Abstract

Observers are faster to detect a target among a set of distracters if the targets and distracters come from different color categories. This cross-boundary advantage seems to be limited to the right visual field, which is consistent with the dominance of the left hemisphere for language processing [Gilbertet al., Proc. Natl. Acad. Sci. USA 103, 489 (2006)]. Here we study whether a similar visual field advantage is found in the color identification task in speakers of Mandarin, a language that uses a logographic system. Forty late Mandarin–English bilinguals performed a blue–green color categorization task, in a blocked design, in their first language (L1: Mandarin) or second language (L2: English). Eleven color singletons ranging from blue to green were presented for 160 ms, randomly in the left visual field (LVF) or right visual field (RVF). Color boundary and reaction times (RTs) at the color boundary were estimated in L1 and L2, for both visual fields. We found that the color boundary did not differ between the languages; RTs at the color boundary, however, were on average more than 100 ms shorter in the English compared to the Mandarin sessions, but only when the stimuli were presented in the RVF. The finding may be explained by the script nature of the two languages: Mandarin logographic characters are analyzed visuospatially in the right hemisphere, which conceivably facilitates identification of color presented to the LVF.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Bornstein and M. D. Monroe, “Chromatic information processing: rate depends on stimulus location in the category and psychological complexity,” Psychol. Res. 42, 213–225 (1980).
    [CrossRef]
  2. A. M. Liberman, F. S. Cooper, D. P. Shankweiler, and M. Studdert-Kennedy, “Perception of the speech code,” Psychol. Rev. 74, 431–461 (1967).
    [CrossRef]
  3. T. Regier and P. Kay, “Language, thought, and color: Whorf was half right,” Trends Cogn. Sci. 13, 439–446 (2009).
    [CrossRef]
  4. A. L. Gilbert, T. Regier, and P. Kay, “ Whorf hypothesis is supported in the right visual field but not the left,” Proc. Natl. Acad. Sci. USA 103, 489–494 (2006).
    [CrossRef]
  5. P. Athanasopoulos, “Cognitive representation of colour in bilinguals: the case of Greek blues,” Bilingualism Language Cognition 12, 83–95 (2009).
    [CrossRef]
  6. P. Athanasopoulos, A. Wiggett, B. Dering, J.-R. Kuipers, and G. Thierry, “The Whorfian mind: electrophysiological evidence that language shapes perception,” Commun. Integr. Biol. 2, 332–334 (2009).
    [CrossRef]
  7. P. Athanasopoulos, L. Damjanovic, A. Krajciova, and M. Sasaki, “Representation of colour concepts in bilingual cognition: the case of Japanese blues,” Bilingualism Language Cognition 14, 9–17 (2011).
    [CrossRef]
  8. I. S. P. Nation, Teaching and Learning Vocabulary (Newbury House, 1990).
  9. B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
    [CrossRef]
  10. S. Wuerger, K. Xiao, C. Fu, and D. Karatzas, “Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes,” Ophthalmic Physiol. Opt. 30, 653–659 (2010).
    [CrossRef]
  11. S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
    [CrossRef]
  12. C. Witzel and K. R. Gegenfurtner, “Is there a lateralized category effect for color?” J. Vision 11, 16 (2011).
    [CrossRef]
  13. A. M. Brown, D. T. Lindsey, and K. M. Guckes, “Color names, color categories, and color-cued visual search: sometimes, color perception is not categorical.” J. Vision 11, 2 (2011).
    [CrossRef]
  14. S. M. Wuerger, A. Ruppertsberg, S. Malek, M. Bertamini, and J. Martinovic, “The integration of local chromatic motion signals is sensitive to contrast polarity,” Vis. Neurosci. 28, 239–246(2011).
    [CrossRef]
  15. G. Paramei and J. Molyneux, “Colour identification speed as a test of the right visual field Whorfian effect,” Perception 40 (ECVP Abstract Suppl.), 81 (2011).
  16. M. J. Ruiz and J.-M. Hupé, “Stimulus saliency, not colour category boundary, accounts for ‘Whorfian’ effects in colour search tasks,” Perception 40, 196 (2011).
    [CrossRef]
  17. J. H. Hsiao and G. W. Cottrell, “What is the cause of left hemisphere lateralization of English visual word recognition? Pre-existing language lateralization, or task characteristics? in The Thirty-first Annual Conference of the Cognitive Science Society (2009).
  18. Y. Guo and E. D. Burgund, “Task effects in the mid-fusiform gyrus: a comparison of orthographic, phonological, and semantic processing of Chinese characters,” Brain Lang. 115, 113–120 (2010).
    [CrossRef]
  19. L. H. Tan, H.-L. Liu, C. A. Perfetti, J. A. Spinks, P. T. Fox, and J.-H. Gao, “The neural system underlying Chinese logograph reading,” NeuroImage 13, 836–846 (2001).
    [CrossRef]

2011 (6)

P. Athanasopoulos, L. Damjanovic, A. Krajciova, and M. Sasaki, “Representation of colour concepts in bilingual cognition: the case of Japanese blues,” Bilingualism Language Cognition 14, 9–17 (2011).
[CrossRef]

C. Witzel and K. R. Gegenfurtner, “Is there a lateralized category effect for color?” J. Vision 11, 16 (2011).
[CrossRef]

A. M. Brown, D. T. Lindsey, and K. M. Guckes, “Color names, color categories, and color-cued visual search: sometimes, color perception is not categorical.” J. Vision 11, 2 (2011).
[CrossRef]

S. M. Wuerger, A. Ruppertsberg, S. Malek, M. Bertamini, and J. Martinovic, “The integration of local chromatic motion signals is sensitive to contrast polarity,” Vis. Neurosci. 28, 239–246(2011).
[CrossRef]

G. Paramei and J. Molyneux, “Colour identification speed as a test of the right visual field Whorfian effect,” Perception 40 (ECVP Abstract Suppl.), 81 (2011).

M. J. Ruiz and J.-M. Hupé, “Stimulus saliency, not colour category boundary, accounts for ‘Whorfian’ effects in colour search tasks,” Perception 40, 196 (2011).
[CrossRef]

2010 (2)

Y. Guo and E. D. Burgund, “Task effects in the mid-fusiform gyrus: a comparison of orthographic, phonological, and semantic processing of Chinese characters,” Brain Lang. 115, 113–120 (2010).
[CrossRef]

S. Wuerger, K. Xiao, C. Fu, and D. Karatzas, “Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes,” Ophthalmic Physiol. Opt. 30, 653–659 (2010).
[CrossRef]

2009 (3)

P. Athanasopoulos, “Cognitive representation of colour in bilinguals: the case of Greek blues,” Bilingualism Language Cognition 12, 83–95 (2009).
[CrossRef]

P. Athanasopoulos, A. Wiggett, B. Dering, J.-R. Kuipers, and G. Thierry, “The Whorfian mind: electrophysiological evidence that language shapes perception,” Commun. Integr. Biol. 2, 332–334 (2009).
[CrossRef]

T. Regier and P. Kay, “Language, thought, and color: Whorf was half right,” Trends Cogn. Sci. 13, 439–446 (2009).
[CrossRef]

2006 (1)

A. L. Gilbert, T. Regier, and P. Kay, “ Whorf hypothesis is supported in the right visual field but not the left,” Proc. Natl. Acad. Sci. USA 103, 489–494 (2006).
[CrossRef]

2005 (1)

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

2001 (1)

L. H. Tan, H.-L. Liu, C. A. Perfetti, J. A. Spinks, P. T. Fox, and J.-H. Gao, “The neural system underlying Chinese logograph reading,” NeuroImage 13, 836–846 (2001).
[CrossRef]

1994 (1)

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

1980 (1)

M. H. Bornstein and M. D. Monroe, “Chromatic information processing: rate depends on stimulus location in the category and psychological complexity,” Psychol. Res. 42, 213–225 (1980).
[CrossRef]

1967 (1)

A. M. Liberman, F. S. Cooper, D. P. Shankweiler, and M. Studdert-Kennedy, “Perception of the speech code,” Psychol. Rev. 74, 431–461 (1967).
[CrossRef]

Athanasopoulos, P.

P. Athanasopoulos, L. Damjanovic, A. Krajciova, and M. Sasaki, “Representation of colour concepts in bilingual cognition: the case of Japanese blues,” Bilingualism Language Cognition 14, 9–17 (2011).
[CrossRef]

P. Athanasopoulos, “Cognitive representation of colour in bilinguals: the case of Greek blues,” Bilingualism Language Cognition 12, 83–95 (2009).
[CrossRef]

P. Athanasopoulos, A. Wiggett, B. Dering, J.-R. Kuipers, and G. Thierry, “The Whorfian mind: electrophysiological evidence that language shapes perception,” Commun. Integr. Biol. 2, 332–334 (2009).
[CrossRef]

Atkinson, P.

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

Bertamini, M.

S. M. Wuerger, A. Ruppertsberg, S. Malek, M. Bertamini, and J. Martinovic, “The integration of local chromatic motion signals is sensitive to contrast polarity,” Vis. Neurosci. 28, 239–246(2011).
[CrossRef]

Bornstein, M. H.

M. H. Bornstein and M. D. Monroe, “Chromatic information processing: rate depends on stimulus location in the category and psychological complexity,” Psychol. Res. 42, 213–225 (1980).
[CrossRef]

Brown, A. M.

A. M. Brown, D. T. Lindsey, and K. M. Guckes, “Color names, color categories, and color-cued visual search: sometimes, color perception is not categorical.” J. Vision 11, 2 (2011).
[CrossRef]

Burgund, E. D.

Y. Guo and E. D. Burgund, “Task effects in the mid-fusiform gyrus: a comparison of orthographic, phonological, and semantic processing of Chinese characters,” Brain Lang. 115, 113–120 (2010).
[CrossRef]

Cooper, F. S.

A. M. Liberman, F. S. Cooper, D. P. Shankweiler, and M. Studdert-Kennedy, “Perception of the speech code,” Psychol. Rev. 74, 431–461 (1967).
[CrossRef]

Cottrell, G. W.

J. H. Hsiao and G. W. Cottrell, “What is the cause of left hemisphere lateralization of English visual word recognition? Pre-existing language lateralization, or task characteristics? in The Thirty-first Annual Conference of the Cognitive Science Society (2009).

Cropper, S.

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

Damjanovic, L.

P. Athanasopoulos, L. Damjanovic, A. Krajciova, and M. Sasaki, “Representation of colour concepts in bilingual cognition: the case of Japanese blues,” Bilingualism Language Cognition 14, 9–17 (2011).
[CrossRef]

Dering, B.

P. Athanasopoulos, A. Wiggett, B. Dering, J.-R. Kuipers, and G. Thierry, “The Whorfian mind: electrophysiological evidence that language shapes perception,” Commun. Integr. Biol. 2, 332–334 (2009).
[CrossRef]

Fox, P. T.

L. H. Tan, H.-L. Liu, C. A. Perfetti, J. A. Spinks, P. T. Fox, and J.-H. Gao, “The neural system underlying Chinese logograph reading,” NeuroImage 13, 836–846 (2001).
[CrossRef]

Fu, C.

S. Wuerger, K. Xiao, C. Fu, and D. Karatzas, “Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes,” Ophthalmic Physiol. Opt. 30, 653–659 (2010).
[CrossRef]

Gao, J.-H.

L. H. Tan, H.-L. Liu, C. A. Perfetti, J. A. Spinks, P. T. Fox, and J.-H. Gao, “The neural system underlying Chinese logograph reading,” NeuroImage 13, 836–846 (2001).
[CrossRef]

Gegenfurtner, K. R.

C. Witzel and K. R. Gegenfurtner, “Is there a lateralized category effect for color?” J. Vision 11, 16 (2011).
[CrossRef]

Gilbert, A. L.

A. L. Gilbert, T. Regier, and P. Kay, “ Whorf hypothesis is supported in the right visual field but not the left,” Proc. Natl. Acad. Sci. USA 103, 489–494 (2006).
[CrossRef]

Guckes, K. M.

A. M. Brown, D. T. Lindsey, and K. M. Guckes, “Color names, color categories, and color-cued visual search: sometimes, color perception is not categorical.” J. Vision 11, 2 (2011).
[CrossRef]

Guo, Y.

Y. Guo and E. D. Burgund, “Task effects in the mid-fusiform gyrus: a comparison of orthographic, phonological, and semantic processing of Chinese characters,” Brain Lang. 115, 113–120 (2010).
[CrossRef]

Hsiao, J. H.

J. H. Hsiao and G. W. Cottrell, “What is the cause of left hemisphere lateralization of English visual word recognition? Pre-existing language lateralization, or task characteristics? in The Thirty-first Annual Conference of the Cognitive Science Society (2009).

Hupé, J.-M.

M. J. Ruiz and J.-M. Hupé, “Stimulus saliency, not colour category boundary, accounts for ‘Whorfian’ effects in colour search tasks,” Perception 40, 196 (2011).
[CrossRef]

Karatzas, D.

S. Wuerger, K. Xiao, C. Fu, and D. Karatzas, “Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes,” Ophthalmic Physiol. Opt. 30, 653–659 (2010).
[CrossRef]

Kay, P.

T. Regier and P. Kay, “Language, thought, and color: Whorf was half right,” Trends Cogn. Sci. 13, 439–446 (2009).
[CrossRef]

A. L. Gilbert, T. Regier, and P. Kay, “ Whorf hypothesis is supported in the right visual field but not the left,” Proc. Natl. Acad. Sci. USA 103, 489–494 (2006).
[CrossRef]

Krajciova, A.

P. Athanasopoulos, L. Damjanovic, A. Krajciova, and M. Sasaki, “Representation of colour concepts in bilingual cognition: the case of Japanese blues,” Bilingualism Language Cognition 14, 9–17 (2011).
[CrossRef]

Kuipers, J.-R.

P. Athanasopoulos, A. Wiggett, B. Dering, J.-R. Kuipers, and G. Thierry, “The Whorfian mind: electrophysiological evidence that language shapes perception,” Commun. Integr. Biol. 2, 332–334 (2009).
[CrossRef]

Liberman, A. M.

A. M. Liberman, F. S. Cooper, D. P. Shankweiler, and M. Studdert-Kennedy, “Perception of the speech code,” Psychol. Rev. 74, 431–461 (1967).
[CrossRef]

Lindsey, D. T.

A. M. Brown, D. T. Lindsey, and K. M. Guckes, “Color names, color categories, and color-cued visual search: sometimes, color perception is not categorical.” J. Vision 11, 2 (2011).
[CrossRef]

Liu, H.-L.

L. H. Tan, H.-L. Liu, C. A. Perfetti, J. A. Spinks, P. T. Fox, and J.-H. Gao, “The neural system underlying Chinese logograph reading,” NeuroImage 13, 836–846 (2001).
[CrossRef]

Malek, S.

S. M. Wuerger, A. Ruppertsberg, S. Malek, M. Bertamini, and J. Martinovic, “The integration of local chromatic motion signals is sensitive to contrast polarity,” Vis. Neurosci. 28, 239–246(2011).
[CrossRef]

Martinovic, J.

S. M. Wuerger, A. Ruppertsberg, S. Malek, M. Bertamini, and J. Martinovic, “The integration of local chromatic motion signals is sensitive to contrast polarity,” Vis. Neurosci. 28, 239–246(2011).
[CrossRef]

Mollon, J. D.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

Molyneux, J.

G. Paramei and J. Molyneux, “Colour identification speed as a test of the right visual field Whorfian effect,” Perception 40 (ECVP Abstract Suppl.), 81 (2011).

Monroe, M. D.

M. H. Bornstein and M. D. Monroe, “Chromatic information processing: rate depends on stimulus location in the category and psychological complexity,” Psychol. Res. 42, 213–225 (1980).
[CrossRef]

Nation, I. S. P.

I. S. P. Nation, Teaching and Learning Vocabulary (Newbury House, 1990).

Paramei, G.

G. Paramei and J. Molyneux, “Colour identification speed as a test of the right visual field Whorfian effect,” Perception 40 (ECVP Abstract Suppl.), 81 (2011).

Perfetti, C. A.

L. H. Tan, H.-L. Liu, C. A. Perfetti, J. A. Spinks, P. T. Fox, and J.-H. Gao, “The neural system underlying Chinese logograph reading,” NeuroImage 13, 836–846 (2001).
[CrossRef]

Reffin, J. P.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

Regan, B. C.

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

Regier, T.

T. Regier and P. Kay, “Language, thought, and color: Whorf was half right,” Trends Cogn. Sci. 13, 439–446 (2009).
[CrossRef]

A. L. Gilbert, T. Regier, and P. Kay, “ Whorf hypothesis is supported in the right visual field but not the left,” Proc. Natl. Acad. Sci. USA 103, 489–494 (2006).
[CrossRef]

Ruiz, M. J.

M. J. Ruiz and J.-M. Hupé, “Stimulus saliency, not colour category boundary, accounts for ‘Whorfian’ effects in colour search tasks,” Perception 40, 196 (2011).
[CrossRef]

Ruppertsberg, A.

S. M. Wuerger, A. Ruppertsberg, S. Malek, M. Bertamini, and J. Martinovic, “The integration of local chromatic motion signals is sensitive to contrast polarity,” Vis. Neurosci. 28, 239–246(2011).
[CrossRef]

Sasaki, M.

P. Athanasopoulos, L. Damjanovic, A. Krajciova, and M. Sasaki, “Representation of colour concepts in bilingual cognition: the case of Japanese blues,” Bilingualism Language Cognition 14, 9–17 (2011).
[CrossRef]

Shankweiler, D. P.

A. M. Liberman, F. S. Cooper, D. P. Shankweiler, and M. Studdert-Kennedy, “Perception of the speech code,” Psychol. Rev. 74, 431–461 (1967).
[CrossRef]

Spinks, J. A.

L. H. Tan, H.-L. Liu, C. A. Perfetti, J. A. Spinks, P. T. Fox, and J.-H. Gao, “The neural system underlying Chinese logograph reading,” NeuroImage 13, 836–846 (2001).
[CrossRef]

Studdert-Kennedy, M.

A. M. Liberman, F. S. Cooper, D. P. Shankweiler, and M. Studdert-Kennedy, “Perception of the speech code,” Psychol. Rev. 74, 431–461 (1967).
[CrossRef]

Tan, L. H.

L. H. Tan, H.-L. Liu, C. A. Perfetti, J. A. Spinks, P. T. Fox, and J.-H. Gao, “The neural system underlying Chinese logograph reading,” NeuroImage 13, 836–846 (2001).
[CrossRef]

Thierry, G.

P. Athanasopoulos, A. Wiggett, B. Dering, J.-R. Kuipers, and G. Thierry, “The Whorfian mind: electrophysiological evidence that language shapes perception,” Commun. Integr. Biol. 2, 332–334 (2009).
[CrossRef]

Wiggett, A.

P. Athanasopoulos, A. Wiggett, B. Dering, J.-R. Kuipers, and G. Thierry, “The Whorfian mind: electrophysiological evidence that language shapes perception,” Commun. Integr. Biol. 2, 332–334 (2009).
[CrossRef]

Witzel, C.

C. Witzel and K. R. Gegenfurtner, “Is there a lateralized category effect for color?” J. Vision 11, 16 (2011).
[CrossRef]

Wuerger, S.

S. Wuerger, K. Xiao, C. Fu, and D. Karatzas, “Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes,” Ophthalmic Physiol. Opt. 30, 653–659 (2010).
[CrossRef]

Wuerger, S. M.

S. M. Wuerger, A. Ruppertsberg, S. Malek, M. Bertamini, and J. Martinovic, “The integration of local chromatic motion signals is sensitive to contrast polarity,” Vis. Neurosci. 28, 239–246(2011).
[CrossRef]

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

Xiao, K.

S. Wuerger, K. Xiao, C. Fu, and D. Karatzas, “Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes,” Ophthalmic Physiol. Opt. 30, 653–659 (2010).
[CrossRef]

Bilingualism Language Cognition (2)

P. Athanasopoulos, “Cognitive representation of colour in bilinguals: the case of Greek blues,” Bilingualism Language Cognition 12, 83–95 (2009).
[CrossRef]

P. Athanasopoulos, L. Damjanovic, A. Krajciova, and M. Sasaki, “Representation of colour concepts in bilingual cognition: the case of Japanese blues,” Bilingualism Language Cognition 14, 9–17 (2011).
[CrossRef]

Brain Lang. (1)

Y. Guo and E. D. Burgund, “Task effects in the mid-fusiform gyrus: a comparison of orthographic, phonological, and semantic processing of Chinese characters,” Brain Lang. 115, 113–120 (2010).
[CrossRef]

Commun. Integr. Biol. (1)

P. Athanasopoulos, A. Wiggett, B. Dering, J.-R. Kuipers, and G. Thierry, “The Whorfian mind: electrophysiological evidence that language shapes perception,” Commun. Integr. Biol. 2, 332–334 (2009).
[CrossRef]

J. Vision (2)

C. Witzel and K. R. Gegenfurtner, “Is there a lateralized category effect for color?” J. Vision 11, 16 (2011).
[CrossRef]

A. M. Brown, D. T. Lindsey, and K. M. Guckes, “Color names, color categories, and color-cued visual search: sometimes, color perception is not categorical.” J. Vision 11, 2 (2011).
[CrossRef]

NeuroImage (1)

L. H. Tan, H.-L. Liu, C. A. Perfetti, J. A. Spinks, P. T. Fox, and J.-H. Gao, “The neural system underlying Chinese logograph reading,” NeuroImage 13, 836–846 (2001).
[CrossRef]

Ophthalmic Physiol. Opt. (1)

S. Wuerger, K. Xiao, C. Fu, and D. Karatzas, “Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes,” Ophthalmic Physiol. Opt. 30, 653–659 (2010).
[CrossRef]

Perception (2)

G. Paramei and J. Molyneux, “Colour identification speed as a test of the right visual field Whorfian effect,” Perception 40 (ECVP Abstract Suppl.), 81 (2011).

M. J. Ruiz and J.-M. Hupé, “Stimulus saliency, not colour category boundary, accounts for ‘Whorfian’ effects in colour search tasks,” Perception 40, 196 (2011).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

A. L. Gilbert, T. Regier, and P. Kay, “ Whorf hypothesis is supported in the right visual field but not the left,” Proc. Natl. Acad. Sci. USA 103, 489–494 (2006).
[CrossRef]

Psychol. Res. (1)

M. H. Bornstein and M. D. Monroe, “Chromatic information processing: rate depends on stimulus location in the category and psychological complexity,” Psychol. Res. 42, 213–225 (1980).
[CrossRef]

Psychol. Rev. (1)

A. M. Liberman, F. S. Cooper, D. P. Shankweiler, and M. Studdert-Kennedy, “Perception of the speech code,” Psychol. Rev. 74, 431–461 (1967).
[CrossRef]

Trends Cogn. Sci. (1)

T. Regier and P. Kay, “Language, thought, and color: Whorf was half right,” Trends Cogn. Sci. 13, 439–446 (2009).
[CrossRef]

Vis. Neurosci. (1)

S. M. Wuerger, A. Ruppertsberg, S. Malek, M. Bertamini, and J. Martinovic, “The integration of local chromatic motion signals is sensitive to contrast polarity,” Vis. Neurosci. 28, 239–246(2011).
[CrossRef]

Vis. Res. (2)

S. M. Wuerger, P. Atkinson, and S. Cropper, “The cone inputs to the unique-hue mechanisms,” Vis. Res. 45, 3210–3223 (2005).
[CrossRef]

B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994).
[CrossRef]

Other (2)

I. S. P. Nation, Teaching and Learning Vocabulary (Newbury House, 1990).

J. H. Hsiao and G. W. Cottrell, “What is the cause of left hemisphere lateralization of English visual word recognition? Pre-existing language lateralization, or task characteristics? in The Thirty-first Annual Conference of the Cognitive Science Society (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Stimuli. On each trial, a single 2° patch was presented for 160 ms 1° away from the central fixation target either in the LVF or the RVF of the observer, while the observer fixated the central target. After stimulus presentation, the color names (“BLUE” or “GREEN,” either in English or in Mandarin) were presented in the top or bottom half of the screen. Both names were presented equally often in the bottom and top halves; on each trial, the location was chosen randomly. (b) The 11 color patches spanned a range of colors between the unique blue (at 240°; CIELuv) and unique green (140°), with intermediate hues separated by 10° steps (equivalent to 6 ΔE).

Fig. 2.
Fig. 2.

(a) The blue–green color boundary was obtained by fitting a Weibull function (solid curve) to the data of each individual observer. Open green symbols denote the frequency of responding with “GREEN” as a function of hue angle; data are replotted for clarity in terms of frequency of saying “BLUE” and are shown in blue open symbols. The cross over of the fitted BLUE and GREEN response curves is defined as the blue–green boundary. (b) The blue–green boundary is then used to estimate the RT at the color boundary. To summarize the RT distribution, we fit a peak function, namely, the sum of a Gaussian and a constant where the locations of the peak is fixed at the color boundary. The fitted amplitude at the blue–green boundary is used as an estimate for the RT.

Fig. 3.
Fig. 3.

Histograms of the blue–green boundaries are shown for MANDARIN/LVF (upper left panel), MANDARIN/RVF (upper right), ENGLISH/LVF (lower left), and ENGLISH/RVF (lower right). The solid vertical line indicates the mean blue–green boundary (184° in Luv space) and the dotted vertical line the median. χ2 gooodness of fit tests revealed that all four distributions are normally distributed.

Fig. 4.
Fig. 4.

(a) Average blue–green boundaries for LEFT and RIGHT VFs, for both MANDARIN (red star) and ENGLISH (blue circle) are plotted. Error bars denote 2 standard deviations. The average location of the blue–green boundary is at 184° (range: 169°–204°). (b) Mean RTs at the blue–green boundary are shown for both languages and for both VFs. Error bars denote 2 standard errors of the mean.

Fig. 5.
Fig. 5.

RT distributions are shown for MANDARIN/LVF (upper left graph), MANDARIN/RVF (upper right), ENGLISH/LVF (lower left), and ENGLISH/RVF (lower right). The solid vertical line indicates the arithmetic mean of the blue–green boundaries, and the dotted vertical line the median. χ2 goodness of fit tests did not reveal any significant violation of the normal distribution assumption.

Fig. 6.
Fig. 6.

Data for control group (English monolinguals). (a) Average blue–green boundaries for the LEFT and the RIGHT VFs. Error bars denote 2 standard deviations. (b) Mean RTs at the blue–green boundary are shown for both VFs.

Fig. 7.
Fig. 7.

Distributions for monolingual English control group. (a). Histograms of the blue–green boundaries. The solid vertical line indicates the mean blue–green boundary and the dotted vertical line the median. (a) RT distributions for the monolingual English control group. The solid vertical line indicates the arithmetic mean of the blue–green boundaries, and the dotted vertical line the median.

Metrics