Abstract

We propose a chromatic diversity index based on the Munsell set capable of predicting illuminant induced changes in chromatic diversity of complex scenes. The color differences between complex scenes derived from hyperspectral data under a test and under a reference CIE D65 illuminant were computed and compared with the corresponding differences for the Munsell set. It was found that the average color difference between the complex scenes correlates well with the color differences of the Munsell samples with an average correlation of about 0.94, a result indicating that the Munsell set can be used to predict chromatic changes in complex scenes.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Method of Measuring and Specifying Colour Rendering Properties of Light Sources,” CIE Publ. 13.3:1995 (CIE, 1995).
  2. J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiol. Opt. 30, 618–625 (2010).
    [CrossRef]
  3. J. M. M. Linhares, P. D. A. Pinto, and S. M. C. Nascimento, “Color rendering of art paintings under CIE illuminants for normal and color deficient observers,” J. Opt. Soc. Am. A 26, 1668–1677 (2009).
  4. P. D. Pinto, J. M. M. Linhares, and S. M. C. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A 25, 623–630 (2008).
  5. E. Mahler, J. J. Ezrati, and F. Vienot, “Testing LED lighting for colour discrimination and colour rendering,” Color Res. Appl. 34, 8–17 (2009).
    [CrossRef]
  6. M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33, 192–202 (2008).
    [CrossRef]
  7. W. A. Thornton, “Color-Discrimination Index,” J. Opt. Soc. Am. 62, 191–& (1972).
    [CrossRef]
  8. W. A. Thornton, “Color-rendering capability of commercial lamps,” Appl. Opt. 11, 1078–1086 (1972).
    [CrossRef]
  9. H. Xu, “Color-rendering capacity of illumination,” J. Opt. Soc. Am. 73, 1709–1713 (1983).
    [CrossRef]
  10. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49, 33602–33616 (2010).
  11. H. Xu, “Colour rendering capacity and luminous efficiency of a spectrum,” Lighting Res. Technol. 25 (1993).
  12. C. Li and M. R. Luo, “Assessing colour rendering properties of daylight sources,” Ph.D. thesis (University of Leeds, (2008).
  13. J. M. Linhares, P. D. Pinto, and S. M. Nascimento, “The number of discernible colors in natural scenes,” J. Opt. Soc. Am. A 25, 2918–2924 (2008).
  14. M. R. Pointer and G. G. Attridge, “The number of discernible colours,” Color Res. Appl. 23, 52–54 (1998).
    [CrossRef]
  15. P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, “Chromatic effects of metamers of D65 on art paintings,” Ophthalmic Physiol. Opt. 30, 632–637 (2010).
    [CrossRef]
  16. E. Perales, F. Martínez-Verdú, V. Viqueira, M. J. Luque, and P. Capilla, “Computing the number of distinguishable colours under several illuminants and light sources,” in CGIV 2006: Third European Conference on Color in Graphics, Imaging and Vision, R. Luo, ed. (IS&T, 2006), pp. 414–419.
  17. E. Perales, F. M. Martínez-Verdú, J. M. M. Linhares, and S. M. C. Nascimento, “Number of discernible colors for color-deficient observers estimated from the MacAdam limits,” J. Opt. Soc. of Am. A 27, 2106–2014 (2010).
    [CrossRef]
  18. J. M. M. Linhares, P. D. A. Pinto, and S. M. C. Nascimento, “Chromatic Diversity Index—an approach based on natural scenes,” in CGIV 2010—5th European Conference on Colour in Graphics, Imaging, and Vision, and MCS’10, the 12th International Symposium on Multispectral Colour Science, J. Parkkinen and T. Jääskeläinen, eds. (2010), pp. 58–61.
  19. D. H. Foster, K. Amano, S. M. C. Nascimento, and M. J. Foster, “Frequency of metamerism in natural scenes,” J. Opt. Soc. Am. A 23, 2359–2372 (2006).
  20. P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Image capture: Simulation of sensor responses from hyperspectral images,” IEEE Trans. Image Process. 10, 307–316 (2001).
    [CrossRef]
  21. “Colorimetry,” CIE Publ. 15:2004 (CIE, 2004).
  22. M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
    [CrossRef]
  23. M. D. Fairchild, Color Appearance Models, 2nd ed. (Wiley, 2005), p. 385.
  24. G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27, 282–290 (2002).
    [CrossRef]
  25. “A Review of Chromatic Adaptation Transforms,” CIE Publ 160:2004 (CIE, 2004), p. 30.
  26. J. M. M. Linhares and S. M. C. Nascimento, “Color Diversity Index—the effect of chromatic adaptation,” in International Conference on Applications of Optics and Photonics—AOP2011, Manuel Filipe P. C. M. Costa, ed. [SPOF (Sociedade Portuguesa para a Investigação e Desenvolvimento em Óptica e Fotónica), 2011], paper 800104.

2010 (4)

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiol. Opt. 30, 618–625 (2010).
[CrossRef]

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49, 33602–33616 (2010).

P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, “Chromatic effects of metamers of D65 on art paintings,” Ophthalmic Physiol. Opt. 30, 632–637 (2010).
[CrossRef]

E. Perales, F. M. Martínez-Verdú, J. M. M. Linhares, and S. M. C. Nascimento, “Number of discernible colors for color-deficient observers estimated from the MacAdam limits,” J. Opt. Soc. of Am. A 27, 2106–2014 (2010).
[CrossRef]

2009 (2)

J. M. M. Linhares, P. D. A. Pinto, and S. M. C. Nascimento, “Color rendering of art paintings under CIE illuminants for normal and color deficient observers,” J. Opt. Soc. Am. A 26, 1668–1677 (2009).

E. Mahler, J. J. Ezrati, and F. Vienot, “Testing LED lighting for colour discrimination and colour rendering,” Color Res. Appl. 34, 8–17 (2009).
[CrossRef]

2008 (3)

2006 (1)

2002 (1)

G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27, 282–290 (2002).
[CrossRef]

2001 (2)

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Image capture: Simulation of sensor responses from hyperspectral images,” IEEE Trans. Image Process. 10, 307–316 (2001).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

1998 (1)

M. R. Pointer and G. G. Attridge, “The number of discernible colours,” Color Res. Appl. 23, 52–54 (1998).
[CrossRef]

1993 (1)

H. Xu, “Colour rendering capacity and luminous efficiency of a spectrum,” Lighting Res. Technol. 25 (1993).

1983 (1)

1972 (2)

Amano, K.

Attridge, G. G.

M. R. Pointer and G. G. Attridge, “The number of discernible colours,” Color Res. Appl. 23, 52–54 (1998).
[CrossRef]

Brainard, D. H.

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Image capture: Simulation of sensor responses from hyperspectral images,” IEEE Trans. Image Process. 10, 307–316 (2001).
[CrossRef]

Capilla, P.

E. Perales, F. Martínez-Verdú, V. Viqueira, M. J. Luque, and P. Capilla, “Computing the number of distinguishable colours under several illuminants and light sources,” in CGIV 2006: Third European Conference on Color in Graphics, Imaging and Vision, R. Luo, ed. (IS&T, 2006), pp. 414–419.

Cui, G.

G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27, 282–290 (2002).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

Davis, W.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49, 33602–33616 (2010).

Ezrati, J. J.

E. Mahler, J. J. Ezrati, and F. Vienot, “Testing LED lighting for colour discrimination and colour rendering,” Color Res. Appl. 34, 8–17 (2009).
[CrossRef]

Fairchild, M. D.

M. D. Fairchild, Color Appearance Models, 2nd ed. (Wiley, 2005), p. 385.

Farrell, J. E.

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Image capture: Simulation of sensor responses from hyperspectral images,” IEEE Trans. Image Process. 10, 307–316 (2001).
[CrossRef]

Felgueiras, P. E. R.

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiol. Opt. 30, 618–625 (2010).
[CrossRef]

P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, “Chromatic effects of metamers of D65 on art paintings,” Ophthalmic Physiol. Opt. 30, 632–637 (2010).
[CrossRef]

Foster, D. H.

Foster, M. J.

Freyssinier-Nova, J. P.

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33, 192–202 (2008).
[CrossRef]

Li, C.

C. Li and M. R. Luo, “Assessing colour rendering properties of daylight sources,” Ph.D. thesis (University of Leeds, (2008).

Linhares, J. M.

Linhares, J. M. M.

P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, “Chromatic effects of metamers of D65 on art paintings,” Ophthalmic Physiol. Opt. 30, 632–637 (2010).
[CrossRef]

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiol. Opt. 30, 618–625 (2010).
[CrossRef]

E. Perales, F. M. Martínez-Verdú, J. M. M. Linhares, and S. M. C. Nascimento, “Number of discernible colors for color-deficient observers estimated from the MacAdam limits,” J. Opt. Soc. of Am. A 27, 2106–2014 (2010).
[CrossRef]

J. M. M. Linhares, P. D. A. Pinto, and S. M. C. Nascimento, “Color rendering of art paintings under CIE illuminants for normal and color deficient observers,” J. Opt. Soc. Am. A 26, 1668–1677 (2009).

P. D. Pinto, J. M. M. Linhares, and S. M. C. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A 25, 623–630 (2008).

J. M. M. Linhares and S. M. C. Nascimento, “Color Diversity Index—the effect of chromatic adaptation,” in International Conference on Applications of Optics and Photonics—AOP2011, Manuel Filipe P. C. M. Costa, ed. [SPOF (Sociedade Portuguesa para a Investigação e Desenvolvimento em Óptica e Fotónica), 2011], paper 800104.

J. M. M. Linhares, P. D. A. Pinto, and S. M. C. Nascimento, “Chromatic Diversity Index—an approach based on natural scenes,” in CGIV 2010—5th European Conference on Colour in Graphics, Imaging, and Vision, and MCS’10, the 12th International Symposium on Multispectral Colour Science, J. Parkkinen and T. Jääskeläinen, eds. (2010), pp. 58–61.

Luo, M. R.

G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27, 282–290 (2002).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

C. Li and M. R. Luo, “Assessing colour rendering properties of daylight sources,” Ph.D. thesis (University of Leeds, (2008).

Luque, M. J.

E. Perales, F. Martínez-Verdú, V. Viqueira, M. J. Luque, and P. Capilla, “Computing the number of distinguishable colours under several illuminants and light sources,” in CGIV 2006: Third European Conference on Color in Graphics, Imaging and Vision, R. Luo, ed. (IS&T, 2006), pp. 414–419.

Mahler, E.

E. Mahler, J. J. Ezrati, and F. Vienot, “Testing LED lighting for colour discrimination and colour rendering,” Color Res. Appl. 34, 8–17 (2009).
[CrossRef]

Martínez-Verdú, F.

E. Perales, F. Martínez-Verdú, V. Viqueira, M. J. Luque, and P. Capilla, “Computing the number of distinguishable colours under several illuminants and light sources,” in CGIV 2006: Third European Conference on Color in Graphics, Imaging and Vision, R. Luo, ed. (IS&T, 2006), pp. 414–419.

Martínez-Verdú, F. M.

E. Perales, F. M. Martínez-Verdú, J. M. M. Linhares, and S. M. C. Nascimento, “Number of discernible colors for color-deficient observers estimated from the MacAdam limits,” J. Opt. Soc. of Am. A 27, 2106–2014 (2010).
[CrossRef]

Nascimento, S. M.

Nascimento, S. M. C.

P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, “Chromatic effects of metamers of D65 on art paintings,” Ophthalmic Physiol. Opt. 30, 632–637 (2010).
[CrossRef]

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiol. Opt. 30, 618–625 (2010).
[CrossRef]

E. Perales, F. M. Martínez-Verdú, J. M. M. Linhares, and S. M. C. Nascimento, “Number of discernible colors for color-deficient observers estimated from the MacAdam limits,” J. Opt. Soc. of Am. A 27, 2106–2014 (2010).
[CrossRef]

J. M. M. Linhares, P. D. A. Pinto, and S. M. C. Nascimento, “Color rendering of art paintings under CIE illuminants for normal and color deficient observers,” J. Opt. Soc. Am. A 26, 1668–1677 (2009).

P. D. Pinto, J. M. M. Linhares, and S. M. C. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A 25, 623–630 (2008).

D. H. Foster, K. Amano, S. M. C. Nascimento, and M. J. Foster, “Frequency of metamerism in natural scenes,” J. Opt. Soc. Am. A 23, 2359–2372 (2006).

J. M. M. Linhares and S. M. C. Nascimento, “Color Diversity Index—the effect of chromatic adaptation,” in International Conference on Applications of Optics and Photonics—AOP2011, Manuel Filipe P. C. M. Costa, ed. [SPOF (Sociedade Portuguesa para a Investigação e Desenvolvimento em Óptica e Fotónica), 2011], paper 800104.

J. M. M. Linhares, P. D. A. Pinto, and S. M. C. Nascimento, “Chromatic Diversity Index—an approach based on natural scenes,” in CGIV 2010—5th European Conference on Colour in Graphics, Imaging, and Vision, and MCS’10, the 12th International Symposium on Multispectral Colour Science, J. Parkkinen and T. Jääskeläinen, eds. (2010), pp. 58–61.

Ohno, Y.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49, 33602–33616 (2010).

Perales, E.

E. Perales, F. M. Martínez-Verdú, J. M. M. Linhares, and S. M. C. Nascimento, “Number of discernible colors for color-deficient observers estimated from the MacAdam limits,” J. Opt. Soc. of Am. A 27, 2106–2014 (2010).
[CrossRef]

E. Perales, F. Martínez-Verdú, V. Viqueira, M. J. Luque, and P. Capilla, “Computing the number of distinguishable colours under several illuminants and light sources,” in CGIV 2006: Third European Conference on Color in Graphics, Imaging and Vision, R. Luo, ed. (IS&T, 2006), pp. 414–419.

Pinto, P. D.

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiol. Opt. 30, 618–625 (2010).
[CrossRef]

P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, “Chromatic effects of metamers of D65 on art paintings,” Ophthalmic Physiol. Opt. 30, 632–637 (2010).
[CrossRef]

J. M. Linhares, P. D. Pinto, and S. M. Nascimento, “The number of discernible colors in natural scenes,” J. Opt. Soc. Am. A 25, 2918–2924 (2008).

P. D. Pinto, J. M. M. Linhares, and S. M. C. Nascimento, “Correlated color temperature preferred by observers for illumination of artistic paintings,” J. Opt. Soc. Am. A 25, 623–630 (2008).

Pinto, P. D. A.

J. M. M. Linhares, P. D. A. Pinto, and S. M. C. Nascimento, “Color rendering of art paintings under CIE illuminants for normal and color deficient observers,” J. Opt. Soc. Am. A 26, 1668–1677 (2009).

J. M. M. Linhares, P. D. A. Pinto, and S. M. C. Nascimento, “Chromatic Diversity Index—an approach based on natural scenes,” in CGIV 2010—5th European Conference on Colour in Graphics, Imaging, and Vision, and MCS’10, the 12th International Symposium on Multispectral Colour Science, J. Parkkinen and T. Jääskeläinen, eds. (2010), pp. 58–61.

Pointer, M. R.

M. R. Pointer and G. G. Attridge, “The number of discernible colours,” Color Res. Appl. 23, 52–54 (1998).
[CrossRef]

Rea, M. S.

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33, 192–202 (2008).
[CrossRef]

Rigg, B.

G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27, 282–290 (2002).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

Roesler, G.

G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27, 282–290 (2002).
[CrossRef]

Thornton, W. A.

Tietz, J. D.

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Image capture: Simulation of sensor responses from hyperspectral images,” IEEE Trans. Image Process. 10, 307–316 (2001).
[CrossRef]

Vienot, F.

E. Mahler, J. J. Ezrati, and F. Vienot, “Testing LED lighting for colour discrimination and colour rendering,” Color Res. Appl. 34, 8–17 (2009).
[CrossRef]

Viqueira, V.

E. Perales, F. Martínez-Verdú, V. Viqueira, M. J. Luque, and P. Capilla, “Computing the number of distinguishable colours under several illuminants and light sources,” in CGIV 2006: Third European Conference on Color in Graphics, Imaging and Vision, R. Luo, ed. (IS&T, 2006), pp. 414–419.

Vora, P. L.

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Image capture: Simulation of sensor responses from hyperspectral images,” IEEE Trans. Image Process. 10, 307–316 (2001).
[CrossRef]

Witt, K.

G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27, 282–290 (2002).
[CrossRef]

Xu, H.

H. Xu, “Colour rendering capacity and luminous efficiency of a spectrum,” Lighting Res. Technol. 25 (1993).

H. Xu, “Color-rendering capacity of illumination,” J. Opt. Soc. Am. 73, 1709–1713 (1983).
[CrossRef]

Appl. Opt. (1)

Color Res. Appl. (5)

E. Mahler, J. J. Ezrati, and F. Vienot, “Testing LED lighting for colour discrimination and colour rendering,” Color Res. Appl. 34, 8–17 (2009).
[CrossRef]

M. S. Rea and J. P. Freyssinier-Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33, 192–202 (2008).
[CrossRef]

M. R. Pointer and G. G. Attridge, “The number of discernible colours,” Color Res. Appl. 23, 52–54 (1998).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

G. Cui, M. R. Luo, B. Rigg, G. Roesler, and K. Witt, “Uniform colour spaces based on the DIN99 colour-difference formula,” Color Res. Appl. 27, 282–290 (2002).
[CrossRef]

IEEE Trans. Image Process. (1)

P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Image capture: Simulation of sensor responses from hyperspectral images,” IEEE Trans. Image Process. 10, 307–316 (2001).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

J. Opt. Soc. of Am. A (1)

E. Perales, F. M. Martínez-Verdú, J. M. M. Linhares, and S. M. C. Nascimento, “Number of discernible colors for color-deficient observers estimated from the MacAdam limits,” J. Opt. Soc. of Am. A 27, 2106–2014 (2010).
[CrossRef]

Lighting Res. Technol. (1)

H. Xu, “Colour rendering capacity and luminous efficiency of a spectrum,” Lighting Res. Technol. 25 (1993).

Ophthalmic Physiol. Opt. (2)

P. D. Pinto, P. E. R. Felgueiras, J. M. M. Linhares, and S. M. C. Nascimento, “Chromatic effects of metamers of D65 on art paintings,” Ophthalmic Physiol. Opt. 30, 632–637 (2010).
[CrossRef]

J. M. M. Linhares, P. E. R. Felgueiras, P. D. Pinto, and S. M. C. Nascimento, “Colour rendering of indoor lighting with CIE illuminants and white LEDs for normal and colour deficient observers,” Ophthalmic Physiol. Opt. 30, 618–625 (2010).
[CrossRef]

Opt. Eng. (1)

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49, 33602–33616 (2010).

Other (8)

“Method of Measuring and Specifying Colour Rendering Properties of Light Sources,” CIE Publ. 13.3:1995 (CIE, 1995).

E. Perales, F. Martínez-Verdú, V. Viqueira, M. J. Luque, and P. Capilla, “Computing the number of distinguishable colours under several illuminants and light sources,” in CGIV 2006: Third European Conference on Color in Graphics, Imaging and Vision, R. Luo, ed. (IS&T, 2006), pp. 414–419.

C. Li and M. R. Luo, “Assessing colour rendering properties of daylight sources,” Ph.D. thesis (University of Leeds, (2008).

J. M. M. Linhares, P. D. A. Pinto, and S. M. C. Nascimento, “Chromatic Diversity Index—an approach based on natural scenes,” in CGIV 2010—5th European Conference on Colour in Graphics, Imaging, and Vision, and MCS’10, the 12th International Symposium on Multispectral Colour Science, J. Parkkinen and T. Jääskeläinen, eds. (2010), pp. 58–61.

“Colorimetry,” CIE Publ. 15:2004 (CIE, 2004).

“A Review of Chromatic Adaptation Transforms,” CIE Publ 160:2004 (CIE, 2004), p. 30.

J. M. M. Linhares and S. M. C. Nascimento, “Color Diversity Index—the effect of chromatic adaptation,” in International Conference on Applications of Optics and Photonics—AOP2011, Manuel Filipe P. C. M. Costa, ed. [SPOF (Sociedade Portuguesa para a Investigação e Desenvolvimento em Óptica e Fotónica), 2011], paper 800104.

M. D. Fairchild, Color Appearance Models, 2nd ed. (Wiley, 2005), p. 385.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Representation on the CIELAB color space of the Munsell colored samples (open gray symbols) and the 15 CIE colored samples used in the estimation of the color rendering index (CRI) rendered under the CIE D65 illuminant (red symbols represent the eight colored samples used in the estimation of the general CRI and the blue symbols in combination with the eight red ones are used to estimate the special CRI).

Fig. 2.
Fig. 2.

Thumbnails of some of the natural (a), art paintings (b), and indoor (c and d) images used in this work. The images represented in (d) are from David Brainard’s hyperspectral image database, publicly available at (http://color.psych.upenn.edu/hyperspectral/index.html—last accessed 18-08-2011).

Fig. 3.
Fig. 3.

Normalized spectral power distribution of some of the CIE illuminants used in this work (adapted from [21]). (a) represents some daylight and CIE A illuminants and (b) and (c) represent some hi-pressure discharge and fluorescent CIE illuminants.

Fig. 4.
Fig. 4.

Normalized spectral power distribution of the LED light sources used in this work (from Luxeon, Philips Lumileds Lighting Company, EUA).

Fig. 5.
Fig. 5.

Influence of the spectral profile of an illuminant on the colors of an image of an art painting represented in the CIELAB color volume. Each point is a representation of a color from the art painting depicted rendered under the CIE D65 illuminant (on the left) and under the CIE HP1 illuminant (on the right). Gray areas represent projections of the color volume in the individual L*, a*, and b* surfaces.

Fig. 6.
Fig. 6.

Left panel (a): area in CIE (a*,b*) color space occupied by the chromaticity coordinates of the Munsell samples (gray area) in comparison with the area occupied by the chromaticity coordinates of the data of the Brainard images (red dashed line), indoor images (blue dots line), natural images (green line), and art paintings (black line), assuming the projection of all L* levels (L*<100) in one level. All data was assumed rendered under the reference illuminant. Right panel: examples of reflectance data from Munsell colored samples (b) and the images of the scenes analyzed (c).

Fig. 7.
Fig. 7.

Division of the CIELAB color volume into 16 smaller subvolumes (figure on the left). Data was first divided from L*>0 to L*50 (represented in orange) and from L*>50 to L*100 (represented in blue). Each L* level was then divided into four quadrants: a*>0 and b*>0, a*>0 and b*<0, a*<0 and b*<0, and a*<0 and b*>0. In each quadrant two separated volumes were assumed: one from 0 to 40 CIELAB units (represented in a continuous line) and the other the remaining of the volume (represented in a dashed line). The right drawing represents such a division assuming for simplicity only an L* level.

Fig. 8.
Fig. 8.

Average across scenes of the average CIELAB color difference between the images rendered under the reference illuminant and the test illuminant or light source plotted as a function of the average CIELAB color difference of the Munsell colored samples rendered under the reference illuminant and the test illuminant. The CIE D65 illuminant was assumed as the reference illuminant in each case. The data analysis was considered independently in each one of the subvolumes described in Fig. 7. The upper left image represents the L*>50 to L*100 and the inner subvolumes in the four quadrants, the upper right image represents the L*>50 to L*100 and the outer subvolumes in the four quadrants, the lower left image represents the L*>0 to L*50 and the inner subvolumes in the four quadrants, the lower right image represents the L*>0 to L*50 and the outer subvolumes in the four quadrants. Straight lines represent unweighted linear regressions and the proportion of variance accounted for R2 in the regression is also represented. Colored lines are coded to represent the quadrants as represented in Fig. 7.

Fig. 9.
Fig. 9.

Average of the color volume of the colors of the complex scenes (top panel) and its correspondent number of discernible colors (bottom panel) assumed rendered under the test illuminant and compared with the color volume and the number of discernible colors obtained with the reference illuminant, plotted as a function of the color volume of the colors of the Munsell colored samples rendered under the test illuminant and compared with the color volume obtained with the reference illuminant to all the illuminants in the illuminants database. Straight lines represent unweighted linear regressions and the proportion of variance accounted for R2 in the regression and the correspondent adjusted linear equation are also represented.

Fig. 10.
Fig. 10.

Comparison of several methods of characterization of illuminants and light sources plotted as a function of the average volume occupied by the colors of complex scenes. Rb1269 is the CRI estimated using 1269 different Munsell colored samples, Rb is the special CRI, Ra is the general CRI, GAI-8-UV is the GAI estimated using the eight colored samples used in the computation of the general CRI in the 1994 uniform color space [1], GAI-15-UV is the GAI estimated using the 15 colored samples used in the computation of the special CRI in the 1994 uniform color space, GAI-1269-UV is the GAI estimated using the 1269 Munsell colored samples in the 1994 uniform color space, Munsell is the volume occupied by 1269 the Munsell colored samples in the CIELAB color space, NODC is the average number of discernible colors in complex scenes. Straight lines represent unweighted linear regressions and the proportion of variance accounted for R2 in the regression is also represented.

Tables (1)

Tables Icon

Table 1. General CRI and the Correspondent CDI Estimated for Several CIE Illuminants using Eq. (1), Assuming as Reference the CIE D65 Illuminant

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

CDID65=VMT/VMR×100,
CDID65=VMT/2927.4.

Metrics