Abstract

To test whether a retinal or cortical mechanism sums contributions from two adapting fields to chromatic discrimination, L/M discrimination was measured with a test annulus surrounded by an inner circular field and an outer rectangular field. A retinal summation mechanism predicted that the discrimination pattern would not change with a change in the fixation location. Therefore, the fixation was set either in the inner or the outer field in two experiments. When one of the adapting fields was “red” and the other was “green,” the adapting field where the observer fixated always had a stronger influence on chromatic discrimination. However, when one adapting field was “white” and the other was red or green, the white field always weighted more heavily than the other adapting field in determining discrimination thresholds, whether the white field or the fixation was in the inner or outer adapting field. These results suggest that a cortical mechanism determines the relative contributions from different adapting fields.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1185 (1979).
    [CrossRef] [PubMed]
  2. R. M. Boynton and N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
    [CrossRef]
  3. Q. Zaidi, A. Shapiro, and D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
    [CrossRef] [PubMed]
  4. V. C. Smith, J. Pokorny, and H. Sun, “Chromatic contrast discrimination: data and prediction for stimuli varying in L and M cone excitation,” Color Res. Appl. 25, 105–115 (2000).
    [CrossRef]
  5. D. Cao, A. J. Zele, V. C. Smith, and J. Pokorny, “S-cone discrimination for stimuli with spatial and temporal chromatic contrast,” Vis. Neurosci. 25, 349–354 (2008).
    [CrossRef] [PubMed]
  6. J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vision Res. 32, 2165–2175 (1992).
    [CrossRef] [PubMed]
  7. J. Pokorny and V. C. Smith, “Chromatic discrimination,” in The Visual Neurosciences, L.M.Chalupa and J.S.Werner, eds. (MIT, 2004), pp. 908–923.
  8. Q. Zaidi, B. Spehar, and J. DeBonet, “Adaptation to textured chromatic fields,” J. Opt. Soc. Am. A 15, 23–32 (1998).
    [CrossRef]
  9. M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085(1992).
    [CrossRef] [PubMed]
  10. A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997).
    [CrossRef] [PubMed]
  11. T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vision 8 (1), 2 (2008).
    [CrossRef]
  12. M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vision 9 (9), 11 (2009).
    [CrossRef]
  13. A. J. Zele, V. C. Smith, and J. Pokorny, “Spatial and temporal chromatic contrast: effect on chromatic contrast discrimination for stimuli varying in L- and M-cone excitation,” Vis. Neurosci. 23, 495–501 (2006).
    [CrossRef] [PubMed]
  14. Y. Le Grand, Light, Colour and Vision, 2nd ed. (Chapman & Hall, 1968).
  15. V. C. Smith and J. Pokorny, “The design and use of a cone chromaticity space,” Color Res. Appl. 21, 375–383 (1996).
    [CrossRef]
  16. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  17. V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
    [PubMed]
  18. B. B. Lee, J. Pokorny, V. C. Smith, and J. Kremers, “Responses to pulses and sinusoids in macaque ganglion cells,” Vision Res. 34, 3081–3096 (1994).
    [CrossRef] [PubMed]
  19. P. D. Spear, C. B. Y. Kim, A. Ahmad, and B. W. Tom, “Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey,” Vis. Neurosci. 13, 199–203 (1996).
    [CrossRef] [PubMed]
  20. J. Pokorny, V. C. Smith, B. B. Lee, and T. Yeh, “Temporal sensitivity of macaque ganglion cells to lights of different chromaticities,” Color Res. Appl. 26, S140–S144 (2001).
    [CrossRef]
  21. M. L. Risner and T. J. Gawne, “The response dynamics of primate visual cortical neurons to simulated optical blur,” Vis. Neurosci. 26, 411–420 (2009).
    [CrossRef] [PubMed]
  22. H. Wässle, U. Grünert, J. Röhrenbeck, and B. B. Boycott, “Cortical magnification factor and the ganglion cell density of the primate retina,” Nature 341, 643–646 (1989).
    [CrossRef] [PubMed]
  23. H. Wässle, U. Grünert, J. Röhrenbeck, and B. B. Boycott, “Retinal ganglion cell density and cortical magnification factor in the primate,” Vision Res. 30, 1897–1911 (1990).
    [CrossRef] [PubMed]
  24. M. C. Morrone, V. Denti, and D. Spinelli, “Color and luminance contrasts attract independent attention,” Curr. Biol. 12, 1134–1137 (2002).
    [CrossRef] [PubMed]
  25. M. A. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25, 2817–2825 (2008).
    [CrossRef]
  26. J. Walraven and J. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31, 2185–2193 (1991).
    [CrossRef] [PubMed]
  27. M. V. Danilova and J. Mollon, “The comparison of spatially separated colours,” Vision Res. 46, 823–836 (2006).
    [CrossRef]
  28. M. Danilova and J. Mollon, “The gap effect is exaggerated in parafovea,” Vis. Neurosci. 23, 509–517 (2006).
    [CrossRef] [PubMed]
  29. M. V. Danilova and J. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10 (1), 4 (2010).
    [CrossRef]

2010 (1)

M. V. Danilova and J. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10 (1), 4 (2010).
[CrossRef]

2009 (2)

M. L. Risner and T. J. Gawne, “The response dynamics of primate visual cortical neurons to simulated optical blur,” Vis. Neurosci. 26, 411–420 (2009).
[CrossRef] [PubMed]

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vision 9 (9), 11 (2009).
[CrossRef]

2008 (3)

T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vision 8 (1), 2 (2008).
[CrossRef]

D. Cao, A. J. Zele, V. C. Smith, and J. Pokorny, “S-cone discrimination for stimuli with spatial and temporal chromatic contrast,” Vis. Neurosci. 25, 349–354 (2008).
[CrossRef] [PubMed]

M. A. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25, 2817–2825 (2008).
[CrossRef]

2006 (3)

M. V. Danilova and J. Mollon, “The comparison of spatially separated colours,” Vision Res. 46, 823–836 (2006).
[CrossRef]

M. Danilova and J. Mollon, “The gap effect is exaggerated in parafovea,” Vis. Neurosci. 23, 509–517 (2006).
[CrossRef] [PubMed]

A. J. Zele, V. C. Smith, and J. Pokorny, “Spatial and temporal chromatic contrast: effect on chromatic contrast discrimination for stimuli varying in L- and M-cone excitation,” Vis. Neurosci. 23, 495–501 (2006).
[CrossRef] [PubMed]

2004 (1)

J. Pokorny and V. C. Smith, “Chromatic discrimination,” in The Visual Neurosciences, L.M.Chalupa and J.S.Werner, eds. (MIT, 2004), pp. 908–923.

2002 (1)

M. C. Morrone, V. Denti, and D. Spinelli, “Color and luminance contrasts attract independent attention,” Curr. Biol. 12, 1134–1137 (2002).
[CrossRef] [PubMed]

2001 (1)

J. Pokorny, V. C. Smith, B. B. Lee, and T. Yeh, “Temporal sensitivity of macaque ganglion cells to lights of different chromaticities,” Color Res. Appl. 26, S140–S144 (2001).
[CrossRef]

2000 (1)

V. C. Smith, J. Pokorny, and H. Sun, “Chromatic contrast discrimination: data and prediction for stimuli varying in L and M cone excitation,” Color Res. Appl. 25, 105–115 (2000).
[CrossRef]

1998 (1)

1997 (1)

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997).
[CrossRef] [PubMed]

1996 (2)

V. C. Smith and J. Pokorny, “The design and use of a cone chromaticity space,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

P. D. Spear, C. B. Y. Kim, A. Ahmad, and B. W. Tom, “Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey,” Vis. Neurosci. 13, 199–203 (1996).
[CrossRef] [PubMed]

1994 (1)

B. B. Lee, J. Pokorny, V. C. Smith, and J. Kremers, “Responses to pulses and sinusoids in macaque ganglion cells,” Vision Res. 34, 3081–3096 (1994).
[CrossRef] [PubMed]

1992 (4)

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
[PubMed]

M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085(1992).
[CrossRef] [PubMed]

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vision Res. 32, 2165–2175 (1992).
[CrossRef] [PubMed]

Q. Zaidi, A. Shapiro, and D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[CrossRef] [PubMed]

1991 (1)

J. Walraven and J. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31, 2185–2193 (1991).
[CrossRef] [PubMed]

1990 (1)

H. Wässle, U. Grünert, J. Röhrenbeck, and B. B. Boycott, “Retinal ganglion cell density and cortical magnification factor in the primate,” Vision Res. 30, 1897–1911 (1990).
[CrossRef] [PubMed]

1989 (1)

H. Wässle, U. Grünert, J. Röhrenbeck, and B. B. Boycott, “Cortical magnification factor and the ganglion cell density of the primate retina,” Nature 341, 643–646 (1989).
[CrossRef] [PubMed]

1980 (1)

R. M. Boynton and N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

1979 (1)

1975 (1)

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1968 (1)

Y. Le Grand, Light, Colour and Vision, 2nd ed. (Chapman & Hall, 1968).

Ahmad, A.

P. D. Spear, C. B. Y. Kim, A. Ahmad, and B. W. Tom, “Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey,” Vis. Neurosci. 13, 199–203 (1996).
[CrossRef] [PubMed]

Boycott, B. B.

H. Wässle, U. Grünert, J. Röhrenbeck, and B. B. Boycott, “Retinal ganglion cell density and cortical magnification factor in the primate,” Vision Res. 30, 1897–1911 (1990).
[CrossRef] [PubMed]

H. Wässle, U. Grünert, J. Röhrenbeck, and B. B. Boycott, “Cortical magnification factor and the ganglion cell density of the primate retina,” Nature 341, 643–646 (1989).
[CrossRef] [PubMed]

Boynton, R. M.

R. M. Boynton and N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1185 (1979).
[CrossRef] [PubMed]

Cao, D.

D. Cao, A. J. Zele, V. C. Smith, and J. Pokorny, “S-cone discrimination for stimuli with spatial and temporal chromatic contrast,” Vis. Neurosci. 25, 349–354 (2008).
[CrossRef] [PubMed]

Danilova, M.

M. Danilova and J. Mollon, “The gap effect is exaggerated in parafovea,” Vis. Neurosci. 23, 509–517 (2006).
[CrossRef] [PubMed]

Danilova, M. V.

M. V. Danilova and J. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10 (1), 4 (2010).
[CrossRef]

M. V. Danilova and J. Mollon, “The comparison of spatially separated colours,” Vision Res. 46, 823–836 (2006).
[CrossRef]

DeBonet, J.

Denti, V.

M. C. Morrone, V. Denti, and D. Spinelli, “Color and luminance contrasts attract independent attention,” Curr. Biol. 12, 1134–1137 (2002).
[CrossRef] [PubMed]

Fairchild, M. D.

M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085(1992).
[CrossRef] [PubMed]

Gawne, T. J.

M. L. Risner and T. J. Gawne, “The response dynamics of primate visual cortical neurons to simulated optical blur,” Vis. Neurosci. 26, 411–420 (2009).
[CrossRef] [PubMed]

Gegenfurtner, K.

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vision Res. 32, 2165–2175 (1992).
[CrossRef] [PubMed]

Gegenfurtner, K. R.

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vision 9 (9), 11 (2009).
[CrossRef]

T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vision 8 (1), 2 (2008).
[CrossRef]

Giesel, M.

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vision 9 (9), 11 (2009).
[CrossRef]

T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vision 8 (1), 2 (2008).
[CrossRef]

Grünert, U.

H. Wässle, U. Grünert, J. Röhrenbeck, and B. B. Boycott, “Retinal ganglion cell density and cortical magnification factor in the primate,” Vision Res. 30, 1897–1911 (1990).
[CrossRef] [PubMed]

H. Wässle, U. Grünert, J. Röhrenbeck, and B. B. Boycott, “Cortical magnification factor and the ganglion cell density of the primate retina,” Nature 341, 643–646 (1989).
[CrossRef] [PubMed]

Hansen, T.

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vision 9 (9), 11 (2009).
[CrossRef]

T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vision 8 (1), 2 (2008).
[CrossRef]

Hood, D.

Q. Zaidi, A. Shapiro, and D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[CrossRef] [PubMed]

Kambe, N.

R. M. Boynton and N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

Kim, C. B. Y.

P. D. Spear, C. B. Y. Kim, A. Ahmad, and B. W. Tom, “Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey,” Vis. Neurosci. 13, 199–203 (1996).
[CrossRef] [PubMed]

Krauskopf, J.

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vision Res. 32, 2165–2175 (1992).
[CrossRef] [PubMed]

Kremers, J.

B. B. Lee, J. Pokorny, V. C. Smith, and J. Kremers, “Responses to pulses and sinusoids in macaque ganglion cells,” Vision Res. 34, 3081–3096 (1994).
[CrossRef] [PubMed]

Le Grand, Y.

Y. Le Grand, Light, Colour and Vision, 2nd ed. (Chapman & Hall, 1968).

Lee, B. B.

J. Pokorny, V. C. Smith, B. B. Lee, and T. Yeh, “Temporal sensitivity of macaque ganglion cells to lights of different chromaticities,” Color Res. Appl. 26, S140–S144 (2001).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, and J. Kremers, “Responses to pulses and sinusoids in macaque ganglion cells,” Vision Res. 34, 3081–3096 (1994).
[CrossRef] [PubMed]

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
[PubMed]

Lennie, P.

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997).
[CrossRef] [PubMed]

M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085(1992).
[CrossRef] [PubMed]

Leonard, D.

Li, A.

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997).
[CrossRef] [PubMed]

MacLeod, D. I. A.

Martin, P. R.

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
[PubMed]

Mollon, J.

M. V. Danilova and J. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10 (1), 4 (2010).
[CrossRef]

M. V. Danilova and J. Mollon, “The comparison of spatially separated colours,” Vision Res. 46, 823–836 (2006).
[CrossRef]

M. Danilova and J. Mollon, “The gap effect is exaggerated in parafovea,” Vis. Neurosci. 23, 509–517 (2006).
[CrossRef] [PubMed]

Morrone, M. C.

M. C. Morrone, V. Denti, and D. Spinelli, “Color and luminance contrasts attract independent attention,” Curr. Biol. 12, 1134–1137 (2002).
[CrossRef] [PubMed]

Pokorny, J.

D. Cao, A. J. Zele, V. C. Smith, and J. Pokorny, “S-cone discrimination for stimuli with spatial and temporal chromatic contrast,” Vis. Neurosci. 25, 349–354 (2008).
[CrossRef] [PubMed]

A. J. Zele, V. C. Smith, and J. Pokorny, “Spatial and temporal chromatic contrast: effect on chromatic contrast discrimination for stimuli varying in L- and M-cone excitation,” Vis. Neurosci. 23, 495–501 (2006).
[CrossRef] [PubMed]

J. Pokorny and V. C. Smith, “Chromatic discrimination,” in The Visual Neurosciences, L.M.Chalupa and J.S.Werner, eds. (MIT, 2004), pp. 908–923.

J. Pokorny, V. C. Smith, B. B. Lee, and T. Yeh, “Temporal sensitivity of macaque ganglion cells to lights of different chromaticities,” Color Res. Appl. 26, S140–S144 (2001).
[CrossRef]

V. C. Smith, J. Pokorny, and H. Sun, “Chromatic contrast discrimination: data and prediction for stimuli varying in L and M cone excitation,” Color Res. Appl. 25, 105–115 (2000).
[CrossRef]

V. C. Smith and J. Pokorny, “The design and use of a cone chromaticity space,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, and J. Kremers, “Responses to pulses and sinusoids in macaque ganglion cells,” Vision Res. 34, 3081–3096 (1994).
[CrossRef] [PubMed]

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
[PubMed]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Risner, M. L.

M. L. Risner and T. J. Gawne, “The response dynamics of primate visual cortical neurons to simulated optical blur,” Vis. Neurosci. 26, 411–420 (2009).
[CrossRef] [PubMed]

Röhrenbeck, J.

H. Wässle, U. Grünert, J. Röhrenbeck, and B. B. Boycott, “Retinal ganglion cell density and cortical magnification factor in the primate,” Vision Res. 30, 1897–1911 (1990).
[CrossRef] [PubMed]

H. Wässle, U. Grünert, J. Röhrenbeck, and B. B. Boycott, “Cortical magnification factor and the ganglion cell density of the primate retina,” Nature 341, 643–646 (1989).
[CrossRef] [PubMed]

Shapiro, A.

Q. Zaidi, A. Shapiro, and D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[CrossRef] [PubMed]

Smith, V. C.

D. Cao, A. J. Zele, V. C. Smith, and J. Pokorny, “S-cone discrimination for stimuli with spatial and temporal chromatic contrast,” Vis. Neurosci. 25, 349–354 (2008).
[CrossRef] [PubMed]

A. J. Zele, V. C. Smith, and J. Pokorny, “Spatial and temporal chromatic contrast: effect on chromatic contrast discrimination for stimuli varying in L- and M-cone excitation,” Vis. Neurosci. 23, 495–501 (2006).
[CrossRef] [PubMed]

J. Pokorny and V. C. Smith, “Chromatic discrimination,” in The Visual Neurosciences, L.M.Chalupa and J.S.Werner, eds. (MIT, 2004), pp. 908–923.

J. Pokorny, V. C. Smith, B. B. Lee, and T. Yeh, “Temporal sensitivity of macaque ganglion cells to lights of different chromaticities,” Color Res. Appl. 26, S140–S144 (2001).
[CrossRef]

V. C. Smith, J. Pokorny, and H. Sun, “Chromatic contrast discrimination: data and prediction for stimuli varying in L and M cone excitation,” Color Res. Appl. 25, 105–115 (2000).
[CrossRef]

V. C. Smith and J. Pokorny, “The design and use of a cone chromaticity space,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

B. B. Lee, J. Pokorny, V. C. Smith, and J. Kremers, “Responses to pulses and sinusoids in macaque ganglion cells,” Vision Res. 34, 3081–3096 (1994).
[CrossRef] [PubMed]

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
[PubMed]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Spear, P. D.

P. D. Spear, C. B. Y. Kim, A. Ahmad, and B. W. Tom, “Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey,” Vis. Neurosci. 13, 199–203 (1996).
[CrossRef] [PubMed]

Spehar, B.

Spinelli, D.

M. C. Morrone, V. Denti, and D. Spinelli, “Color and luminance contrasts attract independent attention,” Curr. Biol. 12, 1134–1137 (2002).
[CrossRef] [PubMed]

Sun, H.

V. C. Smith, J. Pokorny, and H. Sun, “Chromatic contrast discrimination: data and prediction for stimuli varying in L and M cone excitation,” Color Res. Appl. 25, 105–115 (2000).
[CrossRef]

Tom, B. W.

P. D. Spear, C. B. Y. Kim, A. Ahmad, and B. W. Tom, “Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey,” Vis. Neurosci. 13, 199–203 (1996).
[CrossRef] [PubMed]

Valberg, A.

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
[PubMed]

Walraven, J.

J. Walraven and J. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31, 2185–2193 (1991).
[CrossRef] [PubMed]

Wässle, H.

H. Wässle, U. Grünert, J. Röhrenbeck, and B. B. Boycott, “Retinal ganglion cell density and cortical magnification factor in the primate,” Vision Res. 30, 1897–1911 (1990).
[CrossRef] [PubMed]

H. Wässle, U. Grünert, J. Röhrenbeck, and B. B. Boycott, “Cortical magnification factor and the ganglion cell density of the primate retina,” Nature 341, 643–646 (1989).
[CrossRef] [PubMed]

Webster, M. A.

Werner, J.

J. Walraven and J. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31, 2185–2193 (1991).
[CrossRef] [PubMed]

Yeh, T.

J. Pokorny, V. C. Smith, B. B. Lee, and T. Yeh, “Temporal sensitivity of macaque ganglion cells to lights of different chromaticities,” Color Res. Appl. 26, S140–S144 (2001).
[CrossRef]

Zaidi, Q.

Q. Zaidi, B. Spehar, and J. DeBonet, “Adaptation to textured chromatic fields,” J. Opt. Soc. Am. A 15, 23–32 (1998).
[CrossRef]

Q. Zaidi, A. Shapiro, and D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[CrossRef] [PubMed]

Zele, A. J.

D. Cao, A. J. Zele, V. C. Smith, and J. Pokorny, “S-cone discrimination for stimuli with spatial and temporal chromatic contrast,” Vis. Neurosci. 25, 349–354 (2008).
[CrossRef] [PubMed]

A. J. Zele, V. C. Smith, and J. Pokorny, “Spatial and temporal chromatic contrast: effect on chromatic contrast discrimination for stimuli varying in L- and M-cone excitation,” Vis. Neurosci. 23, 495–501 (2006).
[CrossRef] [PubMed]

Color Res. Appl. (4)

V. C. Smith, J. Pokorny, and H. Sun, “Chromatic contrast discrimination: data and prediction for stimuli varying in L and M cone excitation,” Color Res. Appl. 25, 105–115 (2000).
[CrossRef]

R. M. Boynton and N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

V. C. Smith and J. Pokorny, “The design and use of a cone chromaticity space,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

J. Pokorny, V. C. Smith, B. B. Lee, and T. Yeh, “Temporal sensitivity of macaque ganglion cells to lights of different chromaticities,” Color Res. Appl. 26, S140–S144 (2001).
[CrossRef]

Curr. Biol. (1)

M. C. Morrone, V. Denti, and D. Spinelli, “Color and luminance contrasts attract independent attention,” Curr. Biol. 12, 1134–1137 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Physiol. (1)

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
[PubMed]

J. Vision (3)

T. Hansen, M. Giesel, and K. R. Gegenfurtner, “Chromatic discrimination of natural objects,” J. Vision 8 (1), 2 (2008).
[CrossRef]

M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vision 9 (9), 11 (2009).
[CrossRef]

M. V. Danilova and J. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vision 10 (1), 4 (2010).
[CrossRef]

Nature (1)

H. Wässle, U. Grünert, J. Röhrenbeck, and B. B. Boycott, “Cortical magnification factor and the ganglion cell density of the primate retina,” Nature 341, 643–646 (1989).
[CrossRef] [PubMed]

Vis. Neurosci. (5)

M. Danilova and J. Mollon, “The gap effect is exaggerated in parafovea,” Vis. Neurosci. 23, 509–517 (2006).
[CrossRef] [PubMed]

P. D. Spear, C. B. Y. Kim, A. Ahmad, and B. W. Tom, “Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey,” Vis. Neurosci. 13, 199–203 (1996).
[CrossRef] [PubMed]

M. L. Risner and T. J. Gawne, “The response dynamics of primate visual cortical neurons to simulated optical blur,” Vis. Neurosci. 26, 411–420 (2009).
[CrossRef] [PubMed]

A. J. Zele, V. C. Smith, and J. Pokorny, “Spatial and temporal chromatic contrast: effect on chromatic contrast discrimination for stimuli varying in L- and M-cone excitation,” Vis. Neurosci. 23, 495–501 (2006).
[CrossRef] [PubMed]

D. Cao, A. J. Zele, V. C. Smith, and J. Pokorny, “S-cone discrimination for stimuli with spatial and temporal chromatic contrast,” Vis. Neurosci. 25, 349–354 (2008).
[CrossRef] [PubMed]

Vision Res. (9)

J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vision Res. 32, 2165–2175 (1992).
[CrossRef] [PubMed]

M. D. Fairchild and P. Lennie, “Chromatic adaptation to natural and incandescent illuminants,” Vision Res. 32, 2077–2085(1992).
[CrossRef] [PubMed]

A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997).
[CrossRef] [PubMed]

Q. Zaidi, A. Shapiro, and D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[CrossRef] [PubMed]

B. B. Lee, J. Pokorny, V. C. Smith, and J. Kremers, “Responses to pulses and sinusoids in macaque ganglion cells,” Vision Res. 34, 3081–3096 (1994).
[CrossRef] [PubMed]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

J. Walraven and J. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31, 2185–2193 (1991).
[CrossRef] [PubMed]

M. V. Danilova and J. Mollon, “The comparison of spatially separated colours,” Vision Res. 46, 823–836 (2006).
[CrossRef]

H. Wässle, U. Grünert, J. Röhrenbeck, and B. B. Boycott, “Retinal ganglion cell density and cortical magnification factor in the primate,” Vision Res. 30, 1897–1911 (1990).
[CrossRef] [PubMed]

Other (2)

Y. Le Grand, Light, Colour and Vision, 2nd ed. (Chapman & Hall, 1968).

J. Pokorny and V. C. Smith, “Chromatic discrimination,” in The Visual Neurosciences, L.M.Chalupa and J.S.Werner, eds. (MIT, 2004), pp. 908–923.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spatial configuration of the stimulus. A 12 ° 16 ° annulus was surrounded by an inner circular field and an outer rectangular field. A “+” ( 0.14 ° ) served as the fixation, which was located in the center of the inner field in experiment 1 or 6 ° away from the annulus for experiment 2. In both experiments, the fixation had the same distance ( 7 ° ) from a fan-shaped test patch center. The test patch was a section of the annulus with a central angle of 0.056 π .

Fig. 2
Fig. 2

L/M discrimination thresholds with the fixation located in the inner field, expressed as log Δ L trolands as a function of annulus log L trolands. A, red–red, white–white, and green–green pairs; B, red–green and green–red pairs; C, red–white and white–red pairs; D, green–white and white–green pairs. The arrows indicate the adapting chromaticities. The solid lines are fits from the PC-ganglion cell response based model with one adapting field for the control conditions (A) or from the cortical summation model for two adapting fields (B, C, and D).

Fig. 3
Fig. 3

Model fit comparison from the retinal summation and cortical summation models for the data from the red–green pair (A) and the green–red pair (B). The dashed lines are best fits from the retinal summation model. The solid lines are fits from the cortical summation model.

Fig. 4
Fig. 4

L/M discrimination thresholds with the fixation located in the outer field (same format as Fig. 2).

Tables (1)

Tables Icon

Table 1 Fitted Parameters for the Cortical Summation Model for Experiment 1 (Fixation in the Inner Field) and Experiment 2 (Fixation in the Outer Field)

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

R L T = ( L T / l max ) G ( L A ) ,
R M T = ( M T / m max ) G ( M A ) ,
O P P ( + L / M ) = [ R L T k 1 R M T ] = [ L T / l max G ( L A ) k 1 M T / m max G ( M A ) ] ,
O P P C = O P P T k 2 O P P A ,
R O P P = R max · O P P C / ( O P P C + S A T ) ,
O P P C + L / M = [ L T / l max G ( L A ) k 1 M T / m max G ( M A ) ] k 2 [ L A / l max G ( L A ) k 1 M A / m max G ( M A ) ] .
R O P P + L / M = R max · O P P C + L / M / ( O P P C + L / M + S A T ) .
log ( Δ L c ) = log ( L th ) log [ G ( L A ) / l max + G ( M A ) / m max ] + log [ ( O P P C + S A T ) 2 / S A T ] ,
L A 1 , 2 = ( ω 1 L A 1 Q + ω 2 L A 2 Q ) 1 / Q ,
M A 1 , 2 = ( ω 1 M A 1 Q + ω 2 M A 2 Q ) 1 / Q ,
O P P C 1 = O P P T k 4 O P P A 1 ,
O P P C 2 = O P P T k 4 O P P A 2 ,
O P P C 1 , 2 = ( ω 1 O P P C 1 Q + ω 2 O P P C 2 Q ) 1 / Q ,
R O P P 1 , 2 = R max · O P P C 1 , 2 / ( O P P C 1 , 2 + S A T ) .

Metrics