Abstract

In this paper, we propose the space-propagation model for the Tm-doped fiber laser. This model builds the space-propagation equations for the population densities at different energy levels as well as the pump and laser powers. Compared to the conventional models, this model has significant advantage in reducing the computing time significantly when the steady-state population density rate equations cannot be solved analytically. On the basis of the model, the power characteristic and optimization for the Tm-doped fiber laser are investigated. Excellent agreements are achieved between the numerical simulation and experimental results.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23, 1462–1464 (1998).
    [CrossRef]
  2. D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fiber laser,” Electron. Lett. 24, 1222–1223 (1988).
    [CrossRef]
  3. G. Frith, D. G. Lancaster, and S. D. Jackson, “85 W Tm3+-doped silica fibre laser,” Electron. Lett. 41, 687–688 (2005).
    [CrossRef]
  4. J. Geng, J. Wu, S. Jiang, and J. Yu, “Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2-μm,” Opt. Lett. 32, 355–357 (2007).
    [CrossRef]
  5. Z. Zhang, D. Y. Shen, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, “High-power Tm-doped fiber distributed-feedback laser at 1943 nm,” Opt. Lett. 33, 2059–2061 (2008).
    [CrossRef]
  6. J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, “Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber,” Opt. Lett. 34, 3493–3495 (2009).
    [CrossRef]
  7. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett. 34, 1204–1206 (2009).
    [CrossRef]
  8. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
    [CrossRef]
  9. Y. Zhang, S. Song, Y. Tian, and Y. Wang, “Ld-clad-pumped all-fiber Tm3+-doped silica fiber laser,” Chin. Phys. Lett. 26, 084211(2009).
    [CrossRef]
  10. T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. F. Moulton, “1 kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).
  11. Y. Tang, F. Li, and J. Xu, “Short-pulse-width self-pulsed Tm3+-doped silica fiber lasers,” J. Opt. Soc. Am. B 28, 1051–1054 (2011).
    [CrossRef]
  12. S. D. Jackson and S. Mossman, “Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers,” Appl. Opt. 42, 2702–2707 (2003).
    [CrossRef]
  13. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber Lasers,” J. Lightwave Technol. 17, 948–956 (1999).
    [CrossRef]
  14. G. Androz, M. Bernier, D. Faucher, and R. Vallée, “2.3 W single transverse mode thulium-doped ZBLAN fiber laser at 1480 nm,” Opt. Express 16, 16019–16031 (2008).
    [CrossRef]
  15. P. Zhao, J. Liu, C. Zhao, H. Yang, and J. Wen, “The slope efficiency of 2 μm thulium doped fiber laser,” Proc. SPIE 7843, 784306 (2010).
    [CrossRef]
  16. X. Zhang, B. Jiang, G. Dong, L. Li, and Y. Peng, “Mechanism analysis and numerical investigation of optical bistability in 2 μm Tm, Ho:YLF solid laser,” Proc. SPIE 7843, 78430H(2010).
    [CrossRef]
  17. B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho+3 and Tm3+-Ho3+ doped near infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4, 797–810 (1995).
    [CrossRef]
  18. R. Reisfeld and M. Eyal, “Possible ways of relaxations for excited states of rare earth ions in amorphous media,” J. Phys. Colloq. 46, C7349–C7355 (1985).
    [CrossRef]
  19. R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1, 111–124 (1992).
    [CrossRef]
  20. G. Frith, A. Carter, B. Samson, J. Farroni, K. Farley, and K. Tankala, “Highly efficient 70 W all-fibre Tm-doped laser system operating at 1908 nm,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008 (IEEE, 2008), pp. 1–2.

2011 (1)

2010 (3)

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. F. Moulton, “1 kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

P. Zhao, J. Liu, C. Zhao, H. Yang, and J. Wen, “The slope efficiency of 2 μm thulium doped fiber laser,” Proc. SPIE 7843, 784306 (2010).
[CrossRef]

X. Zhang, B. Jiang, G. Dong, L. Li, and Y. Peng, “Mechanism analysis and numerical investigation of optical bistability in 2 μm Tm, Ho:YLF solid laser,” Proc. SPIE 7843, 78430H(2010).
[CrossRef]

2009 (4)

J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, “Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber,” Opt. Lett. 34, 3493–3495 (2009).
[CrossRef]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett. 34, 1204–1206 (2009).
[CrossRef]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Y. Zhang, S. Song, Y. Tian, and Y. Wang, “Ld-clad-pumped all-fiber Tm3+-doped silica fiber laser,” Chin. Phys. Lett. 26, 084211(2009).
[CrossRef]

2008 (2)

2007 (1)

2005 (1)

G. Frith, D. G. Lancaster, and S. D. Jackson, “85 W Tm3+-doped silica fibre laser,” Electron. Lett. 41, 687–688 (2005).
[CrossRef]

2003 (1)

1999 (1)

1998 (1)

1995 (1)

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho+3 and Tm3+-Ho3+ doped near infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4, 797–810 (1995).
[CrossRef]

1992 (1)

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1, 111–124 (1992).
[CrossRef]

1988 (1)

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fiber laser,” Electron. Lett. 24, 1222–1223 (1988).
[CrossRef]

1985 (1)

R. Reisfeld and M. Eyal, “Possible ways of relaxations for excited states of rare earth ions in amorphous media,” J. Phys. Colloq. 46, C7349–C7355 (1985).
[CrossRef]

Amzajerdian, F.

Androz, G.

Bernier, M.

Book, L. D.

Boyland, A. J.

Carter, A.

G. Frith, A. Carter, B. Samson, J. Farroni, K. Farley, and K. Tankala, “Highly efficient 70 W all-fibre Tm-doped laser system operating at 1908 nm,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008 (IEEE, 2008), pp. 1–2.

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Clarkson, W. A.

Dong, G.

X. Zhang, B. Jiang, G. Dong, L. Li, and Y. Peng, “Mechanism analysis and numerical investigation of optical bistability in 2 μm Tm, Ho:YLF solid laser,” Proc. SPIE 7843, 78430H(2010).
[CrossRef]

Ehrenreich, T.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. F. Moulton, “1 kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Eyal, M.

R. Reisfeld and M. Eyal, “Possible ways of relaxations for excited states of rare earth ions in amorphous media,” J. Phys. Colloq. 46, C7349–C7355 (1985).
[CrossRef]

Farley, K.

G. Frith, A. Carter, B. Samson, J. Farroni, K. Farley, and K. Tankala, “Highly efficient 70 W all-fibre Tm-doped laser system operating at 1908 nm,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008 (IEEE, 2008), pp. 1–2.

Farroni, J.

G. Frith, A. Carter, B. Samson, J. Farroni, K. Farley, and K. Tankala, “Highly efficient 70 W all-fibre Tm-doped laser system operating at 1908 nm,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008 (IEEE, 2008), pp. 1–2.

Faucher, D.

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

G. Frith, D. G. Lancaster, and S. D. Jackson, “85 W Tm3+-doped silica fibre laser,” Electron. Lett. 41, 687–688 (2005).
[CrossRef]

G. Frith, A. Carter, B. Samson, J. Farroni, K. Farley, and K. Tankala, “Highly efficient 70 W all-fibre Tm-doped laser system operating at 1908 nm,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008 (IEEE, 2008), pp. 1–2.

Geng, J.

Goodno, G. D.

Hanna, D. C.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fiber laser,” Electron. Lett. 24, 1222–1223 (1988).
[CrossRef]

Ibsen, M.

Izumitani, T.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho+3 and Tm3+-Ho3+ doped near infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4, 797–810 (1995).
[CrossRef]

Jackson, S. D.

Jani, M. G.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1, 111–124 (1992).
[CrossRef]

Jauncey, I. M.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fiber laser,” Electron. Lett. 24, 1222–1223 (1988).
[CrossRef]

Jiang, B.

X. Zhang, B. Jiang, G. Dong, L. Li, and Y. Peng, “Mechanism analysis and numerical investigation of optical bistability in 2 μm Tm, Ho:YLF solid laser,” Proc. SPIE 7843, 78430H(2010).
[CrossRef]

Jiang, S.

King, T. A.

Kokta, M.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1, 111–124 (1992).
[CrossRef]

Lancaster, D. G.

G. Frith, D. G. Lancaster, and S. D. Jackson, “85 W Tm3+-doped silica fibre laser,” Electron. Lett. 41, 687–688 (2005).
[CrossRef]

Leveille, R.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. F. Moulton, “1 kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Li, F.

Li, L.

X. Zhang, B. Jiang, G. Dong, L. Li, and Y. Peng, “Mechanism analysis and numerical investigation of optical bistability in 2 μm Tm, Ho:YLF solid laser,” Proc. SPIE 7843, 78430H(2010).
[CrossRef]

Liu, J.

P. Zhao, J. Liu, C. Zhao, H. Yang, and J. Wen, “The slope efficiency of 2 μm thulium doped fiber laser,” Proc. SPIE 7843, 784306 (2010).
[CrossRef]

Luo, T.

Majid, I.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. F. Moulton, “1 kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Mossman, S.

Moulton, P. F.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. F. Moulton, “1 kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Peng, B.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho+3 and Tm3+-Ho3+ doped near infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4, 797–810 (1995).
[CrossRef]

Peng, Y.

X. Zhang, B. Jiang, G. Dong, L. Li, and Y. Peng, “Mechanism analysis and numerical investigation of optical bistability in 2 μm Tm, Ho:YLF solid laser,” Proc. SPIE 7843, 78430H(2010).
[CrossRef]

Percival, R. M.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fiber laser,” Electron. Lett. 24, 1222–1223 (1988).
[CrossRef]

Perry, I. R.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fiber laser,” Electron. Lett. 24, 1222–1223 (1988).
[CrossRef]

Petrin, R. R.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1, 111–124 (1992).
[CrossRef]

Powell, R. C.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1, 111–124 (1992).
[CrossRef]

Reisfeld, R.

R. Reisfeld and M. Eyal, “Possible ways of relaxations for excited states of rare earth ions in amorphous media,” J. Phys. Colloq. 46, C7349–C7355 (1985).
[CrossRef]

Rines, G.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. F. Moulton, “1 kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Rothenberg, J. E.

Sahu, J. K.

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

G. Frith, A. Carter, B. Samson, J. Farroni, K. Farley, and K. Tankala, “Highly efficient 70 W all-fibre Tm-doped laser system operating at 1908 nm,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008 (IEEE, 2008), pp. 1–2.

Shen, D. Y.

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Smart, R. G.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fiber laser,” Electron. Lett. 24, 1222–1223 (1988).
[CrossRef]

Song, S.

Y. Zhang, S. Song, Y. Tian, and Y. Wang, “Ld-clad-pumped all-fiber Tm3+-doped silica fiber laser,” Chin. Phys. Lett. 26, 084211(2009).
[CrossRef]

Suni, P. J.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fiber laser,” Electron. Lett. 24, 1222–1223 (1988).
[CrossRef]

Tang, Y.

Tankala, K.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. F. Moulton, “1 kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

G. Frith, A. Carter, B. Samson, J. Farroni, K. Farley, and K. Tankala, “Highly efficient 70 W all-fibre Tm-doped laser system operating at 1908 nm,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008 (IEEE, 2008), pp. 1–2.

Tian, Y.

Y. Zhang, S. Song, Y. Tian, and Y. Wang, “Ld-clad-pumped all-fiber Tm3+-doped silica fiber laser,” Chin. Phys. Lett. 26, 084211(2009).
[CrossRef]

Townsend, J. E.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fiber laser,” Electron. Lett. 24, 1222–1223 (1988).
[CrossRef]

Tropper, A. C.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fiber laser,” Electron. Lett. 24, 1222–1223 (1988).
[CrossRef]

Vallée, R.

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

Wang, Q.

Wang, Y.

Y. Zhang, S. Song, Y. Tian, and Y. Wang, “Ld-clad-pumped all-fiber Tm3+-doped silica fiber laser,” Chin. Phys. Lett. 26, 084211(2009).
[CrossRef]

Wen, J.

P. Zhao, J. Liu, C. Zhao, H. Yang, and J. Wen, “The slope efficiency of 2 μm thulium doped fiber laser,” Proc. SPIE 7843, 784306 (2010).
[CrossRef]

Wu, J.

Xu, J.

Yang, H.

P. Zhao, J. Liu, C. Zhao, H. Yang, and J. Wen, “The slope efficiency of 2 μm thulium doped fiber laser,” Proc. SPIE 7843, 784306 (2010).
[CrossRef]

Yu, J.

Zhang, X.

X. Zhang, B. Jiang, G. Dong, L. Li, and Y. Peng, “Mechanism analysis and numerical investigation of optical bistability in 2 μm Tm, Ho:YLF solid laser,” Proc. SPIE 7843, 78430H(2010).
[CrossRef]

Zhang, Y.

Y. Zhang, S. Song, Y. Tian, and Y. Wang, “Ld-clad-pumped all-fiber Tm3+-doped silica fiber laser,” Chin. Phys. Lett. 26, 084211(2009).
[CrossRef]

Zhang, Z.

Zhao, C.

P. Zhao, J. Liu, C. Zhao, H. Yang, and J. Wen, “The slope efficiency of 2 μm thulium doped fiber laser,” Proc. SPIE 7843, 784306 (2010).
[CrossRef]

Zhao, P.

P. Zhao, J. Liu, C. Zhao, H. Yang, and J. Wen, “The slope efficiency of 2 μm thulium doped fiber laser,” Proc. SPIE 7843, 784306 (2010).
[CrossRef]

Appl. Opt. (1)

Chin. Phys. Lett. (1)

Y. Zhang, S. Song, Y. Tian, and Y. Wang, “Ld-clad-pumped all-fiber Tm3+-doped silica fiber laser,” Chin. Phys. Lett. 26, 084211(2009).
[CrossRef]

Electron. Lett. (2)

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fiber laser,” Electron. Lett. 24, 1222–1223 (1988).
[CrossRef]

G. Frith, D. G. Lancaster, and S. D. Jackson, “85 W Tm3+-doped silica fibre laser,” Electron. Lett. 41, 687–688 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15, 85–92 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Colloq. (1)

R. Reisfeld and M. Eyal, “Possible ways of relaxations for excited states of rare earth ions in amorphous media,” J. Phys. Colloq. 46, C7349–C7355 (1985).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. (2)

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1, 111–124 (1992).
[CrossRef]

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho+3 and Tm3+-Ho3+ doped near infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4, 797–810 (1995).
[CrossRef]

Proc. SPIE (3)

P. Zhao, J. Liu, C. Zhao, H. Yang, and J. Wen, “The slope efficiency of 2 μm thulium doped fiber laser,” Proc. SPIE 7843, 784306 (2010).
[CrossRef]

X. Zhang, B. Jiang, G. Dong, L. Li, and Y. Peng, “Mechanism analysis and numerical investigation of optical bistability in 2 μm Tm, Ho:YLF solid laser,” Proc. SPIE 7843, 78430H(2010).
[CrossRef]

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. F. Moulton, “1 kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 758016 (2010).

Other (1)

G. Frith, A. Carter, B. Samson, J. Farroni, K. Farley, and K. Tankala, “Highly efficient 70 W all-fibre Tm-doped laser system operating at 1908 nm,” in Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT 2008 (IEEE, 2008), pp. 1–2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic illustration of the Tm-doped fiber laser; (a) the energy levels and (b) the setup of a laser.

Fig. 2.
Fig. 2.

Absorption and emission cross sections of Tm-doped silica fiber.

Fig. 3.
Fig. 3.

Laser output power as a function of the fiber length for different pump powers.

Fig. 4.
Fig. 4.

Calculations of (a) slope efficiency as a function of the fiber length for three different Tm doping concentrations and (b) threshold pump power with variation in the fiber length for three different Tm doping concentrations.

Fig. 5.
Fig. 5.

System configuration of the 30 W all-fiberized Tm-doped fiber master oscillator power amplifier.

Fig. 6.
Fig. 6.

Comparison between the numerical simulation and the experimental result of (a) seed laser or (b) preamplifier, and (c) main amplifier.

Tables (1)

Tables Icon

Table 1. Comparisons between the Measured and Theoretical Results

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

dN1dt=A31N3+(A21+γ2)N2N1τ1+2(CR1+CR2)lm(N1W10lN0W01l),
dN2dt=(A32+γ3)N3N2τ2CR2,
dN3dt=N0W03N3τ3CR1,
N0+N1+N2+N3=N,
dNl(f,r)dt=N1W10(f,r)lN0W01(f,r)lNl(f,r)τRl,l=1m,
dNp(f,r)dt=N0W03(f,r)Np(f,r)τRp,
W03f=λpΓphνAcoreσa(λp)Pf(z),W03r=λpΓphνAcoreσa(λp)Pr(z),W03=W03,f+W03,r,
W10fl=λlΓshνAcoreσe(λl)Sfl(z),l=1m,W10rl=λlΓshνAcoreσe(λl)Srl(z),l=1m,W10l=W10fl+W10rl,l=1m,
W01fl=λlΓshνAcoreσa(λl)Sfl(z),l=1m,W01rl=λlΓshνAcoreσa(λl)Srl(z),l=1m,W01l=W01fl+W01rl,l=1m.
CR1=k3101N3N0k1310N12,
CR2=k2101N2N0k1210N12.
A31N3+(A21+Γ2)N2N1τ1+2(CR1+CR2)lm(N1W10lN0W01l)=0,
(A32+Γ3)N3N2τ2CR2=0,
N0W03N3τ3CR1=0,
N0+N1+N2+N3=N,
dPf,r(z)dz=[ΓpN0(z)σa(λp)+δp]Pf,r(z),
dSf,rl(z)dz=±[Γs(N1(z)σe(vl)N0(z)σa(vl))δs]Sf,rl(z),l=1m,
dN1dz=f1(N0,N1,N2,N3,Pf,r(z),,Sf,rl(z),),
dN2dz=f2(N0,N1,N2,N3,Pf,r(z),,Sf,rl(z),),
dN3dz=f3(N0,N1,N2,N3,Pf,r(z),,Sf,rl(z),),
dN0dz=dN1dzdN2dzdN3dz,
dPf,r(z)dz=[ΓpN0(z)σa(λp)+δp]Pf,r(z),
dSf,rl(z)dz=±[Γs(N1(z)σe(vl)N0(z)σa(vl))δs]Sf,rl(z),l=1m,
dNphotondt=(N1σe(λ¯s)N0σa(λ¯s))νNphotonNphotonτ,
N1tσe(λ¯s)N0tσa(λ¯s)=δ(λ¯s)L,
δ(λ¯s)=δs(λ¯s)+12ln(1R1(λ¯s)R2(λ¯s)),
A31N3t+(A21+Γ2)N2tN1tτ1+2(CR1+CR2)=0,
(A32+Γ3)N3tN2tτ2CR2=0,
N1tσe(λ¯s)N0tσa(λ¯s)=δ(λ¯s)L,
N0t+N1t+N2t+N3t=N.
Pth=hνλpVN0tW03=hνλpV(N3tτ3+CR1),
Pth=hνλpV{1τ3(Nδ(λ¯s)σe(λ¯s)L)k1310δ(λ¯s)2σe(λ¯s)2L2+[k3101(Nδ(λ¯s)σe(λ¯s)L)1τ3(1+σa(λ¯s)σe(λ¯s))2k1310σa(λ¯s)δ(λ¯s)σe(λ¯s)2L]N0t[k3101(1+σa(λ¯s)σe(λ¯s))+k1310σa(λ¯s)2σe(λ¯s)2]N0t2},
N0t=14[k1310σa(λ¯s)2σe(λ¯s)2+k3101(1+σa(λ¯s)σe(λ¯s))][2k3101(Nδ(λ¯s)σe(λ¯s)L)4k1310σa(λ¯s)δ(λ¯s)σe(λ¯s)2LA31σa(λ¯s)σe(λ¯s)(A31+1τ1)+[2k3101(Nδ(λ¯s)σe(λ¯s)L)4k1310σa(λ¯s)δ(λ¯s)σe(λ¯s)2LA31σa(λ¯s)σe(λ¯s)(A31+1τ1)]+8[k1310σa(λ¯s)2σe(λ¯s)2+k3101(1+σa(λ¯s)σe(λ¯s))][A31Nδ(λ¯s)σe(λ¯s)L(A31+1τ1)2k1310δ(λ¯s)2σe(λ¯s)2L2]].
g(λl)=N1σe(λl)N0σa(λl)δ(λl).
g(λl)=τ1Δ(I(λl))1+lI(λl)Isat(λl)δ(λl),
Δ(I(λl))=γ(A31σe(λl)+σa(λl)τ1A30σa(λl))σa(λl)τ1N+(2σe(λl)+σa(λl))(2k1310γNk1310N2k1310γ2)+{β(A31σe(λl)+σa(λl)τ1A30σa(λl))+σa(λl)W03+(2σe(λl)+σa(λl))[γ(k31012k1310)+2k1310N(1+β)2k1310βγ]}N0+(2σe(λl)+σa(λl))[β(k31012k1310)k1310(1+β2)]N02
β=1hνlλl(σe(λl)+σa(λl))I(λl)+2W03+1τ11hνlλlσe(λl)I(λl)+1τ12A30A31,
γ=N(1hνlλlσe(λl)I(λl)+1τ1)1hνlλlσe(λl)I(λl)+1τ12A30A31.
Isat(λl)=hντ1λl(σe(λl)+σa(λl)).
N0t2k3101NA31σa(λ¯s)σe(λ¯s)(A31+1τ1)4k3101(1+σa(λ¯s)σe(λ¯s))k1310δ(λ¯s)2k3101σe(λ¯s)δ(λ¯s)+2k1310σa(λ¯s)δ(λ¯s)1L.
PthhνλpScorek1310δ(λ¯s)2σe(λ¯s)2{2k3101δ(λ¯s)Rσe(λ¯s)+4k1310σa(λ¯s)δ(λ¯s)Rσe(λ¯s)2+4k3101k1310δ(λ¯s)2R2σe(λ¯s)21}1LhνλpScore{k3101δ(λ¯s)2σe(λ¯s)(1+4k1310δ(λ¯s)Rσe(λ¯s))N+(1τ3A314)δ(λ¯s)σe(λ¯s)},
R=2k3101δ(λ¯s)σe(λ¯s)+4k1310σa(λ¯s)δ(λ¯s)σe(λ¯s)2.
PthhνλpScore{(NΛ4k3101)(1τ3+Λ4)L(1τ3+k3101N)δ(λ¯s)2σe(λ¯s)},
Λ=I+I2+8k3101A31N,
I=2k3101NA31σa(λ¯s)σe(λ¯s)(A31+1τ1).

Metrics