Abstract

We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical-coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
    [CrossRef]
  2. M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical-coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
    [CrossRef]
  3. U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Investig. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005).
    [CrossRef]
  4. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  5. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
    [CrossRef]
  6. G. Hausler and M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological analysis,” J. Biomed. Opt. 3, 21–31 (1998).
    [CrossRef]
  7. M. S. Muller, P. J. Webster, and J. M. Fraser, “Time-gated Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3336–3338 (2007).
    [CrossRef]
  8. M. J. Hammer-Wilson, V. Nguyen, W.-G. Jung, Y. Ahn, Z. Chen, and P. Wilder-Smith, “Detection of vesicant-induced upper airway mucosa damage in the hamster cheek pouch model using optical coherence tomography,” J. Biomed. Opt. 15, 016017 (2010).
    [CrossRef]
  9. S. Lee, M. Young, E. Lebed, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Morphometry of the myopic optic nerve head using FDOCT,” Proc. SPIE 7889, 788932 (2011).
    [CrossRef]
  10. C. S. Seelamantula, M. L. Villiger, R. A. Leitgeb, and M. Unser, “Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography,” J. Opt. Soc. Am. A 25, 1762–1771 (2008).
    [CrossRef]
  11. S. Chandra Sekhar, R. A. Leitgeb, A. H. Bachmann, and M. Unser, “Logarithmic transformation technique for exact signal recovery in frequency-domain optical-coherence tomography,” Proc. SPIE 6627, 662714 (2007).
    [CrossRef]
  12. S. Chandra Sekhar, R. Michaely, R. A. Leitgeb, and M. Unser, “Theoretical analysis of complex-conjugate-ambiguity suppression in frequency-domain optical-coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2008), pp. 396–399.
  13. R. A. Leitgeb, R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, and T. Lasser, “Phase manipulation without phase shifter for complex FDOCT signal reconstruction and resonant Doppler imaging,” Proc. SPIE 6847, 60 (2008).
  14. S. C. Sekhar, R. A. Leitgeb, M. L. Villiger, A. H. Bachmann, T. Blu, and M. Unser, “Non-iterative exact signal recovery in frequency domain optical coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2007), pp. 808–811.
  15. C. S. Seelamantula and M. Unser, “Performance analysis of the cepstral technique for frequency-domain optical-coherence tomography,” in Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing (IEEE, 2008), pp. 557–560.
  16. C. S. Seelamantula and M. Unser, “Performance analysis of reconstruction techniques for frequency-domain optical-coherence tomography,” IEEE Trans. Signal Process. 58, 1947–1951 (2010).
    [CrossRef]
  17. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
    [CrossRef]
  18. T. V. Sreenivas and R. J. Niederjohn, “Zero-crossing based spectral analysis,” IEEE Trans. Signal Process. 40, 282–293 (1992).
    [CrossRef]
  19. Y.-P. Lin and P. P. Vaidyanathan, “A Kaiser window approach for the design of prototype filters of cosine-modulated filterbanks,” IEEE Signal Process. Lett. 5, 132–134 (1998).
    [CrossRef]
  20. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, “Filter design techniques,” in Discrete-Time Signal Processing, 2nd ed.(Pearson Prentice Hall, 2009), pp. 491–504.
  21. D. W. Meinke, J. M. Cherry, C. Dean, S. D. Rounsley, and M. Koornneef, “Arabidopsis thaliana: a model plant for genome analysis,” Science 282, 662–682 (1998).
    [CrossRef]
  22. S. M. Kay and R. Sudhaker, “A zero crossing-based spectrum analyzer,” IEEE Trans. Acoust. Speech Signal Process. 34, 96–104 (1986).
    [CrossRef]
  23. J. Jasapara and S. Wielandy, “Characterization of coated optical fibers by Fourier-domain optical coherence tomography,” Opt. Lett. 30, 1018–1020 (2005).
    [CrossRef]
  24. J. C. Jasapara, S. Wielandy, and A. D. Yablon, “Fourier domain optical coherence tomography—a new platform for measurement of standard and microstructured fibre dimensions,” IEE Proc. Optoelectron, 153, 229–234 (2006).
    [CrossRef]

2011 (1)

S. Lee, M. Young, E. Lebed, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Morphometry of the myopic optic nerve head using FDOCT,” Proc. SPIE 7889, 788932 (2011).
[CrossRef]

2010 (2)

M. J. Hammer-Wilson, V. Nguyen, W.-G. Jung, Y. Ahn, Z. Chen, and P. Wilder-Smith, “Detection of vesicant-induced upper airway mucosa damage in the hamster cheek pouch model using optical coherence tomography,” J. Biomed. Opt. 15, 016017 (2010).
[CrossRef]

C. S. Seelamantula and M. Unser, “Performance analysis of reconstruction techniques for frequency-domain optical-coherence tomography,” IEEE Trans. Signal Process. 58, 1947–1951 (2010).
[CrossRef]

2008 (2)

R. A. Leitgeb, R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, and T. Lasser, “Phase manipulation without phase shifter for complex FDOCT signal reconstruction and resonant Doppler imaging,” Proc. SPIE 6847, 60 (2008).

C. S. Seelamantula, M. L. Villiger, R. A. Leitgeb, and M. Unser, “Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography,” J. Opt. Soc. Am. A 25, 1762–1771 (2008).
[CrossRef]

2007 (2)

M. S. Muller, P. J. Webster, and J. M. Fraser, “Time-gated Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3336–3338 (2007).
[CrossRef]

S. Chandra Sekhar, R. A. Leitgeb, A. H. Bachmann, and M. Unser, “Logarithmic transformation technique for exact signal recovery in frequency-domain optical-coherence tomography,” Proc. SPIE 6627, 662714 (2007).
[CrossRef]

2006 (1)

J. C. Jasapara, S. Wielandy, and A. D. Yablon, “Fourier domain optical coherence tomography—a new platform for measurement of standard and microstructured fibre dimensions,” IEE Proc. Optoelectron, 153, 229–234 (2006).
[CrossRef]

2005 (3)

J. Jasapara and S. Wielandy, “Characterization of coated optical fibers by Fourier-domain optical coherence tomography,” Opt. Lett. 30, 1018–1020 (2005).
[CrossRef]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
[CrossRef]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Investig. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005).
[CrossRef]

2004 (2)

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical-coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004).
[CrossRef]

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical-coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

1998 (3)

G. Hausler and M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological analysis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Y.-P. Lin and P. P. Vaidyanathan, “A Kaiser window approach for the design of prototype filters of cosine-modulated filterbanks,” IEEE Signal Process. Lett. 5, 132–134 (1998).
[CrossRef]

D. W. Meinke, J. M. Cherry, C. Dean, S. D. Rounsley, and M. Koornneef, “Arabidopsis thaliana: a model plant for genome analysis,” Science 282, 662–682 (1998).
[CrossRef]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

1992 (1)

T. V. Sreenivas and R. J. Niederjohn, “Zero-crossing based spectral analysis,” IEEE Trans. Signal Process. 40, 282–293 (1992).
[CrossRef]

1986 (1)

S. M. Kay and R. Sudhaker, “A zero crossing-based spectrum analyzer,” IEEE Trans. Acoust. Speech Signal Process. 34, 96–104 (1986).
[CrossRef]

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[CrossRef]

Ahlers, C.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Investig. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005).
[CrossRef]

Ahn, Y.

M. J. Hammer-Wilson, V. Nguyen, W.-G. Jung, Y. Ahn, Z. Chen, and P. Wilder-Smith, “Detection of vesicant-induced upper airway mucosa damage in the hamster cheek pouch model using optical coherence tomography,” J. Biomed. Opt. 15, 016017 (2010).
[CrossRef]

Bachmann, A. H.

R. A. Leitgeb, R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, and T. Lasser, “Phase manipulation without phase shifter for complex FDOCT signal reconstruction and resonant Doppler imaging,” Proc. SPIE 6847, 60 (2008).

S. Chandra Sekhar, R. A. Leitgeb, A. H. Bachmann, and M. Unser, “Logarithmic transformation technique for exact signal recovery in frequency-domain optical-coherence tomography,” Proc. SPIE 6627, 662714 (2007).
[CrossRef]

S. C. Sekhar, R. A. Leitgeb, M. L. Villiger, A. H. Bachmann, T. Blu, and M. Unser, “Non-iterative exact signal recovery in frequency domain optical coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2007), pp. 808–811.

Bajraszewski, T.

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical-coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

Beg, M. F.

S. Lee, M. Young, E. Lebed, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Morphometry of the myopic optic nerve head using FDOCT,” Proc. SPIE 7889, 788932 (2011).
[CrossRef]

Blatter, C.

R. A. Leitgeb, R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, and T. Lasser, “Phase manipulation without phase shifter for complex FDOCT signal reconstruction and resonant Doppler imaging,” Proc. SPIE 6847, 60 (2008).

Blu, T.

S. C. Sekhar, R. A. Leitgeb, M. L. Villiger, A. H. Bachmann, T. Blu, and M. Unser, “Non-iterative exact signal recovery in frequency domain optical coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2007), pp. 808–811.

Bouma, B. E.

Buck, J. R.

A. V. Oppenheim, R. W. Schafer, and J. R. Buck, “Filter design techniques,” in Discrete-Time Signal Processing, 2nd ed.(Pearson Prentice Hall, 2009), pp. 491–504.

Cense, B.

Chen, T. C.

Chen, Z.

M. J. Hammer-Wilson, V. Nguyen, W.-G. Jung, Y. Ahn, Z. Chen, and P. Wilder-Smith, “Detection of vesicant-induced upper airway mucosa damage in the hamster cheek pouch model using optical coherence tomography,” J. Biomed. Opt. 15, 016017 (2010).
[CrossRef]

Cherry, J. M.

D. W. Meinke, J. M. Cherry, C. Dean, S. D. Rounsley, and M. Koornneef, “Arabidopsis thaliana: a model plant for genome analysis,” Science 282, 662–682 (1998).
[CrossRef]

de Boer, J. F.

Dean, C.

D. W. Meinke, J. M. Cherry, C. Dean, S. D. Rounsley, and M. Koornneef, “Arabidopsis thaliana: a model plant for genome analysis,” Science 282, 662–682 (1998).
[CrossRef]

Drexler, W.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Investig. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005).
[CrossRef]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Fercher, A. F.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Investig. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Fraser, J. M.

Gorczynska, I.

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical-coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

Hammer-Wilson, M. J.

M. J. Hammer-Wilson, V. Nguyen, W.-G. Jung, Y. Ahn, Z. Chen, and P. Wilder-Smith, “Detection of vesicant-induced upper airway mucosa damage in the hamster cheek pouch model using optical coherence tomography,” J. Biomed. Opt. 15, 016017 (2010).
[CrossRef]

Hausler, G.

G. Hausler and M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological analysis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Hermann, B.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Investig. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005).
[CrossRef]

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Jasapara, J.

Jasapara, J. C.

J. C. Jasapara, S. Wielandy, and A. D. Yablon, “Fourier domain optical coherence tomography—a new platform for measurement of standard and microstructured fibre dimensions,” IEE Proc. Optoelectron, 153, 229–234 (2006).
[CrossRef]

Jung, W.-G.

M. J. Hammer-Wilson, V. Nguyen, W.-G. Jung, Y. Ahn, Z. Chen, and P. Wilder-Smith, “Detection of vesicant-induced upper airway mucosa damage in the hamster cheek pouch model using optical coherence tomography,” J. Biomed. Opt. 15, 016017 (2010).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Kay, S. M.

S. M. Kay and R. Sudhaker, “A zero crossing-based spectrum analyzer,” IEEE Trans. Acoust. Speech Signal Process. 34, 96–104 (1986).
[CrossRef]

Koornneef, M.

D. W. Meinke, J. M. Cherry, C. Dean, S. D. Rounsley, and M. Koornneef, “Arabidopsis thaliana: a model plant for genome analysis,” Science 282, 662–682 (1998).
[CrossRef]

Kowalczyk, A.

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical-coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

Lasser, T.

R. A. Leitgeb, R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, and T. Lasser, “Phase manipulation without phase shifter for complex FDOCT signal reconstruction and resonant Doppler imaging,” Proc. SPIE 6847, 60 (2008).

Lebed, E.

S. Lee, M. Young, E. Lebed, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Morphometry of the myopic optic nerve head using FDOCT,” Proc. SPIE 7889, 788932 (2011).
[CrossRef]

Lee, S.

S. Lee, M. Young, E. Lebed, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Morphometry of the myopic optic nerve head using FDOCT,” Proc. SPIE 7889, 788932 (2011).
[CrossRef]

Leitgeb, R. A.

R. A. Leitgeb, R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, and T. Lasser, “Phase manipulation without phase shifter for complex FDOCT signal reconstruction and resonant Doppler imaging,” Proc. SPIE 6847, 60 (2008).

C. S. Seelamantula, M. L. Villiger, R. A. Leitgeb, and M. Unser, “Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography,” J. Opt. Soc. Am. A 25, 1762–1771 (2008).
[CrossRef]

S. Chandra Sekhar, R. A. Leitgeb, A. H. Bachmann, and M. Unser, “Logarithmic transformation technique for exact signal recovery in frequency-domain optical-coherence tomography,” Proc. SPIE 6627, 662714 (2007).
[CrossRef]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Investig. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005).
[CrossRef]

S. C. Sekhar, R. A. Leitgeb, M. L. Villiger, A. H. Bachmann, T. Blu, and M. Unser, “Non-iterative exact signal recovery in frequency domain optical coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2007), pp. 808–811.

S. Chandra Sekhar, R. Michaely, R. A. Leitgeb, and M. Unser, “Theoretical analysis of complex-conjugate-ambiguity suppression in frequency-domain optical-coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2008), pp. 396–399.

Lin, Y.-P.

Y.-P. Lin and P. P. Vaidyanathan, “A Kaiser window approach for the design of prototype filters of cosine-modulated filterbanks,” IEEE Signal Process. Lett. 5, 132–134 (1998).
[CrossRef]

Lindner, M. W.

G. Hausler and M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological analysis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Mackenzie, P. J.

S. Lee, M. Young, E. Lebed, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Morphometry of the myopic optic nerve head using FDOCT,” Proc. SPIE 7889, 788932 (2011).
[CrossRef]

Meinke, D. W.

D. W. Meinke, J. M. Cherry, C. Dean, S. D. Rounsley, and M. Koornneef, “Arabidopsis thaliana: a model plant for genome analysis,” Science 282, 662–682 (1998).
[CrossRef]

Michaely, R.

R. A. Leitgeb, R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, and T. Lasser, “Phase manipulation without phase shifter for complex FDOCT signal reconstruction and resonant Doppler imaging,” Proc. SPIE 6847, 60 (2008).

S. Chandra Sekhar, R. Michaely, R. A. Leitgeb, and M. Unser, “Theoretical analysis of complex-conjugate-ambiguity suppression in frequency-domain optical-coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2008), pp. 396–399.

Michels, S.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Investig. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005).
[CrossRef]

Muller, M. S.

Nassif, N. A.

Nguyen, V.

M. J. Hammer-Wilson, V. Nguyen, W.-G. Jung, Y. Ahn, Z. Chen, and P. Wilder-Smith, “Detection of vesicant-induced upper airway mucosa damage in the hamster cheek pouch model using optical coherence tomography,” J. Biomed. Opt. 15, 016017 (2010).
[CrossRef]

Niederjohn, R. J.

T. V. Sreenivas and R. J. Niederjohn, “Zero-crossing based spectral analysis,” IEEE Trans. Signal Process. 40, 282–293 (1992).
[CrossRef]

Oppenheim, A. V.

A. V. Oppenheim, R. W. Schafer, and J. R. Buck, “Filter design techniques,” in Discrete-Time Signal Processing, 2nd ed.(Pearson Prentice Hall, 2009), pp. 491–504.

Park, B. H.

Pierce, M. C.

Povazay, B.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Investig. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005).
[CrossRef]

Radzewicz, C.

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical-coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

Rounsley, S. D.

D. W. Meinke, J. M. Cherry, C. Dean, S. D. Rounsley, and M. Koornneef, “Arabidopsis thaliana: a model plant for genome analysis,” Science 282, 662–682 (1998).
[CrossRef]

Sacu, S.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Investig. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005).
[CrossRef]

Sarunic, M. V.

S. Lee, M. Young, E. Lebed, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Morphometry of the myopic optic nerve head using FDOCT,” Proc. SPIE 7889, 788932 (2011).
[CrossRef]

Sattmann, H.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Investig. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005).
[CrossRef]

Schafer, R. W.

A. V. Oppenheim, R. W. Schafer, and J. R. Buck, “Filter design techniques,” in Discrete-Time Signal Processing, 2nd ed.(Pearson Prentice Hall, 2009), pp. 491–504.

Schmidt-Erfurth, U.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Investig. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005).
[CrossRef]

Scholda, C.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Investig. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005).
[CrossRef]

Seelamantula, C. S.

C. S. Seelamantula and M. Unser, “Performance analysis of reconstruction techniques for frequency-domain optical-coherence tomography,” IEEE Trans. Signal Process. 58, 1947–1951 (2010).
[CrossRef]

C. S. Seelamantula, M. L. Villiger, R. A. Leitgeb, and M. Unser, “Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography,” J. Opt. Soc. Am. A 25, 1762–1771 (2008).
[CrossRef]

C. S. Seelamantula and M. Unser, “Performance analysis of the cepstral technique for frequency-domain optical-coherence tomography,” in Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing (IEEE, 2008), pp. 557–560.

Sekhar, S. C.

S. C. Sekhar, R. A. Leitgeb, M. L. Villiger, A. H. Bachmann, T. Blu, and M. Unser, “Non-iterative exact signal recovery in frequency domain optical coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2007), pp. 808–811.

Sekhar, S. Chandra

S. Chandra Sekhar, R. A. Leitgeb, A. H. Bachmann, and M. Unser, “Logarithmic transformation technique for exact signal recovery in frequency-domain optical-coherence tomography,” Proc. SPIE 6627, 662714 (2007).
[CrossRef]

S. Chandra Sekhar, R. Michaely, R. A. Leitgeb, and M. Unser, “Theoretical analysis of complex-conjugate-ambiguity suppression in frequency-domain optical-coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2008), pp. 396–399.

Sreenivas, T. V.

T. V. Sreenivas and R. J. Niederjohn, “Zero-crossing based spectral analysis,” IEEE Trans. Signal Process. 40, 282–293 (1992).
[CrossRef]

Sudhaker, R.

S. M. Kay and R. Sudhaker, “A zero crossing-based spectrum analyzer,” IEEE Trans. Acoust. Speech Signal Process. 34, 96–104 (1986).
[CrossRef]

Targowski, P.

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical-coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

Tearney, G. J.

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
[CrossRef]

Unser, M.

C. S. Seelamantula and M. Unser, “Performance analysis of reconstruction techniques for frequency-domain optical-coherence tomography,” IEEE Trans. Signal Process. 58, 1947–1951 (2010).
[CrossRef]

C. S. Seelamantula, M. L. Villiger, R. A. Leitgeb, and M. Unser, “Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography,” J. Opt. Soc. Am. A 25, 1762–1771 (2008).
[CrossRef]

S. Chandra Sekhar, R. A. Leitgeb, A. H. Bachmann, and M. Unser, “Logarithmic transformation technique for exact signal recovery in frequency-domain optical-coherence tomography,” Proc. SPIE 6627, 662714 (2007).
[CrossRef]

C. S. Seelamantula and M. Unser, “Performance analysis of the cepstral technique for frequency-domain optical-coherence tomography,” in Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing (IEEE, 2008), pp. 557–560.

S. Chandra Sekhar, R. Michaely, R. A. Leitgeb, and M. Unser, “Theoretical analysis of complex-conjugate-ambiguity suppression in frequency-domain optical-coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2008), pp. 396–399.

S. C. Sekhar, R. A. Leitgeb, M. L. Villiger, A. H. Bachmann, T. Blu, and M. Unser, “Non-iterative exact signal recovery in frequency domain optical coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2007), pp. 808–811.

Vaidyanathan, P. P.

Y.-P. Lin and P. P. Vaidyanathan, “A Kaiser window approach for the design of prototype filters of cosine-modulated filterbanks,” IEEE Signal Process. Lett. 5, 132–134 (1998).
[CrossRef]

Villiger, M. L.

R. A. Leitgeb, R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, and T. Lasser, “Phase manipulation without phase shifter for complex FDOCT signal reconstruction and resonant Doppler imaging,” Proc. SPIE 6847, 60 (2008).

C. S. Seelamantula, M. L. Villiger, R. A. Leitgeb, and M. Unser, “Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography,” J. Opt. Soc. Am. A 25, 1762–1771 (2008).
[CrossRef]

S. C. Sekhar, R. A. Leitgeb, M. L. Villiger, A. H. Bachmann, T. Blu, and M. Unser, “Non-iterative exact signal recovery in frequency domain optical coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2007), pp. 808–811.

Wang, R. K.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
[CrossRef]

Wasilewski, W.

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical-coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

Webster, P. J.

Wielandy, S.

J. C. Jasapara, S. Wielandy, and A. D. Yablon, “Fourier domain optical coherence tomography—a new platform for measurement of standard and microstructured fibre dimensions,” IEE Proc. Optoelectron, 153, 229–234 (2006).
[CrossRef]

J. Jasapara and S. Wielandy, “Characterization of coated optical fibers by Fourier-domain optical coherence tomography,” Opt. Lett. 30, 1018–1020 (2005).
[CrossRef]

Wilder-Smith, P.

M. J. Hammer-Wilson, V. Nguyen, W.-G. Jung, Y. Ahn, Z. Chen, and P. Wilder-Smith, “Detection of vesicant-induced upper airway mucosa damage in the hamster cheek pouch model using optical coherence tomography,” J. Biomed. Opt. 15, 016017 (2010).
[CrossRef]

Wojtkowski, M.

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical-coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[CrossRef]

Yablon, A. D.

J. C. Jasapara, S. Wielandy, and A. D. Yablon, “Fourier domain optical coherence tomography—a new platform for measurement of standard and microstructured fibre dimensions,” IEE Proc. Optoelectron, 153, 229–234 (2006).
[CrossRef]

Young, M.

S. Lee, M. Young, E. Lebed, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Morphometry of the myopic optic nerve head using FDOCT,” Proc. SPIE 7889, 788932 (2011).
[CrossRef]

Yun, S. H.

Am. J. Ophthalmol. (1)

M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical-coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004).
[CrossRef]

IEE Proc. Optoelectron, (1)

J. C. Jasapara, S. Wielandy, and A. D. Yablon, “Fourier domain optical coherence tomography—a new platform for measurement of standard and microstructured fibre dimensions,” IEE Proc. Optoelectron, 153, 229–234 (2006).
[CrossRef]

IEEE Signal Process. Lett. (1)

Y.-P. Lin and P. P. Vaidyanathan, “A Kaiser window approach for the design of prototype filters of cosine-modulated filterbanks,” IEEE Signal Process. Lett. 5, 132–134 (1998).
[CrossRef]

IEEE Trans. Acoust. Speech Signal Process. (1)

S. M. Kay and R. Sudhaker, “A zero crossing-based spectrum analyzer,” IEEE Trans. Acoust. Speech Signal Process. 34, 96–104 (1986).
[CrossRef]

IEEE Trans. Signal Process. (2)

C. S. Seelamantula and M. Unser, “Performance analysis of reconstruction techniques for frequency-domain optical-coherence tomography,” IEEE Trans. Signal Process. 58, 1947–1951 (2010).
[CrossRef]

T. V. Sreenivas and R. J. Niederjohn, “Zero-crossing based spectral analysis,” IEEE Trans. Signal Process. 40, 282–293 (1992).
[CrossRef]

Investig. Ophthalmol. Vis. Sci. (1)

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Investig. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005).
[CrossRef]

J. Biomed. Opt. (2)

G. Hausler and M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological analysis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

M. J. Hammer-Wilson, V. Nguyen, W.-G. Jung, Y. Ahn, Z. Chen, and P. Wilder-Smith, “Detection of vesicant-induced upper airway mucosa damage in the hamster cheek pouch model using optical coherence tomography,” J. Biomed. Opt. 15, 016017 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005).
[CrossRef]

Opt. Commun. (2)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (3)

S. Lee, M. Young, E. Lebed, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Morphometry of the myopic optic nerve head using FDOCT,” Proc. SPIE 7889, 788932 (2011).
[CrossRef]

S. Chandra Sekhar, R. A. Leitgeb, A. H. Bachmann, and M. Unser, “Logarithmic transformation technique for exact signal recovery in frequency-domain optical-coherence tomography,” Proc. SPIE 6627, 662714 (2007).
[CrossRef]

R. A. Leitgeb, R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, and T. Lasser, “Phase manipulation without phase shifter for complex FDOCT signal reconstruction and resonant Doppler imaging,” Proc. SPIE 6847, 60 (2008).

Science (1)

D. W. Meinke, J. M. Cherry, C. Dean, S. D. Rounsley, and M. Koornneef, “Arabidopsis thaliana: a model plant for genome analysis,” Science 282, 662–682 (1998).
[CrossRef]

Other (4)

S. C. Sekhar, R. A. Leitgeb, M. L. Villiger, A. H. Bachmann, T. Blu, and M. Unser, “Non-iterative exact signal recovery in frequency domain optical coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2007), pp. 808–811.

C. S. Seelamantula and M. Unser, “Performance analysis of the cepstral technique for frequency-domain optical-coherence tomography,” in Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing (IEEE, 2008), pp. 557–560.

S. Chandra Sekhar, R. Michaely, R. A. Leitgeb, and M. Unser, “Theoretical analysis of complex-conjugate-ambiguity suppression in frequency-domain optical-coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2008), pp. 396–399.

A. V. Oppenheim, R. W. Schafer, and J. R. Buck, “Filter design techniques,” in Discrete-Time Signal Processing, 2nd ed.(Pearson Prentice Hall, 2009), pp. 491–504.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic of the FDOCT setup.

Fig. 2.
Fig. 2.

Illustration of the ZC approach. In the histogram computation, one-half of the inverse of tn is attached with a weight of |wn|.

Fig. 3.
Fig. 3.

Comparison of the spectra obtained for a single-layered specimen (back-scattered wave of frequency 1200 Hz and amplitude 2 units) using (a) the Fourier technique and (b) the ZC technique.

Fig. 4.
Fig. 4.

Frequency response of 32-channel uniform cosine-modulated filter bank. The filters have high stop-band attenuation (nearly 100dB) and nearly flat pass-band response.

Fig. 5.
Fig. 5.

Comparison of the performance of Fourier and ZC techniques for the case of a multicomponent back-scattered signal having sinusoids of frequencies 400, 600, and 800 Hz, with corresponding amplitudes 4, 6, and 2 units, respectively. The first row shows results without noise. For the plots in the second row, we add white Gaussian noise of standard deviation 0.75 (SNR=16.97dB). We note that the ZC technique results in noise robust and better resolved spectra.

Fig. 6.
Fig. 6.

Plots for the glass specimen 1: (a) measured spectrum versus wavenumber index, (b) source spectrum (background), and (c) difference between measured spectrum and source spectrum.

Fig. 7.
Fig. 7.

Plots for the glass specimen 2: (a) measured spectrum versus wavenumber index, (b) source spectrum (background), and (c) difference between measured spectrum and source spectrum.

Fig. 8.
Fig. 8.

Plots for the onion-peel specimen: (a) measured spectrum versus wavenumber index, (b) source spectrum (background), and (c) difference between measured spectrum and source spectrum.

Fig. 9.
Fig. 9.

Plots for the plant-petiole specimen: (a) measured spectrum versus wavenumber index, (b) source spectrum (background); and (c) difference between measured spectrum and source spectrum.

Fig. 10.
Fig. 10.

Performance comparison of the conventional Fourier technique and ZC technique on experimental data—first set of OCT data of glass specimen 1. In the first row, we present results obtained using the Fourier technique, while the second row displays results for the ZC technique. (All intensities are shown on log scale).

Fig. 11.
Fig. 11.

Performance comparison of the conventional Fourier technique and ZC technique on experimental data—second set of OCT data of glass specimen 1. The first row presents results obtained using the Fourier technique, while the second represents results for the ZC technique. Note the extended dynamic range as compared to the result on the first data set. (All intensities are shown on log scale).

Fig. 12.
Fig. 12.

Performance comparison of the conventional Fourier technique and ZC technique on experimental data—one set of OCT data of glass specimen 2. (a) and (b) are the tomograms obtained using the Fourier and ZC techniques, respectively. We observe that using the ZC technique, we can delineate the scotch tape separating the two glass plates. (All intensities are shown on log scale).

Fig. 13.
Fig. 13.

Performance comparison of the conventional Fourier technique and ZC technique on experimental data—two sets of OCT data of an onion-peel specimen. (e) and (f) represent zoomed-in versions of (c) and (d), respectively, showing lateral scans between 750 and 1900. The edges are thinner in the ZC-based tomogram. (All intensities are shown on log scale).

Fig. 14.
Fig. 14.

Performance comparison of the conventional Fourier technique and ZC technique on experimental data—two sets of OCT data of a plant-petiole specimen. (a) and (c) show the tomograms obtained using the standard technique, and (b) and (d) are the ones obtained using the ZC technique. Observe that in (b) and (d), the cell-wall structure is better represented, and that the background noise is also suppressed. (Intensities are shown on log scale).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

S(ν)=R(ν)=0L(nn+1n+n+1)rexp(j2πν2c[nd+m=01(nmnm+1)dm]s),=R(ν)=0Lrexp(j2πsν),
I(ν)=|R(ν)|2|1+=1Lrexp(j2πsν)|2.
I(ν)|R(ν)|2=|R(ν)|2(g^(ν)+g^*(ν)+|g^(ν)|2),
I(ν)|R(ν)|2=|R(ν)|2(2=1Lrcos(2πsν)).
y1[n]=A1cos(ω1nT);0nN1.
Y1(k)=n=0N1y1[n]exp(jk2πNn),0kN1,
Y1(ω)=A^1δ(ωω1),
y2[n]=i=1LAicos(ωinT);0nN1.
V=As82.285Δω,
Y2(k)=n=0N1y2[n]exp(jk2πNn),0kN1,
Y2(ω)=i=1LA^iδ(ωωi),
y3[n]=i=1LAicos(ωinT)+σw[n];0nN1,
μsπωi.
σs=2σbπAiωi.
μsσs>μwσworμs/σsμw/σw>1.
Y3(ω)=mi|χ[mi]|δ(ωωmi),

Metrics