Abstract

We investigate improved image reconstruction of structured light illumination for high-resolution imaging of three-dimensional (3D) cell-based assays. For proof of concept, an in situ fluorescence optical detection system was built with a digital micromirror device as a spatial light modulator, for which phase and tilting angle in a grid pattern were varied to implement specific image reconstruction schemes. Subtractive reconstruction algorithms based on structured light illumination were used to acquire images of fluorescent microbeads deposited as a two-dimensional monolayer or in 3D alginate matrix. We have confirmed that an optical subtraction algorithm improves axial and lateral resolution by effectively removing out-of-focus fluorescence. The results suggest that subtractive image reconstruction can be useful for structured illumination microscopy of broad types of cell-based assays with high image resolution.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional super-resolution structured illumination microscopy with maximum a posteriori probability image estimation

Tomáš Lukeš, Pavel Křížek, Zdeněk Švindrych, Jakub Benda, Martin Ovesný, Karel Fliegel, Miloš Klíma, and Guy M. Hagen
Opt. Express 22(24) 29805-29817 (2014)

Adaptive illumination reduces photobleaching in structured illumination microscopy

Nadya Chakrova, Alicia Soler Canton, Christophe Danelon, Sjoerd Stallinga, and Bernd Rieger
Biomed. Opt. Express 7(10) 4263-4274 (2016)

Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device

Li-Chung Cheng, Chi-Hsiang Lien, Yong Da Sie, Yvonne Yuling Hu, Chun-Yu Lin, Fan-Ching Chien, Chris Xu, Chen Yuan Dong, and Shean-Jen Chen
Biomed. Opt. Express 5(8) 2526-2536 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription