Abstract

We compare different beam combinations for stimulated emission depletion microscopy. The four considered copolarized, mutually symmetric, but complementary write + erase beam combinations are circularly polarized beam + circularly polarized vortex with charge +1 or 1, azimuthally polarized with a vortex + azimuthally polarized, and radially polarized beam + radially polarized with a vortex. The resulting fluorescent spot was calculated for plane incident pump and erase beams, for plane waves with added high NA annular ring apertures, and when both incident beams were optimized with amplitude–phase masks. For all three incident wave cases, the azimuthal polarization combination consistently produces spots 15%–30% smaller than the commonly used, circularly polarized light combination (the first from above). The two other polarization combinations produce even smaller, of the order of nanometers/0.003λ, fluorescent spots with a caveat of having nonzero erase beam intensity in the center. Nevertheless, these combinations can be advantageous when exploiting PF, i.e., using molecules that respond solely to the longitudinal (or only to transversal) component of the illuminating field.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [CrossRef]
  2. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005).
    [CrossRef]
  3. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centers with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
    [CrossRef]
  4. P. Török and P. R. T. Munro, “The use of Gauss–Laguerre vector beams in STED microscopy,” Opt. Express 12, 3605–3617 (2004).
    [CrossRef]
  5. S. Galiani, B. Harke, G. Vicidomini, G. Lignani, F. Benfenati, A. Diaspro, and P. Bianchini, “Strategies to maximize the performance of a STED microscope,” Opt. Express 20, 7362–7374 (2012).
    [CrossRef]
  6. E. B. Kromann, T. J. Gould, M. F. Juette, J. E. Wilhjelm, and J. Bewersdorf, “Quantitative pupil analysis in STED microscopy using phase retrieval,” Opt. Lett. 37, 1805–1807 (2012).
    [CrossRef]
  7. S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39, 1147–1154 (1992).
    [CrossRef]
  8. S. Bara Viæas, Z. Jaroszewicz, A. Kołodziejczyk, and M. Sypek, “Zone plates with black focal spots,” Appl. Opt. 31, 192–198 (1992).
    [CrossRef]
  9. J. Artl and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191–193 (2000).
    [CrossRef]
  10. L. E. Helseth, “Smallest focal hole,” Opt. Commun. 257, 1–8 (2006).
    [CrossRef]
  11. N. Bokor and N. Davidson, “Generation of a hollow dark spherical spot by 4pi focusing of a radially polarized Laguerre–Gaussian beam,” Opt. Lett. 31, 149–151 (2006).
    [CrossRef]
  12. Y. Kozawa and S. Sato, “Dark spot formation by vector beams,” Opt. Lett. 33, 2326–2328 (2008).
    [CrossRef]
  13. X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
    [CrossRef]
  14. S. N. Khonina and I. Golub, “Enlightening darkness to diffraction limit and beyond: comparison and optimization of different polarizations for dark spot generation,” J. Opt. Soc. Am. A 29, 1470–1474 (2012).
    [CrossRef]
  15. N. Bokor, Y. Iketabi, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun. 272, 263–268 (2007).
    [CrossRef]
  16. R. K. Singh, P. Senthilkumaran, and K. Singh, “Tight focusing of vortex beams in presence of primary astigmatism,” J. Opt. Soc. Am. A 26, 576–588 (2009).
    [CrossRef]
  17. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. R. Soc. A 253, 358–379 (1959).
    [CrossRef]
  18. S. N. Khonina and I. Golub, “Optimization of focusing of linearly polarized light,” Opt. Lett. 36, 352–354 (2011).
    [CrossRef]
  19. M. Dyba and S. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
    [CrossRef]
  20. T. Grosjean, D. Courjon, and C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32, 976–978 (2007).
    [CrossRef]
  21. T. Grosjean and D. Courjon, “Photopolymers as vectorial sensors of the electric field,” Opt. Express 14, 2203–2210(2006).
    [CrossRef]
  22. R. R. Gullapalli, M. C. Demirel, and P. J. Butler, “Molecular dynamics simulations of DiI-C18(3) in a DPPC lipid bilayer,” Phys. Chem. Chem. Phys. 10, 3548–3560 (2008).
    [CrossRef]
  23. Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27, 7446–7452 (2011).
    [CrossRef]
  24. K. P. Armendariz, H. A. Huckabay, P. W. Livanec, and R. C. Dunn, “Single molecule probes of membrane structure: orientation of BODIPY probes in DPPC as a function of probe structure,” Analyst 137, 1402–1408 (2012).
    [CrossRef]
  25. Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20, 17653–17666 (2012).
    [CrossRef]

2012

2011

S. N. Khonina and I. Golub, “Optimization of focusing of linearly polarized light,” Opt. Lett. 36, 352–354 (2011).
[CrossRef]

Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27, 7446–7452 (2011).
[CrossRef]

2010

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[CrossRef]

2009

R. K. Singh, P. Senthilkumaran, and K. Singh, “Tight focusing of vortex beams in presence of primary astigmatism,” J. Opt. Soc. Am. A 26, 576–588 (2009).
[CrossRef]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centers with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[CrossRef]

2008

Y. Kozawa and S. Sato, “Dark spot formation by vector beams,” Opt. Lett. 33, 2326–2328 (2008).
[CrossRef]

R. R. Gullapalli, M. C. Demirel, and P. J. Butler, “Molecular dynamics simulations of DiI-C18(3) in a DPPC lipid bilayer,” Phys. Chem. Chem. Phys. 10, 3548–3560 (2008).
[CrossRef]

2007

T. Grosjean, D. Courjon, and C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32, 976–978 (2007).
[CrossRef]

N. Bokor, Y. Iketabi, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun. 272, 263–268 (2007).
[CrossRef]

2006

2005

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef]

2004

2002

M. Dyba and S. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef]

2000

1994

1992

S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39, 1147–1154 (1992).
[CrossRef]

S. Bara Viæas, Z. Jaroszewicz, A. Kołodziejczyk, and M. Sypek, “Zone plates with black focal spots,” Appl. Opt. 31, 192–198 (1992).
[CrossRef]

1959

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Armendariz, K. P.

K. P. Armendariz, H. A. Huckabay, P. W. Livanec, and R. C. Dunn, “Single molecule probes of membrane structure: orientation of BODIPY probes in DPPC as a function of probe structure,” Analyst 137, 1402–1408 (2012).
[CrossRef]

Artl, J.

Bainier, C.

Bara Viæas, S.

Beier, C.

Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27, 7446–7452 (2011).
[CrossRef]

Benfenati, F.

Bewersdorf, J.

Bianchini, P.

Bokor, N.

N. Bokor, Y. Iketabi, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun. 272, 263–268 (2007).
[CrossRef]

N. Bokor and N. Davidson, “Generation of a hollow dark spherical spot by 4pi focusing of a radially polarized Laguerre–Gaussian beam,” Opt. Lett. 31, 149–151 (2006).
[CrossRef]

Butler, P. J.

R. R. Gullapalli, M. C. Demirel, and P. J. Butler, “Molecular dynamics simulations of DiI-C18(3) in a DPPC lipid bilayer,” Phys. Chem. Chem. Phys. 10, 3548–3560 (2008).
[CrossRef]

Courjon, D.

Daigoku, K.

N. Bokor, Y. Iketabi, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun. 272, 263–268 (2007).
[CrossRef]

Davidson, N.

N. Bokor, Y. Iketabi, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun. 272, 263–268 (2007).
[CrossRef]

N. Bokor and N. Davidson, “Generation of a hollow dark spherical spot by 4pi focusing of a radially polarized Laguerre–Gaussian beam,” Opt. Lett. 31, 149–151 (2006).
[CrossRef]

Demirel, M. C.

R. R. Gullapalli, M. C. Demirel, and P. J. Butler, “Molecular dynamics simulations of DiI-C18(3) in a DPPC lipid bilayer,” Phys. Chem. Chem. Phys. 10, 3548–3560 (2008).
[CrossRef]

Diaspro, A.

Dunn, R. C.

K. P. Armendariz, H. A. Huckabay, P. W. Livanec, and R. C. Dunn, “Single molecule probes of membrane structure: orientation of BODIPY probes in DPPC as a function of probe structure,” Analyst 137, 1402–1408 (2012).
[CrossRef]

Dyba, M.

M. Dyba and S. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef]

Eggeling, C.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centers with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[CrossRef]

Evans, J.

Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27, 7446–7452 (2011).
[CrossRef]

Fujii, M.

N. Bokor, Y. Iketabi, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun. 272, 263–268 (2007).
[CrossRef]

Galiani, S.

Golub, I.

Gould, T. J.

Grosjean, T.

Gu, Z.

Gullapalli, R. R.

R. R. Gullapalli, M. C. Demirel, and P. J. Butler, “Molecular dynamics simulations of DiI-C18(3) in a DPPC lipid bilayer,” Phys. Chem. Chem. Phys. 10, 3548–3560 (2008).
[CrossRef]

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centers with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[CrossRef]

Hao, X.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[CrossRef]

Harke, B.

He, S.

Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27, 7446–7452 (2011).
[CrossRef]

Hell, S.

M. Dyba and S. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef]

Hell, S. W.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centers with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[CrossRef]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[CrossRef]

Helseth, L. E.

L. E. Helseth, “Smallest focal hole,” Opt. Commun. 257, 1–8 (2006).
[CrossRef]

Huckabay, H. A.

K. P. Armendariz, H. A. Huckabay, P. W. Livanec, and R. C. Dunn, “Single molecule probes of membrane structure: orientation of BODIPY probes in DPPC as a function of probe structure,” Analyst 137, 1402–1408 (2012).
[CrossRef]

Iketabi, Y.

N. Bokor, Y. Iketabi, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun. 272, 263–268 (2007).
[CrossRef]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centers with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[CrossRef]

Jaroszewicz, Z.

Juette, M. F.

Khonina, S. N.

Kolodziejczyk, A.

Kotlyar, V. V.

S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39, 1147–1154 (1992).
[CrossRef]

Kozawa, Y.

Kromann, E. B.

Kuang, C.

Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20, 17653–17666 (2012).
[CrossRef]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[CrossRef]

Lee, T.

Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27, 7446–7452 (2011).
[CrossRef]

Li, S.

Lignani, G.

Liu, Q.

Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27, 7446–7452 (2011).
[CrossRef]

Liu, X.

Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20, 17653–17666 (2012).
[CrossRef]

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[CrossRef]

Livanec, P. W.

K. P. Armendariz, H. A. Huckabay, P. W. Livanec, and R. C. Dunn, “Single molecule probes of membrane structure: orientation of BODIPY probes in DPPC as a function of probe structure,” Analyst 137, 1402–1408 (2012).
[CrossRef]

Munro, P. R. T.

Padgett, M. J.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centers with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[CrossRef]

Sato, S.

Senthilkumaran, P.

Shinkarev, M. V.

S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39, 1147–1154 (1992).
[CrossRef]

Singh, K.

Singh, R. K.

Smalyukh, I. I.

Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27, 7446–7452 (2011).
[CrossRef]

Soifer, V. A.

S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39, 1147–1154 (1992).
[CrossRef]

Sypek, M.

Török, P.

Uspleniev, G. V.

S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39, 1147–1154 (1992).
[CrossRef]

Vicidomini, G.

Wang, T.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[CrossRef]

Watanabe, T.

N. Bokor, Y. Iketabi, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun. 272, 263–268 (2007).
[CrossRef]

Westphal, V.

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef]

Wichmann, J.

Wilhjelm, J. E.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Xue, Y.

Analyst

K. P. Armendariz, H. A. Huckabay, P. W. Livanec, and R. C. Dunn, “Single molecule probes of membrane structure: orientation of BODIPY probes in DPPC as a function of probe structure,” Analyst 137, 1402–1408 (2012).
[CrossRef]

Appl. Opt.

J. Mod. Opt.

S. N. Khonina, V. V. Kotlyar, M. V. Shinkarev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39, 1147–1154 (1992).
[CrossRef]

J. Opt.

X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010).
[CrossRef]

J. Opt. Soc. Am. A

Langmuir

Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27, 7446–7452 (2011).
[CrossRef]

Nat. Photonics

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centers with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[CrossRef]

Opt. Commun.

N. Bokor, Y. Iketabi, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun. 272, 263–268 (2007).
[CrossRef]

L. E. Helseth, “Smallest focal hole,” Opt. Commun. 257, 1–8 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

R. R. Gullapalli, M. C. Demirel, and P. J. Butler, “Molecular dynamics simulations of DiI-C18(3) in a DPPC lipid bilayer,” Phys. Chem. Chem. Phys. 10, 3548–3560 (2008).
[CrossRef]

Phys. Rev. Lett.

M. Dyba and S. Hell, “Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88, 163901 (2002).
[CrossRef]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef]

Proc. R. Soc. A

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Cross section of intensity distribution of the fluorescent spot (in units of λ ) for plane incident pump and erase waves for unsaturated case ( σ = 1 ). Solid line, circular polarization combination with codirected spin and orbital momenta of the erase beam; dotted–dashed line, circular polarization combination with counterdirected spin and orbital momenta of the erase beam; dashed line, azimuthal polarization combination; dotted line, radial polarization combination. The FWHM of the corresponding spots are 0.364 λ , 0.255 λ , 0.276 λ , and 0.222 λ .

Fig. 2.
Fig. 2.

Same as Fig. 1 for saturated case ( σ = 100 ). The FWHM of the spots are 0.0422 λ , 0.0031 λ , 0.0301 λ , and 0.0027 λ .

Fig. 3.
Fig. 3.

Cross section of intensity distribution of the fluorescent spot (in units of λ ) for plane incident waves with added high NA annular apertures for unsaturated case ( σ = 1 ) for the four polarization combinations. The FWHM of the corresponding spots are 0.324 λ , 0.214 λ , 0.246 λ , and 0.247 λ .

Fig. 4.
Fig. 4.

Same as Fig. 3 for saturated case ( σ = 100 ). The FWHM of the corresponding spots are 0.0342 λ , 0.0024 λ , 0.0286 λ , and 0.0082 λ .

Fig. 5.
Fig. 5.

Cross section of intensity distribution of the fluorescent spot (in units of λ ) for plane incident waves with different optimizing amplitude–phase masks applied to pump and erase beams for unsaturated case ( σ = 1 ). Solid, circular polarization combination with codirected spin and orbital momentum of the erase beam; dashed line, azimuthal polarization combination; dotted line, radial polarization combination. The FWHM of the corresponding spots are 0.302 λ , 0.247 λ , and 0.241 λ .

Fig. 6.
Fig. 6.

Same as Fig. 5 for saturated case ( σ = 100 ). The FWHM of the corresponding spots are 0.0319 λ , 0.0279 λ , and 0.0052 λ .

Tables (2)

Tables Icon

Table 1. Intensity Distribution of Focused Pump and Erase Beams for Different Polarizationsa

Tables Icon

Table 2. Intensity Distribution and Its Cross Section of the Depletion/Overlap Factor (Left) and the Fluorescent Spot (Right) in the Focus for the Four Combinations of Table 1a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I fl = I pump exp ( σ α I erase ) .
α = | E pump · E erase | I pump · I erase ,

Metrics