B. Alavikia and O. M. Ramahi, “An efficient method using finite-elements and the surface integral equation to solve the problem of scattering from infinite periodic conducting grating,” Radio Sci. 46, RS1001 (2011).

[CrossRef]

K. Du, “Two transparent boundary conditions for the electromagnetic scattering from two-dimensional overfilled cavities,” J. Comput. Phys. 230, 5822–5835 (2011).

[CrossRef]

B. Alavikia and O. M. Ramahi, “Fundamental limitations on the use of open-region boundary conditions and matched layers to solve the problem of gratings in metallic screens,” ACES J. 25, 652–658 (2010).

F. Wei and Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10, 2531–2536 (2010).

[CrossRef]

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. 96, 113107 (2010).

[CrossRef]

Y. Xiong, Zh. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. 93, 111116 (2008).

Y. Ngu, M. Peckerar, M. Dagenais, J. Barry, and B. Dutt, “Lithography, plasmonics, and subwavelength aperture exposure technology,” J. Vac. Sci. Technol. B 25–6, 2471–2475 (2007).

[CrossRef]

M. A. Basha, S. K. Chaudhuri, S. Safavi-Naeini, and H. J. Eom, “Rigorous formulation for electromagnetic plane-wave scattering from a general-shaped groove in a perfectly conducting plane,” J. Opt. Soc. Am. A 24, 1647–1655(2007).

[CrossRef]

A. Wood, “Analysis of electromagnetic scattering from an overfilled cavity in the ground plane,” J. Comput. Phys. 215, 630–641 (2006).

[CrossRef]

J. Q. Huang and A. H. Wood, “Numerical simulation of electromagnetic scattering induced by an overfilled cavity in the ground plane,” IEEE Antennas Wireless Propag. Lett. 4, 224–228 (2005).

[CrossRef]

T. Van and A. Wood, “Analysis of transient electromagnetic scattering from overfilled cavities,” SIAM J. Appl. Math. 64, 688–708 (2003).

S. Kawata, “Near-field microscope probes utilizing surface plasmon polaritons,” Appl. Phys. 81, 15–27 (2001).

[CrossRef]

T. J. Park, H. J. Eom, and K. Yoshitomi, “Analysis of TM scattering from finite rectangular grooves in a conducting plane,” J. Opt. Soc. Am. A 10, 905–911 (1993).

[CrossRef]

T. J. Park, H. J. Eom, and K. Yoshitomi, “An analytic solution for transverse-magnetic scattering from a rectangular channel in a conducting plane,” J. Appl. Phys. 73, 3571–3573 (1993).

[CrossRef]

T. J. Park, H. J. Eom, and K. Yoshitomi, “An analysis of transverse electric scattering from a rectangular channel in a conducting plane,” Radio Sci. 28, 663–673 (1993).

[CrossRef]

S. H. Kang, H. J. Eom, and T. J. Park, “TM-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).

[CrossRef]

O. M. Ramahi and R. Mittra, “Finite element solution for a class of unbounded geometries,” IEEE Trans. Antennas Propag. 39, 244–250 (1991).

[CrossRef]

K. Barkeshli and J. L. Volakis, “Scattering from narrow rectangular filled grooves,” IEEE Trans. Antenna Propag. 39, 804–810 (1991).

[CrossRef]

K. Barkeshli and J. L. Volakis, “TE scattering by a two-dimensional groove in a ground plane using higher order boundary conditions,” IEEE Trans. Antenna Propag. 38, 1421–1428 (1990).

[CrossRef]

J. M. Jin and J. L. Volakis, “TM scattering by an inhomogeneously filled aperture in a thick conducting plane,” IEE Proc. Microwaves Antennas Propag. 137, 153–159(1990).

[CrossRef]

J. M. Jin and J. L. Volakis, “TE scattering by an inhomogeneously filled thick conducting plane,” IEEE Trans. Antennas Propag. 38, 1280–1286 (1990).

[CrossRef]

D. T. Auckland and R. F. Harrington, “Electromagnetic transmission through a filled slit in a conducting plane of finite thickness, TE case,” IEEE Trans. Microwave Theory Tech. 26, 499–505 (1978).

[CrossRef]

R. F. Harrington and J. R. Mautz, “A generalized network formulation for aperture problems,” IEEE Trans. Antenna Propag. 24, 870–873 (1976).

[CrossRef]

D. T. Auckland and R. F. Harrington, “Electromagnetic transmission through a filled slit in a conducting plane of finite thickness, TE case,” IEEE Trans. Microwave Theory Tech. 26, 499–505 (1978).

[CrossRef]

K. Barkeshli and J. L. Volakis, “Scattering from narrow rectangular filled grooves,” IEEE Trans. Antenna Propag. 39, 804–810 (1991).

[CrossRef]

K. Barkeshli and J. L. Volakis, “TE scattering by a two-dimensional groove in a ground plane using higher order boundary conditions,” IEEE Trans. Antenna Propag. 38, 1421–1428 (1990).

[CrossRef]

Y. Ngu, M. Peckerar, M. Dagenais, J. Barry, and B. Dutt, “Lithography, plasmonics, and subwavelength aperture exposure technology,” J. Vac. Sci. Technol. B 25–6, 2471–2475 (2007).

[CrossRef]

M. A. Basha, S. K. Chaudhuri, S. Safavi-Naeini, and H. J. Eom, “Rigorous formulation for electromagnetic plane-wave scattering from a general-shaped groove in a perfectly conducting plane,” J. Opt. Soc. Am. A 24, 1647–1655(2007).

[CrossRef]

M. A. Basha, S. K. Chaudhuri, and S. Safavi-Naeini, “Electromagnetic scattering from multiple arbitrary shape grooves: a generalized formulation,” in Proceedings of IEEE MTT-S International Microwave Symposium Digest (2007), pp. 1935–1938.

M. A. Basha, S. K. Chaudhuri, S. Safavi-Naeini, and H. J. Eom, “Rigorous formulation for electromagnetic plane-wave scattering from a general-shaped groove in a perfectly conducting plane,” J. Opt. Soc. Am. A 24, 1647–1655(2007).

[CrossRef]

M. A. Basha, S. K. Chaudhuri, and S. Safavi-Naeini, “Electromagnetic scattering from multiple arbitrary shape grooves: a generalized formulation,” in Proceedings of IEEE MTT-S International Microwave Symposium Digest (2007), pp. 1935–1938.

Y. Ngu, M. Peckerar, M. Dagenais, J. Barry, and B. Dutt, “Lithography, plasmonics, and subwavelength aperture exposure technology,” J. Vac. Sci. Technol. B 25–6, 2471–2475 (2007).

[CrossRef]

K. Du, “Two transparent boundary conditions for the electromagnetic scattering from two-dimensional overfilled cavities,” J. Comput. Phys. 230, 5822–5835 (2011).

[CrossRef]

Y. Ngu, M. Peckerar, M. Dagenais, J. Barry, and B. Dutt, “Lithography, plasmonics, and subwavelength aperture exposure technology,” J. Vac. Sci. Technol. B 25–6, 2471–2475 (2007).

[CrossRef]

M. A. Basha, S. K. Chaudhuri, S. Safavi-Naeini, and H. J. Eom, “Rigorous formulation for electromagnetic plane-wave scattering from a general-shaped groove in a perfectly conducting plane,” J. Opt. Soc. Am. A 24, 1647–1655(2007).

[CrossRef]

T. J. Park, S. H. Kang, and H. J. Eom, “TE scattering from a slit in a thick conducting screen: Revisited,” IEEE Trans. Antenna Propag. 42, 112–114 (1994).

[CrossRef]

T. J. Park, H. J. Eom, and K. Yoshitomi, “An analysis of transverse electric scattering from a rectangular channel in a conducting plane,” Radio Sci. 28, 663–673 (1993).

[CrossRef]

T. J. Park, H. J. Eom, and K. Yoshitomi, “Analysis of TM scattering from finite rectangular grooves in a conducting plane,” J. Opt. Soc. Am. A 10, 905–911 (1993).

[CrossRef]

T. J. Park, H. J. Eom, and K. Yoshitomi, “An analytic solution for transverse-magnetic scattering from a rectangular channel in a conducting plane,” J. Appl. Phys. 73, 3571–3573 (1993).

[CrossRef]

S. H. Kang, H. J. Eom, and T. J. Park, “TM-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).

[CrossRef]

H. J. Eom, “Slit array antenna,” in Electromagnetic Wave Theory for Boundary-Value Problems (Springer, 2004), pp. 251–257.

D. T. Auckland and R. F. Harrington, “Electromagnetic transmission through a filled slit in a conducting plane of finite thickness, TE case,” IEEE Trans. Microwave Theory Tech. 26, 499–505 (1978).

[CrossRef]

R. F. Harrington and J. R. Mautz, “A generalized network formulation for aperture problems,” IEEE Trans. Antenna Propag. 24, 870–873 (1976).

[CrossRef]

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. 96, 113107 (2010).

[CrossRef]

J. Q. Huang and A. H. Wood, “Numerical simulation of electromagnetic scattering induced by an overfilled cavity in the ground plane,” IEEE Antennas Wireless Propag. Lett. 4, 224–228 (2005).

[CrossRef]

J. M. Jin and J. L. Volakis, “TE scattering by an inhomogeneously filled thick conducting plane,” IEEE Trans. Antennas Propag. 38, 1280–1286 (1990).

[CrossRef]

J. M. Jin and J. L. Volakis, “TM scattering by an inhomogeneously filled aperture in a thick conducting plane,” IEE Proc. Microwaves Antennas Propag. 137, 153–159(1990).

[CrossRef]

T. J. Park, S. H. Kang, and H. J. Eom, “TE scattering from a slit in a thick conducting screen: Revisited,” IEEE Trans. Antenna Propag. 42, 112–114 (1994).

[CrossRef]

S. H. Kang, H. J. Eom, and T. J. Park, “TM-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).

[CrossRef]

S. Kawata, “Near-field microscope probes utilizing surface plasmon polaritons,” Appl. Phys. 81, 15–27 (2001).

[CrossRef]

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. 96, 113107 (2010).

[CrossRef]

F. Wei and Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10, 2531–2536 (2010).

[CrossRef]

Y. Xiong, Zh. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. 93, 111116 (2008).

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. 96, 113107 (2010).

[CrossRef]

R. F. Harrington and J. R. Mautz, “A generalized network formulation for aperture problems,” IEEE Trans. Antenna Propag. 24, 870–873 (1976).

[CrossRef]

O. M. Ramahi and R. Mittra, “Finite element solution for a class of unbounded geometries,” IEEE Trans. Antennas Propag. 39, 244–250 (1991).

[CrossRef]

Y. Ngu, M. Peckerar, M. Dagenais, J. Barry, and B. Dutt, “Lithography, plasmonics, and subwavelength aperture exposure technology,” J. Vac. Sci. Technol. B 25–6, 2471–2475 (2007).

[CrossRef]

T. J. Park, S. H. Kang, and H. J. Eom, “TE scattering from a slit in a thick conducting screen: Revisited,” IEEE Trans. Antenna Propag. 42, 112–114 (1994).

[CrossRef]

T. J. Park, H. J. Eom, and K. Yoshitomi, “An analysis of transverse electric scattering from a rectangular channel in a conducting plane,” Radio Sci. 28, 663–673 (1993).

[CrossRef]

T. J. Park, H. J. Eom, and K. Yoshitomi, “Analysis of TM scattering from finite rectangular grooves in a conducting plane,” J. Opt. Soc. Am. A 10, 905–911 (1993).

[CrossRef]

S. H. Kang, H. J. Eom, and T. J. Park, “TM-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).

[CrossRef]

T. J. Park, H. J. Eom, and K. Yoshitomi, “An analytic solution for transverse-magnetic scattering from a rectangular channel in a conducting plane,” J. Appl. Phys. 73, 3571–3573 (1993).

[CrossRef]

Y. Ngu, M. Peckerar, M. Dagenais, J. Barry, and B. Dutt, “Lithography, plasmonics, and subwavelength aperture exposure technology,” J. Vac. Sci. Technol. B 25–6, 2471–2475 (2007).

[CrossRef]

B. Alavikia and O. M. Ramahi, “An efficient method using finite-elements and the surface integral equation to solve the problem of scattering from infinite periodic conducting grating,” Radio Sci. 46, RS1001 (2011).

[CrossRef]

B. Alavikia and O. M. Ramahi, “Fundamental limitations on the use of open-region boundary conditions and matched layers to solve the problem of gratings in metallic screens,” ACES J. 25, 652–658 (2010).

B. Alavikia and O. M. Ramahi, “Finite-element solution of the problem of scattering from cavities in metallic screens using the surface integral equation as a boundary constraint,” J. Opt. Soc. Am. A 26, 1915–1925 (2009).

[CrossRef]

O. M. Ramahi and R. Mittra, “Finite element solution for a class of unbounded geometries,” IEEE Trans. Antennas Propag. 39, 244–250 (1991).

[CrossRef]

M. A. Basha, S. K. Chaudhuri, S. Safavi-Naeini, and H. J. Eom, “Rigorous formulation for electromagnetic plane-wave scattering from a general-shaped groove in a perfectly conducting plane,” J. Opt. Soc. Am. A 24, 1647–1655(2007).

[CrossRef]

M. A. Basha, S. K. Chaudhuri, and S. Safavi-Naeini, “Electromagnetic scattering from multiple arbitrary shape grooves: a generalized formulation,” in Proceedings of IEEE MTT-S International Microwave Symposium Digest (2007), pp. 1935–1938.

T. Van and A. Wood, “Analysis of transient electromagnetic scattering from overfilled cavities,” SIAM J. Appl. Math. 64, 688–708 (2003).

K. Barkeshli and J. L. Volakis, “Scattering from narrow rectangular filled grooves,” IEEE Trans. Antenna Propag. 39, 804–810 (1991).

[CrossRef]

J. M. Jin and J. L. Volakis, “TE scattering by an inhomogeneously filled thick conducting plane,” IEEE Trans. Antennas Propag. 38, 1280–1286 (1990).

[CrossRef]

K. Barkeshli and J. L. Volakis, “TE scattering by a two-dimensional groove in a ground plane using higher order boundary conditions,” IEEE Trans. Antenna Propag. 38, 1421–1428 (1990).

[CrossRef]

J. M. Jin and J. L. Volakis, “TM scattering by an inhomogeneously filled aperture in a thick conducting plane,” IEE Proc. Microwaves Antennas Propag. 137, 153–159(1990).

[CrossRef]

F. Wei and Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10, 2531–2536 (2010).

[CrossRef]

A. Wood, “Analysis of electromagnetic scattering from an overfilled cavity in the ground plane,” J. Comput. Phys. 215, 630–641 (2006).

[CrossRef]

T. Van and A. Wood, “Analysis of transient electromagnetic scattering from overfilled cavities,” SIAM J. Appl. Math. 64, 688–708 (2003).

J. Q. Huang and A. H. Wood, “Numerical simulation of electromagnetic scattering induced by an overfilled cavity in the ground plane,” IEEE Antennas Wireless Propag. Lett. 4, 224–228 (2005).

[CrossRef]

Y. Xiong, Zh. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. 93, 111116 (2008).

T. J. Park, H. J. Eom, and K. Yoshitomi, “An analysis of transverse electric scattering from a rectangular channel in a conducting plane,” Radio Sci. 28, 663–673 (1993).

[CrossRef]

T. J. Park, H. J. Eom, and K. Yoshitomi, “Analysis of TM scattering from finite rectangular grooves in a conducting plane,” J. Opt. Soc. Am. A 10, 905–911 (1993).

[CrossRef]

T. J. Park, H. J. Eom, and K. Yoshitomi, “An analytic solution for transverse-magnetic scattering from a rectangular channel in a conducting plane,” J. Appl. Phys. 73, 3571–3573 (1993).

[CrossRef]

Y. Xiong, Zh. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. 93, 111116 (2008).

B. Alavikia and O. M. Ramahi, “Fundamental limitations on the use of open-region boundary conditions and matched layers to solve the problem of gratings in metallic screens,” ACES J. 25, 652–658 (2010).

S. Kawata, “Near-field microscope probes utilizing surface plasmon polaritons,” Appl. Phys. 81, 15–27 (2001).

[CrossRef]

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. 96, 113107 (2010).

[CrossRef]

Y. Xiong, Zh. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. 93, 111116 (2008).

J. M. Jin and J. L. Volakis, “TM scattering by an inhomogeneously filled aperture in a thick conducting plane,” IEE Proc. Microwaves Antennas Propag. 137, 153–159(1990).

[CrossRef]

J. Q. Huang and A. H. Wood, “Numerical simulation of electromagnetic scattering induced by an overfilled cavity in the ground plane,” IEEE Antennas Wireless Propag. Lett. 4, 224–228 (2005).

[CrossRef]

T. J. Park, S. H. Kang, and H. J. Eom, “TE scattering from a slit in a thick conducting screen: Revisited,” IEEE Trans. Antenna Propag. 42, 112–114 (1994).

[CrossRef]

R. F. Harrington and J. R. Mautz, “A generalized network formulation for aperture problems,” IEEE Trans. Antenna Propag. 24, 870–873 (1976).

[CrossRef]

K. Barkeshli and J. L. Volakis, “TE scattering by a two-dimensional groove in a ground plane using higher order boundary conditions,” IEEE Trans. Antenna Propag. 38, 1421–1428 (1990).

[CrossRef]

K. Barkeshli and J. L. Volakis, “Scattering from narrow rectangular filled grooves,” IEEE Trans. Antenna Propag. 39, 804–810 (1991).

[CrossRef]

J. M. Jin and J. L. Volakis, “TE scattering by an inhomogeneously filled thick conducting plane,” IEEE Trans. Antennas Propag. 38, 1280–1286 (1990).

[CrossRef]

O. M. Ramahi and R. Mittra, “Finite element solution for a class of unbounded geometries,” IEEE Trans. Antennas Propag. 39, 244–250 (1991).

[CrossRef]

S. H. Kang, H. J. Eom, and T. J. Park, “TM-scattering from a slit in a thick conducting screen: revisited,” IEEE Trans. Microwave Theory Tech. 41, 895–899 (1993).

[CrossRef]

D. T. Auckland and R. F. Harrington, “Electromagnetic transmission through a filled slit in a conducting plane of finite thickness, TE case,” IEEE Trans. Microwave Theory Tech. 26, 499–505 (1978).

[CrossRef]

T. J. Park, H. J. Eom, and K. Yoshitomi, “An analytic solution for transverse-magnetic scattering from a rectangular channel in a conducting plane,” J. Appl. Phys. 73, 3571–3573 (1993).

[CrossRef]

A. Wood, “Analysis of electromagnetic scattering from an overfilled cavity in the ground plane,” J. Comput. Phys. 215, 630–641 (2006).

[CrossRef]

K. Du, “Two transparent boundary conditions for the electromagnetic scattering from two-dimensional overfilled cavities,” J. Comput. Phys. 230, 5822–5835 (2011).

[CrossRef]

R. A. Depine and D. C. Skigin, “Scattering from metallic surfaces having a finite number of rectangular grooves,” J. Opt. Soc. Am. A 11, 2844–2850 (1994).

[CrossRef]

Y.-L. Kok, “Boundary-value solution to electromagnetic scattering by a rectangular groove in a ground plane,” J. Opt. Soc. Am. A 9, 302–311 (1992).

[CrossRef]

T. J. Park, H. J. Eom, and K. Yoshitomi, “Analysis of TM scattering from finite rectangular grooves in a conducting plane,” J. Opt. Soc. Am. A 10, 905–911 (1993).

[CrossRef]

M. A. Basha, S. K. Chaudhuri, S. Safavi-Naeini, and H. J. Eom, “Rigorous formulation for electromagnetic plane-wave scattering from a general-shaped groove in a perfectly conducting plane,” J. Opt. Soc. Am. A 24, 1647–1655(2007).

[CrossRef]

B. Alavikia and O. M. Ramahi, “Finite-element solution of the problem of scattering from cavities in metallic screens using the surface integral equation as a boundary constraint,” J. Opt. Soc. Am. A 26, 1915–1925 (2009).

[CrossRef]

Y. Ngu, M. Peckerar, M. Dagenais, J. Barry, and B. Dutt, “Lithography, plasmonics, and subwavelength aperture exposure technology,” J. Vac. Sci. Technol. B 25–6, 2471–2475 (2007).

[CrossRef]

F. Wei and Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10, 2531–2536 (2010).

[CrossRef]

B. Alavikia and O. M. Ramahi, “An efficient method using finite-elements and the surface integral equation to solve the problem of scattering from infinite periodic conducting grating,” Radio Sci. 46, RS1001 (2011).

[CrossRef]

T. J. Park, H. J. Eom, and K. Yoshitomi, “An analysis of transverse electric scattering from a rectangular channel in a conducting plane,” Radio Sci. 28, 663–673 (1993).

[CrossRef]

T. Van and A. Wood, “Analysis of transient electromagnetic scattering from overfilled cavities,” SIAM J. Appl. Math. 64, 688–708 (2003).

H. J. Eom, “Slit array antenna,” in Electromagnetic Wave Theory for Boundary-Value Problems (Springer, 2004), pp. 251–257.

M. A. Basha, S. K. Chaudhuri, and S. Safavi-Naeini, “Electromagnetic scattering from multiple arbitrary shape grooves: a generalized formulation,” in Proceedings of IEEE MTT-S International Microwave Symposium Digest (2007), pp. 1935–1938.

COMSOL Version 3.5, “COMSOL MULTIPHYSICS,” http://www.comsol.com/ .