. M. Wolfe, “Visual search in continuous, naturalistic stimuli,” Vision Res. 34, 1187–1195 (1994).
[CrossRef]

1992 (1)

M. J. Bravo and K. Nakayama, “The role of attention in different visual-search tasks,” Percept. Psychophys. 51, 465–472 (1992).
[CrossRef]

1991 (1)

D. H. Foster and P. A. Ward, “Asymmetries in oriented-line detection indicate two orthogonal filters in early vision,” Proc. R. Soc. B 243, 75–81 (1991).
[CrossRef]

1990 (1)

A. Treisman and S. Sato, “Conjunction search revisited,” J. Exp. Psychol. Hum. Percept. Perform. 16, 459–478 (1990).

1989 (1)

J. Duncan and G. W. Humphreys, “Visual search and stimulus similarity,” Psychol. Rev. 96, 433–458 (1989).
[CrossRef]

1979 (1)

W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Stat. Assoc. 74, 829–836(1979).
[CrossRef]

1973 (1)

D. B. Montgomery and D. G. Morrison, “A note on adjusting R2,” J. Finance 28, 1009–1013 (1973).

Amano, K.

D. H. Foster, K. Amano, and S. M. C. Nascimento, “Color constancy in natural scenes explained by global image statistics,” Vis. Neurosci. 23, 341–349 (2006).

D. H. Foster, K. Amano, S. M. C. Nascimento, and M. J. Foster, “Frequency of metamerism in natural scenes,” J. Opt. Soc. Am. A 23, 2359–2372 (2006).

K. Amano, K. Uchikawa, and I. Kuriki, “Characteristics of color memory for natural scenes,” J. Opt. Soc. Am. A 19, 1501–1514 (2002).
[CrossRef]

M. S. Mould, D. H. Foster, K. Amano, and J. P. Oakley, “A simple nonparametric method for classifying eye fixation,” Vision Res. (submitted). doi:10.1016/j.visres.2011.12.006

Andrews, T. J.

T. J. Andrews and D. M. Coppola, “Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments,” Vision Res. 39, 2947–2953(1999).
[CrossRef]

Barth, E.

E. Vig, M. Dorr, and E. Barth, “Efficient visual coding and the predictability of eye movements on natural movies,” Spatial Vis. 22, 397–408 (2009).
[CrossRef]

M. Böhme, M. Dorr, C. Krause, T. Martinetz, and E. Barth, “Eye movement predictions on natural videos,” Neurocomput. 69, 1996–2004 (2006).
[CrossRef]

Berns, R. S.

Betz, T.

H.-P. Frey, K. Wirz, V. Willenbockel, T. Betz, C. Schreiber, T. Troscianko, and P. König, “Beyond correlation: do color features influence attention in rainforest?” Front. Hum. Neurosci. 5, 36 (2011).

Böhme, M.

M. Böhme, M. Dorr, C. Krause, T. Martinetz, and E. Barth, “Eye movement predictions on natural videos,” Neurocomput. 69, 1996–2004 (2006).
[CrossRef]

Bravo, M. J.

M. J. Bravo and K. Nakayama, “The role of attention in different visual-search tasks,” Percept. Psychophys. 51, 465–472 (1992).
[CrossRef]

Brown, A. M.

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

Carter, J.

H. Corbin, J. Carter, E. P. Reese, and J. Volkmann, Experiments on Visual Search 1956–1957 (Psychological Research Unit, Mount Holyoke College, 1958).

Castelhano, M. S.

M. S. Castelhano and J. M. Henderson, “Stable individual differences across images in human saccadic eye movements,” Can. J. Exp. Psychol. 62, 1–14 (2008).
[CrossRef]

M. S. Castelhano and J. M. Henderson, “The influence of color on the perception of scene gist,” J. Exp. Psychol. Hum. Percept. Perform. 34, 660–675 (2008).

A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Henderson, “Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search,” Psychol. Rev. 113, 766–786 (2006).
[CrossRef]

Chen, X.

X. Chen and G. J. Zelinsky, “Real-world visual search is dominated by top-down guidance,” Vision Res. 46, 4118–4133 (2006).
[CrossRef]

G. J. Zelinsky, W. Zhang, B. Yu, X. Chen, and D. Samaras, “The role of top-down and bottom-up processes in guiding eye movements during visual search,” in Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, eds. (MIT Press, 2006), pp. 1569–1576.

Cleveland, W. S.

W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Stat. Assoc. 74, 829–836(1979).
[CrossRef]

Cole, B. L.

B. L. Cole and K.-Y. Lian, “Search for coloured objects in natural surroundings by people with abnormal colour vision,” Clin. Exp. Optom. 89, 144–149 (2006).

Coppola, D. M.

T. J. Andrews and D. M. Coppola, “Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments,” Vision Res. 39, 2947–2953(1999).
[CrossRef]

Corbin, H.

H. Corbin, J. Carter, E. P. Reese, and J. Volkmann, Experiments on Visual Search 1956–1957 (Psychological Research Unit, Mount Holyoke College, 1958).

Cui, G.

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31, 320–330 (2006).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

Darvell, B. W.

P. W. Lucas, N. J. Dominy, P. Riba-Hernandez, K. E. Stoner, N. Yamashita, E. Loría-Calderón, W. Petersen-Pereira, Y. Rojas-Durán, R. Salas-Pena, S. Solis-Madrigal, D. Osorio, and B. W. Darvell, “Evolution and function of routine trichromatic vision in primates,” Evolution 57, 2636–2643 (2003).

Delorme, A.

A. Delorme, G. Richard, and M. Fabre-Thorpe, “Ultra-rapid categorisation of natural scenes does not rely on colour cues: a study in monkeys and humans,” Vision Res. 40, 2187–2200 (2000).
[CrossRef]

Dominy, N. J.

P. W. Lucas, N. J. Dominy, P. Riba-Hernandez, K. E. Stoner, N. Yamashita, E. Loría-Calderón, W. Petersen-Pereira, Y. Rojas-Durán, R. Salas-Pena, S. Solis-Madrigal, D. Osorio, and B. W. Darvell, “Evolution and function of routine trichromatic vision in primates,” Evolution 57, 2636–2643 (2003).

Dorr, M.

E. Vig, M. Dorr, and E. Barth, “Efficient visual coding and the predictability of eye movements on natural movies,” Spatial Vis. 22, 397–408 (2009).
[CrossRef]

M. Böhme, M. Dorr, C. Krause, T. Martinetz, and E. Barth, “Eye movement predictions on natural videos,” Neurocomput. 69, 1996–2004 (2006).
[CrossRef]

Duncan, J.

J. Duncan and G. W. Humphreys, “Visual search and stimulus similarity,” Psychol. Rev. 96, 433–458 (1989).
[CrossRef]

Einhäuser, W.

W. Einhäuser, U. Rutishauser, and C. Koch, “Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli,” J. Vision 8(2), 2 (2008).

W. Einhäuser and P. König, “Does luminance-contrast contribute to a saliency map for overt visual attention?,” Eur. J. Neurosci. 17, 1089–1097 (2003).
[CrossRef]

Evans, K. K.

J. M. Wolfe, M. L.-H. Võ, K. K. Evans, and M. R. Greene, “Visual search in scenes involves selective and nonselective pathways,” Trends Cogn. Sci. 15, 77–84 (2011).
[CrossRef]

Fabre-Thorpe, M.

A. Delorme, G. Richard, and M. Fabre-Thorpe, “Ultra-rapid categorisation of natural scenes does not rely on colour cues: a study in monkeys and humans,” Vision Res. 40, 2187–2200 (2000).
[CrossRef]

Foster, D. H.

D. H. Foster, K. Amano, and S. M. C. Nascimento, “Color constancy in natural scenes explained by global image statistics,” Vis. Neurosci. 23, 341–349 (2006).

D. H. Foster, K. Amano, S. M. C. Nascimento, and M. J. Foster, “Frequency of metamerism in natural scenes,” J. Opt. Soc. Am. A 23, 2359–2372 (2006).

D. H. Foster and P. A. Ward, “Asymmetries in oriented-line detection indicate two orthogonal filters in early vision,” Proc. R. Soc. B 243, 75–81 (1991).
[CrossRef]

M. S. Mould, D. H. Foster, K. Amano, and J. P. Oakley, “A simple nonparametric method for classifying eye fixation,” Vision Res. (submitted). doi:10.1016/j.visres.2011.12.006

Foster, M. J.

Foulsham, T.

T. Foulsham and G. Underwood, “What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition,” J. Vision 8(2), 6 (2008).
[CrossRef]

Franz, M. O.

W. Kienzle, F. A. Wichmann, B. Schölkopf, and M. O. Franz, “A nonparametric approach to bottom-up visual saliency,” in Advances in Neural Information Processing Systems 19, B. Schölkopf, J. Platt, and T. Hoffman, eds. (MIT Press, 2007), pp. 689–696.

Frey, H.-P.

H.-P. Frey, K. Wirz, V. Willenbockel, T. Betz, C. Schreiber, T. Troscianko, and P. König, “Beyond correlation: do color features influence attention in rainforest?” Front. Hum. Neurosci. 5, 36 (2011).

H.-P. Frey, C. Honey, and P. König, “What’s color got to do with it? The influence of color on visual attention in different categories,” J. Vision 8(14), 6 (2008).
[CrossRef]

Gegenfurtner, K. R.

F. A. Wichmann, L. T. Sharpe, and K. R. Gegenfurtner, “The contributions of color to recognition memory for natural scenes,” J. Exp. Psychol. Learn. Mem. Cogn. 28, 509–520(2002).

Gilchrist, I. D.

P. G. Lovell, I. D. Gilchrist, D. J. Tolhurst, and T. Troscianko, “Search for gross illumination discrepancies in images of natural objects,” J. Vision 9(1), 37 (2009).
[CrossRef]

Green, D. M.

D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, 1966).

Greene, M. R.

J. M. Wolfe, M. L.-H. Võ, K. K. Evans, and M. R. Greene, “Visual search in scenes involves selective and nonselective pathways,” Trends Cogn. Sci. 15, 77–84 (2011).
[CrossRef]

Hastie, T. J.

T. J. Hastie and R. J. Tibshirani, Generalized Additive Models, CRC Monographs on Statistics & Applied Probability(Chapman & Hall/CRC, 1990).

Hauske, G.

G. Krieger, I. Rentschler, G. Hauske, K. Schill, and C. Zetzsche, “Object and scene analysis by saccadic eye-movements: an investigation with higher-order statistics,” Spatial Vis. 13, 201–214 (2000).
[CrossRef]

Henderson, J. M.

J. M. Henderson, G. L. Malcolm, and C. Schandl, “Searching in the dark: cognitive relevance drives attention in real-world scenes,” Psychon. B. Rev. 16, 850–856 (2009).

M. S. Castelhano and J. M. Henderson, “Stable individual differences across images in human saccadic eye movements,” Can. J. Exp. Psychol. 62, 1–14 (2008).
[CrossRef]

M. S. Castelhano and J. M. Henderson, “The influence of color on the perception of scene gist,” J. Exp. Psychol. Hum. Percept. Perform. 34, 660–675 (2008).

A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Henderson, “Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search,” Psychol. Rev. 113, 766–786 (2006).
[CrossRef]

Holmqvist, K.

M. Nyström and K. Holmqvist, “An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data,” Behav. Res. Methods 42, 188–204 (2010).
[CrossRef]

Honey, C.

H.-P. Frey, C. Honey, and P. König, “What’s color got to do with it? The influence of color on visual attention in different categories,” J. Vision 8(14), 6 (2008).
[CrossRef]

Huertas, R.

Humphreys, G. W.

J. Duncan and G. W. Humphreys, “Visual search and stimulus similarity,” Psychol. Rev. 96, 433–458 (1989).
[CrossRef]

Itti, L.

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998).
[CrossRef]

Kienzle, W.

W. Kienzle, F. A. Wichmann, B. Schölkopf, and M. O. Franz, “A nonparametric approach to bottom-up visual saliency,” in Advances in Neural Information Processing Systems 19, B. Schölkopf, J. Platt, and T. Hoffman, eds. (MIT Press, 2007), pp. 689–696.

Koch, C.

W. Einhäuser, U. Rutishauser, and C. Koch, “Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli,” J. Vision 8(2), 2 (2008).

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998).
[CrossRef]

König, P.

H.-P. Frey, K. Wirz, V. Willenbockel, T. Betz, C. Schreiber, T. Troscianko, and P. König, “Beyond correlation: do color features influence attention in rainforest?” Front. Hum. Neurosci. 5, 36 (2011).

H.-P. Frey, C. Honey, and P. König, “What’s color got to do with it? The influence of color on visual attention in different categories,” J. Vision 8(14), 6 (2008).
[CrossRef]

W. Einhäuser and P. König, “Does luminance-contrast contribute to a saliency map for overt visual attention?,” Eur. J. Neurosci. 17, 1089–1097 (2003).
[CrossRef]

Krause, C.

M. Böhme, M. Dorr, C. Krause, T. Martinetz, and E. Barth, “Eye movement predictions on natural videos,” Neurocomput. 69, 1996–2004 (2006).
[CrossRef]

Krieger, G.

G. Krieger, I. Rentschler, G. Hauske, K. Schill, and C. Zetzsche, “Object and scene analysis by saccadic eye-movements: an investigation with higher-order statistics,” Spatial Vis. 13, 201–214 (2000).
[CrossRef]

Kuriki, I.

Kuzmova, Y. I.

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

Law, K.

D. Parkhurst, K. Law, and E. Niebur, “Modeling the role of salience in the allocation of overt visual attention,” Vision Res. 42, 107–123 (2002).
[CrossRef]

Li, C.

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31, 320–330 (2006).
[CrossRef]

Lian, K.-Y.

B. L. Cole and K.-Y. Lian, “Search for coloured objects in natural surroundings by people with abnormal colour vision,” Clin. Exp. Optom. 89, 144–149 (2006).

Lindsey, D. T.

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

Loría-Calderón, E.

P. W. Lucas, N. J. Dominy, P. Riba-Hernandez, K. E. Stoner, N. Yamashita, E. Loría-Calderón, W. Petersen-Pereira, Y. Rojas-Durán, R. Salas-Pena, S. Solis-Madrigal, D. Osorio, and B. W. Darvell, “Evolution and function of routine trichromatic vision in primates,” Evolution 57, 2636–2643 (2003).

Lovell, P. G.

P. G. Lovell, I. D. Gilchrist, D. J. Tolhurst, and T. Troscianko, “Search for gross illumination discrepancies in images of natural objects,” J. Vision 9(1), 37 (2009).
[CrossRef]

Lucas, P. W.

P. W. Lucas, N. J. Dominy, P. Riba-Hernandez, K. E. Stoner, N. Yamashita, E. Loría-Calderón, W. Petersen-Pereira, Y. Rojas-Durán, R. Salas-Pena, S. Solis-Madrigal, D. Osorio, and B. W. Darvell, “Evolution and function of routine trichromatic vision in primates,” Evolution 57, 2636–2643 (2003).

Luo, M. R.

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31, 320–330 (2006).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

Malcolm, G. L.

J. M. Henderson, G. L. Malcolm, and C. Schandl, “Searching in the dark: cognitive relevance drives attention in real-world scenes,” Psychon. B. Rev. 16, 850–856 (2009).

Mannan, S. K.

S. K. Mannan, K. H. Ruddock, and D. S. Wooding, “The relationship between the locations of spatial features and those of fixations made during visual examination of briefly presented images,” Spatial Vis. 10, 165–188 (1996).
[CrossRef]

Martinetz, T.

M. Böhme, M. Dorr, C. Krause, T. Martinetz, and E. Barth, “Eye movement predictions on natural videos,” Neurocomput. 69, 1996–2004 (2006).
[CrossRef]

Melgosa, M.

Mollon, J. D.

P. Sumner and J. D. Mollon, “Catarrhine photopigments are optimized for detecting targets against a foliage background,” J. Exp. Biol. 203, 1963–1986 (2000).

Montgomery, D. B.

D. B. Montgomery and D. G. Morrison, “A note on adjusting R2,” J. Finance 28, 1009–1013 (1973).

Morrison, D. G.

D. B. Montgomery and D. G. Morrison, “A note on adjusting R2,” J. Finance 28, 1009–1013 (1973).

Mould, M. S.

M. S. Mould, D. H. Foster, K. Amano, and J. P. Oakley, “A simple nonparametric method for classifying eye fixation,” Vision Res. (submitted). doi:10.1016/j.visres.2011.12.006

Nagy, A. L.

A. L. Nagy and G. Thomas, “Distractor heterogeneity, attention, and color in visual search,” Vision Res. 43, 1541–1552 (2003).
[CrossRef]

Nakayama, K.

M. J. Bravo and K. Nakayama, “The role of attention in different visual-search tasks,” Percept. Psychophys. 51, 465–472 (1992).
[CrossRef]

Nascimento, S. M. C.

D. H. Foster, K. Amano, and S. M. C. Nascimento, “Color constancy in natural scenes explained by global image statistics,” Vis. Neurosci. 23, 341–349 (2006).

D. H. Foster, K. Amano, S. M. C. Nascimento, and M. J. Foster, “Frequency of metamerism in natural scenes,” J. Opt. Soc. Am. A 23, 2359–2372 (2006).

Niebur, E.

D. J. Parkhurst and E. Niebur, “Scene content selected by active vision,” Spatial Vis. 16, 125–154 (2003).
[CrossRef]

D. Parkhurst, K. Law, and E. Niebur, “Modeling the role of salience in the allocation of overt visual attention,” Vision Res. 42, 107–123 (2002).
[CrossRef]

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998).
[CrossRef]

Nyström, M.

M. Nyström and K. Holmqvist, “An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data,” Behav. Res. Methods 42, 188–204 (2010).
[CrossRef]

Oakley, J. P.

M. S. Mould, D. H. Foster, K. Amano, and J. P. Oakley, “A simple nonparametric method for classifying eye fixation,” Vision Res. (submitted). doi:10.1016/j.visres.2011.12.006

Oliva, A.

A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Henderson, “Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search,” Psychol. Rev. 113, 766–786 (2006).
[CrossRef]

A. Oliva and P. G. Schyns, “Diagnostic colors mediate scene recognition,” Cogn. Psychol. 41, 176–210 (2000).

Osorio, D.

P. W. Lucas, N. J. Dominy, P. Riba-Hernandez, K. E. Stoner, N. Yamashita, E. Loría-Calderón, W. Petersen-Pereira, Y. Rojas-Durán, R. Salas-Pena, S. Solis-Madrigal, D. Osorio, and B. W. Darvell, “Evolution and function of routine trichromatic vision in primates,” Evolution 57, 2636–2643 (2003).

Parkhurst, D.

D. Parkhurst, K. Law, and E. Niebur, “Modeling the role of salience in the allocation of overt visual attention,” Vision Res. 42, 107–123 (2002).
[CrossRef]

Parkhurst, D. J.

D. J. Parkhurst and E. Niebur, “Scene content selected by active vision,” Spatial Vis. 16, 125–154 (2003).
[CrossRef]

Petersen-Pereira, W.

P. W. Lucas, N. J. Dominy, P. Riba-Hernandez, K. E. Stoner, N. Yamashita, E. Loría-Calderón, W. Petersen-Pereira, Y. Rojas-Durán, R. Salas-Pena, S. Solis-Madrigal, D. Osorio, and B. W. Darvell, “Evolution and function of routine trichromatic vision in primates,” Evolution 57, 2636–2643 (2003).

Pieters, R.

R. van der Lans, R. Pieters, and M. Wedel, “Eye-movement analysis of search effectiveness,” J. Am. Stat. Assoc. 103, 452–461 (2008).
[CrossRef]

Reese, E. P.

H. Corbin, J. Carter, E. P. Reese, and J. Volkmann, Experiments on Visual Search 1956–1957 (Psychological Research Unit, Mount Holyoke College, 1958).

Reijnen, E.

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

Reinagel, P.

P. Reinagel and A. M. Zador, “Natural scene statistics at the centre of gaze,” Netw. Comput. Neural Syst. 10, 341–350(1999).

Rentschler, I.

G. Krieger, I. Rentschler, G. Hauske, K. Schill, and C. Zetzsche, “Object and scene analysis by saccadic eye-movements: an investigation with higher-order statistics,” Spatial Vis. 13, 201–214 (2000).
[CrossRef]

Riba-Hernandez, P.

P. W. Lucas, N. J. Dominy, P. Riba-Hernandez, K. E. Stoner, N. Yamashita, E. Loría-Calderón, W. Petersen-Pereira, Y. Rojas-Durán, R. Salas-Pena, S. Solis-Madrigal, D. Osorio, and B. W. Darvell, “Evolution and function of routine trichromatic vision in primates,” Evolution 57, 2636–2643 (2003).

Rich, A. N.

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

Richard, G.

A. Delorme, G. Richard, and M. Fabre-Thorpe, “Ultra-rapid categorisation of natural scenes does not rely on colour cues: a study in monkeys and humans,” Vision Res. 40, 2187–2200 (2000).
[CrossRef]

Rigg, B.

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

Rojas-Durán, Y.

P. W. Lucas, N. J. Dominy, P. Riba-Hernandez, K. E. Stoner, N. Yamashita, E. Loría-Calderón, W. Petersen-Pereira, Y. Rojas-Durán, R. Salas-Pena, S. Solis-Madrigal, D. Osorio, and B. W. Darvell, “Evolution and function of routine trichromatic vision in primates,” Evolution 57, 2636–2643 (2003).

Ruddock, K. H.

S. K. Mannan, K. H. Ruddock, and D. S. Wooding, “The relationship between the locations of spatial features and those of fixations made during visual examination of briefly presented images,” Spatial Vis. 10, 165–188 (1996).
[CrossRef]

Rutishauser, U.

W. Einhäuser, U. Rutishauser, and C. Koch, “Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli,” J. Vision 8(2), 2 (2008).

Salas-Pena, R.

P. W. Lucas, N. J. Dominy, P. Riba-Hernandez, K. E. Stoner, N. Yamashita, E. Loría-Calderón, W. Petersen-Pereira, Y. Rojas-Durán, R. Salas-Pena, S. Solis-Madrigal, D. Osorio, and B. W. Darvell, “Evolution and function of routine trichromatic vision in primates,” Evolution 57, 2636–2643 (2003).

Samaras, D.

G. J. Zelinsky, W. Zhang, B. Yu, X. Chen, and D. Samaras, “The role of top-down and bottom-up processes in guiding eye movements during visual search,” in Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, eds. (MIT Press, 2006), pp. 1569–1576.

Sato, S.

A. Treisman and S. Sato, “Conjunction search revisited,” J. Exp. Psychol. Hum. Percept. Perform. 16, 459–478 (1990).

Schandl, C.

J. M. Henderson, G. L. Malcolm, and C. Schandl, “Searching in the dark: cognitive relevance drives attention in real-world scenes,” Psychon. B. Rev. 16, 850–856 (2009).

Schill, K.

G. Krieger, I. Rentschler, G. Hauske, K. Schill, and C. Zetzsche, “Object and scene analysis by saccadic eye-movements: an investigation with higher-order statistics,” Spatial Vis. 13, 201–214 (2000).
[CrossRef]

Schölkopf, B.

W. Kienzle, F. A. Wichmann, B. Schölkopf, and M. O. Franz, “A nonparametric approach to bottom-up visual saliency,” in Advances in Neural Information Processing Systems 19, B. Schölkopf, J. Platt, and T. Hoffman, eds. (MIT Press, 2007), pp. 689–696.

Schreiber, C.

H.-P. Frey, K. Wirz, V. Willenbockel, T. Betz, C. Schreiber, T. Troscianko, and P. König, “Beyond correlation: do color features influence attention in rainforest?” Front. Hum. Neurosci. 5, 36 (2011).

Schyns, P. G.

A. Oliva and P. G. Schyns, “Diagnostic colors mediate scene recognition,” Cogn. Psychol. 41, 176–210 (2000).

Sharpe, L. T.

F. A. Wichmann, L. T. Sharpe, and K. R. Gegenfurtner, “The contributions of color to recognition memory for natural scenes,” J. Exp. Psychol. Learn. Mem. Cogn. 28, 509–520(2002).

Solis-Madrigal, S.

P. W. Lucas, N. J. Dominy, P. Riba-Hernandez, K. E. Stoner, N. Yamashita, E. Loría-Calderón, W. Petersen-Pereira, Y. Rojas-Durán, R. Salas-Pena, S. Solis-Madrigal, D. Osorio, and B. W. Darvell, “Evolution and function of routine trichromatic vision in primates,” Evolution 57, 2636–2643 (2003).

Stoner, K. E.

P. W. Lucas, N. J. Dominy, P. Riba-Hernandez, K. E. Stoner, N. Yamashita, E. Loría-Calderón, W. Petersen-Pereira, Y. Rojas-Durán, R. Salas-Pena, S. Solis-Madrigal, D. Osorio, and B. W. Darvell, “Evolution and function of routine trichromatic vision in primates,” Evolution 57, 2636–2643 (2003).

Sumner, P.

P. Sumner and J. D. Mollon, “Catarrhine photopigments are optimized for detecting targets against a foliage background,” J. Exp. Biol. 203, 1963–1986 (2000).

Swets, J. A.

D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, 1966).

Tatler, B. W.

B. W. Tatler, “The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions,” J. Vision 7(14), 4(2007).
[CrossRef]

Thomas, G.

A. L. Nagy and G. Thomas, “Distractor heterogeneity, attention, and color in visual search,” Vision Res. 43, 1541–1552 (2003).
[CrossRef]

Tibshirani, R. J.

T. J. Hastie and R. J. Tibshirani, Generalized Additive Models, CRC Monographs on Statistics & Applied Probability(Chapman & Hall/CRC, 1990).

Tolhurst, D. J.

P. G. Lovell, I. D. Gilchrist, D. J. Tolhurst, and T. Troscianko, “Search for gross illumination discrepancies in images of natural objects,” J. Vision 9(1), 37 (2009).
[CrossRef]

Torralba, A.

A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Henderson, “Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search,” Psychol. Rev. 113, 766–786 (2006).
[CrossRef]

Treisman, A.

A. Treisman and S. Sato, “Conjunction search revisited,” J. Exp. Psychol. Hum. Percept. Perform. 16, 459–478 (1990).

Troscianko, T.

H.-P. Frey, K. Wirz, V. Willenbockel, T. Betz, C. Schreiber, T. Troscianko, and P. König, “Beyond correlation: do color features influence attention in rainforest?” Front. Hum. Neurosci. 5, 36 (2011).

P. G. Lovell, I. D. Gilchrist, D. J. Tolhurst, and T. Troscianko, “Search for gross illumination discrepancies in images of natural objects,” J. Vision 9(1), 37 (2009).
[CrossRef]

Uchikawa, K.

Underwood, G.

T. Foulsham and G. Underwood, “What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition,” J. Vision 8(2), 6 (2008).
[CrossRef]

van der Lans, R.

R. van der Lans, R. Pieters, and M. Wedel, “Eye-movement analysis of search effectiveness,” J. Am. Stat. Assoc. 103, 452–461 (2008).
[CrossRef]

Vig, E.

E. Vig, M. Dorr, and E. Barth, “Efficient visual coding and the predictability of eye movements on natural movies,” Spatial Vis. 22, 397–408 (2009).
[CrossRef]

E. Vig, Institute for Neuro- and Bioinformatics, University of Lübeck, Germany (personal communication, 2010).

Võ, M. L.-H.

J. M. Wolfe, M. L.-H. Võ, K. K. Evans, and M. R. Greene, “Visual search in scenes involves selective and nonselective pathways,” Trends Cogn. Sci. 15, 77–84 (2011).
[CrossRef]

Volkmann, J.

H. Corbin, J. Carter, E. P. Reese, and J. Volkmann, Experiments on Visual Search 1956–1957 (Psychological Research Unit, Mount Holyoke College, 1958).

Ward, P. A.

D. H. Foster and P. A. Ward, “Asymmetries in oriented-line detection indicate two orthogonal filters in early vision,” Proc. R. Soc. B 243, 75–81 (1991).
[CrossRef]

Wedel, M.

R. van der Lans, R. Pieters, and M. Wedel, “Eye-movement analysis of search effectiveness,” J. Am. Stat. Assoc. 103, 452–461 (2008).
[CrossRef]

Wichmann, F. A.

F. A. Wichmann, L. T. Sharpe, and K. R. Gegenfurtner, “The contributions of color to recognition memory for natural scenes,” J. Exp. Psychol. Learn. Mem. Cogn. 28, 509–520(2002).

W. Kienzle, F. A. Wichmann, B. Schölkopf, and M. O. Franz, “A nonparametric approach to bottom-up visual saliency,” in Advances in Neural Information Processing Systems 19, B. Schölkopf, J. Platt, and T. Hoffman, eds. (MIT Press, 2007), pp. 689–696.

Willenbockel, V.

H.-P. Frey, K. Wirz, V. Willenbockel, T. Betz, C. Schreiber, T. Troscianko, and P. König, “Beyond correlation: do color features influence attention in rainforest?” Front. Hum. Neurosci. 5, 36 (2011).

Wirz, K.

H.-P. Frey, K. Wirz, V. Willenbockel, T. Betz, C. Schreiber, T. Troscianko, and P. König, “Beyond correlation: do color features influence attention in rainforest?” Front. Hum. Neurosci. 5, 36 (2011).

Wolfe, J. M.

J. M. Wolfe, M. L.-H. Võ, K. K. Evans, and M. R. Greene, “Visual search in scenes involves selective and nonselective pathways,” Trends Cogn. Sci. 15, 77–84 (2011).
[CrossRef]

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

J. M. Wolfe, “Visual search in continuous, naturalistic stimuli,” Vision Res. 34, 1187–1195 (1994).
[CrossRef]

Wooding, D. S.

S. K. Mannan, K. H. Ruddock, and D. S. Wooding, “The relationship between the locations of spatial features and those of fixations made during visual examination of briefly presented images,” Spatial Vis. 10, 165–188 (1996).
[CrossRef]

Yamashita, N.

P. W. Lucas, N. J. Dominy, P. Riba-Hernandez, K. E. Stoner, N. Yamashita, E. Loría-Calderón, W. Petersen-Pereira, Y. Rojas-Durán, R. Salas-Pena, S. Solis-Madrigal, D. Osorio, and B. W. Darvell, “Evolution and function of routine trichromatic vision in primates,” Evolution 57, 2636–2643 (2003).

Yu, B.

G. J. Zelinsky, W. Zhang, B. Yu, X. Chen, and D. Samaras, “The role of top-down and bottom-up processes in guiding eye movements during visual search,” in Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, eds. (MIT Press, 2006), pp. 1569–1576.

Zador, A. M.

P. Reinagel and A. M. Zador, “Natural scene statistics at the centre of gaze,” Netw. Comput. Neural Syst. 10, 341–350(1999).

Zelinsky, G. J.

X. Chen and G. J. Zelinsky, “Real-world visual search is dominated by top-down guidance,” Vision Res. 46, 4118–4133 (2006).
[CrossRef]

G. J. Zelinsky, W. Zhang, B. Yu, X. Chen, and D. Samaras, “The role of top-down and bottom-up processes in guiding eye movements during visual search,” in Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, eds. (MIT Press, 2006), pp. 1569–1576.

Zetzsche, C.

G. Krieger, I. Rentschler, G. Hauske, K. Schill, and C. Zetzsche, “Object and scene analysis by saccadic eye-movements: an investigation with higher-order statistics,” Spatial Vis. 13, 201–214 (2000).
[CrossRef]

Zhang, W.

G. J. Zelinsky, W. Zhang, B. Yu, X. Chen, and D. Samaras, “The role of top-down and bottom-up processes in guiding eye movements during visual search,” in Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, eds. (MIT Press, 2006), pp. 1569–1576.

Behav. Res. Methods (1)

M. Nyström and K. Holmqvist, “An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data,” Behav. Res. Methods 42, 188–204 (2010).
[CrossRef]

Can. J. Exp. Psychol. (1)

M. S. Castelhano and J. M. Henderson, “Stable individual differences across images in human saccadic eye movements,” Can. J. Exp. Psychol. 62, 1–14 (2008).
[CrossRef]

Clin. Exp. Optom. (1)

B. L. Cole and K.-Y. Lian, “Search for coloured objects in natural surroundings by people with abnormal colour vision,” Clin. Exp. Optom. 89, 144–149 (2006).

Cogn. Psychol. (1)

A. Oliva and P. G. Schyns, “Diagnostic colors mediate scene recognition,” Cogn. Psychol. 41, 176–210 (2000).

Color Res. Appl. (2)

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31, 320–330 (2006).
[CrossRef]

Eur. J. Neurosci. (1)

W. Einhäuser and P. König, “Does luminance-contrast contribute to a saliency map for overt visual attention?,” Eur. J. Neurosci. 17, 1089–1097 (2003).
[CrossRef]

Evolution (1)

P. W. Lucas, N. J. Dominy, P. Riba-Hernandez, K. E. Stoner, N. Yamashita, E. Loría-Calderón, W. Petersen-Pereira, Y. Rojas-Durán, R. Salas-Pena, S. Solis-Madrigal, D. Osorio, and B. W. Darvell, “Evolution and function of routine trichromatic vision in primates,” Evolution 57, 2636–2643 (2003).

Front. Hum. Neurosci. (1)

H.-P. Frey, K. Wirz, V. Willenbockel, T. Betz, C. Schreiber, T. Troscianko, and P. König, “Beyond correlation: do color features influence attention in rainforest?” Front. Hum. Neurosci. 5, 36 (2011).

IEEE Trans. Pattern Anal. Mach. Intell. (1)

L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998).
[CrossRef]

J. Am. Stat. Assoc. (2)

R. van der Lans, R. Pieters, and M. Wedel, “Eye-movement analysis of search effectiveness,” J. Am. Stat. Assoc. 103, 452–461 (2008).
[CrossRef]

W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Stat. Assoc. 74, 829–836(1979).
[CrossRef]

J. Exp. Biol. (1)

P. Sumner and J. D. Mollon, “Catarrhine photopigments are optimized for detecting targets against a foliage background,” J. Exp. Biol. 203, 1963–1986 (2000).

J. Exp. Psychol. Hum. Percept. Perform. (2)

M. S. Castelhano and J. M. Henderson, “The influence of color on the perception of scene gist,” J. Exp. Psychol. Hum. Percept. Perform. 34, 660–675 (2008).

A. Treisman and S. Sato, “Conjunction search revisited,” J. Exp. Psychol. Hum. Percept. Perform. 16, 459–478 (1990).

J. Exp. Psychol. Learn. Mem. Cogn. (1)

F. A. Wichmann, L. T. Sharpe, and K. R. Gegenfurtner, “The contributions of color to recognition memory for natural scenes,” J. Exp. Psychol. Learn. Mem. Cogn. 28, 509–520(2002).

J. Finance (1)

D. B. Montgomery and D. G. Morrison, “A note on adjusting R2,” J. Finance 28, 1009–1013 (1973).

J. Opt. Soc. Am. A (3)

J. Vision (5)

H.-P. Frey, C. Honey, and P. König, “What’s color got to do with it? The influence of color on visual attention in different categories,” J. Vision 8(14), 6 (2008).
[CrossRef]

T. Foulsham and G. Underwood, “What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition,” J. Vision 8(2), 6 (2008).
[CrossRef]

P. G. Lovell, I. D. Gilchrist, D. J. Tolhurst, and T. Troscianko, “Search for gross illumination discrepancies in images of natural objects,” J. Vision 9(1), 37 (2009).
[CrossRef]

W. Einhäuser, U. Rutishauser, and C. Koch, “Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli,” J. Vision 8(2), 2 (2008).

B. W. Tatler, “The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions,” J. Vision 7(14), 4(2007).
[CrossRef]

Netw. Comput. Neural Syst. (1)

P. Reinagel and A. M. Zador, “Natural scene statistics at the centre of gaze,” Netw. Comput. Neural Syst. 10, 341–350(1999).

Neurocomput. (1)

M. Böhme, M. Dorr, C. Krause, T. Martinetz, and E. Barth, “Eye movement predictions on natural videos,” Neurocomput. 69, 1996–2004 (2006).
[CrossRef]

Percept. Psychophys. (1)

M. J. Bravo and K. Nakayama, “The role of attention in different visual-search tasks,” Percept. Psychophys. 51, 465–472 (1992).
[CrossRef]

Proc. R. Soc. B (1)

D. H. Foster and P. A. Ward, “Asymmetries in oriented-line detection indicate two orthogonal filters in early vision,” Proc. R. Soc. B 243, 75–81 (1991).
[CrossRef]

Psychol. Rev. (2)

J. Duncan and G. W. Humphreys, “Visual search and stimulus similarity,” Psychol. Rev. 96, 433–458 (1989).
[CrossRef]

A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Henderson, “Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search,” Psychol. Rev. 113, 766–786 (2006).
[CrossRef]

Psychol. Sci. (1)

D. T. Lindsey, A. M. Brown, E. Reijnen, A. N. Rich, Y. I. Kuzmova, and J. M. Wolfe, “Color channels, not color appearance or color categories, guide visual search for desaturated color targets,” Psychol. Sci. 21, 1208–1214 (2010).

Psychon. B. Rev. (1)

J. M. Henderson, G. L. Malcolm, and C. Schandl, “Searching in the dark: cognitive relevance drives attention in real-world scenes,” Psychon. B. Rev. 16, 850–856 (2009).

Spatial Vis. (4)

D. J. Parkhurst and E. Niebur, “Scene content selected by active vision,” Spatial Vis. 16, 125–154 (2003).
[CrossRef]

E. Vig, M. Dorr, and E. Barth, “Efficient visual coding and the predictability of eye movements on natural movies,” Spatial Vis. 22, 397–408 (2009).
[CrossRef]

S. K. Mannan, K. H. Ruddock, and D. S. Wooding, “The relationship between the locations of spatial features and those of fixations made during visual examination of briefly presented images,” Spatial Vis. 10, 165–188 (1996).
[CrossRef]

G. Krieger, I. Rentschler, G. Hauske, K. Schill, and C. Zetzsche, “Object and scene analysis by saccadic eye-movements: an investigation with higher-order statistics,” Spatial Vis. 13, 201–214 (2000).
[CrossRef]

Trends Cogn. Sci. (1)

J. M. Wolfe, M. L.-H. Võ, K. K. Evans, and M. R. Greene, “Visual search in scenes involves selective and nonselective pathways,” Trends Cogn. Sci. 15, 77–84 (2011).
[CrossRef]

Vis. Neurosci. (1)

D. H. Foster, K. Amano, and S. M. C. Nascimento, “Color constancy in natural scenes explained by global image statistics,” Vis. Neurosci. 23, 341–349 (2006).

Vision Res. (7)

A. Delorme, G. Richard, and M. Fabre-Thorpe, “Ultra-rapid categorisation of natural scenes does not rely on colour cues: a study in monkeys and humans,” Vision Res. 40, 2187–2200 (2000).
[CrossRef]

D. Parkhurst, K. Law, and E. Niebur, “Modeling the role of salience in the allocation of overt visual attention,” Vision Res. 42, 107–123 (2002).
[CrossRef]

T. J. Andrews and D. M. Coppola, “Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments,” Vision Res. 39, 2947–2953(1999).
[CrossRef]

J. M. Wolfe, “Visual search in continuous, naturalistic stimuli,” Vision Res. 34, 1187–1195 (1994).
[CrossRef]

X. Chen and G. J. Zelinsky, “Real-world visual search is dominated by top-down guidance,” Vision Res. 46, 4118–4133 (2006).
[CrossRef]

A. L. Nagy and G. Thomas, “Distractor heterogeneity, attention, and color in visual search,” Vision Res. 43, 1541–1552 (2003).
[CrossRef]

M. S. Mould, D. H. Foster, K. Amano, and J. P. Oakley, “A simple nonparametric method for classifying eye fixation,” Vision Res. (submitted). doi:10.1016/j.visres.2011.12.006

Other (8)

E. Vig, Institute for Neuro- and Bioinformatics, University of Lübeck, Germany (personal communication, 2010).

T. J. Hastie and R. J. Tibshirani, Generalized Additive Models, CRC Monographs on Statistics & Applied Probability(Chapman & Hall/CRC, 1990).

W. Kienzle, F. A. Wichmann, B. Schölkopf, and M. O. Franz, “A nonparametric approach to bottom-up visual saliency,” in Advances in Neural Information Processing Systems 19, B. Schölkopf, J. Platt, and T. Hoffman, eds. (MIT Press, 2007), pp. 689–696.

CIE, Technical Committee 1-48, “Colorimetry,” 3rd ed., CIE 15:2004 (Commission Internationale de l’Eclairage, 2004).

H. Corbin, J. Carter, E. P. Reese, and J. Volkmann, Experiments on Visual Search 1956–1957 (Psychological Research Unit, Mount Holyoke College, 1958).

D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, 1966).

G. J. Zelinsky, W. Zhang, B. Yu, X. Chen, and D. Samaras, “The role of top-down and bottom-up processes in guiding eye movements during visual search,” in Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, eds. (MIT Press, 2006), pp. 1569–1576.

CIE, Technical Committee 8-01, “A colour appearance model for colour management systems: CIECAM02,” CIE 159:2004 (Commission Internationale de l’Eclairage, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Examples of images, observers’ detection performance, and eye fixations. The top row shows four of the natural scenes taken from the 20 used in the experiment. The location of the target in the rightmost image is indicated by the arrow, and the target itself is shown in the inset. The middle row shows the spatial distributions of observers’ smoothed detection performance d for the corresponding scenes in the top row. Higher values of d are indicated by darker contours. The bottom row shows the spatial distribution of smoothed fixations for each of the corresponding scenes in the top row. Higher densities of fixations are indicated by darker contours. The loess smoothing bandwidth was 0.15.

Fig. 2.
Fig. 2.

Spatial distributions of color properties for each of the corresponding scenes in Fig. 1. The top row shows the smoothed lightness J; the middle row, the smoothed red-green chroma component aC; and the bottom row, the smoothed blue-yellow chroma component bC. Higher values are indicated by darker contours. The loess smoothing bandwidth was 0.15.

Tables (1)

Tables Icon

Table 1. Accounting for Variance in Detection Performancea

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E[d^(x,y)]=β1J^(x,y)+β2a^C(x,y)+β3b^C(x,y)+α,

Metrics