Abstract

The optical constants of ion-beam-sputtered B4C films have been measured by ellipsometry in the 190950nm range. The set of data has been extended toward both shorter and longer wavelengths with data in the literature, along with interpolations and extrapolations, in order to obtain a self-consistent set of data by means of Kramers–Krönig analysis. All data correspond to films that were deposited by sputtering on nonheated substrates, and hence they are expected to be amorphous. The B4C bandgap was calculated as a fitting parameter of Tauc equations for indirect transitions using the present optical constants. Good global accuracy of the data was estimated through the use of various sum rules. The consistent data set includes the visible to the extreme UV (EUV); this large spectrum of characterization will enable the design of multilayer coatings that combine a relatively high reflectance in parts of the EUV with a desired performance at a secondary range, such as the visible.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Blumenstock and R. A. M. Keski-Kuha, “Ion-beam-deposited boron carbide coatings for the extreme ultraviolet,” Appl. Opt. 33, 5962–5963 (1994).
    [CrossRef] [PubMed]
  2. G. M. Blumenstock, R. A. M. Keski-Kuha, and M. L. Ginter, “Extreme ultraviolet optical properties of ion-beam-deposited boron carbide thin films,” Proc. SPIE 2515, 558–564 (1995).
    [CrossRef]
  3. J. I. Larruquert and R. A. M. Keski-Kuha, “Optical properties of hot-pressed B4C in the extreme ultraviolet,” Appl. Opt. 39, 1537–1540 (2000).
    [CrossRef]
  4. J. I. Larruquert and R. A. M. Keski-Kuha, “Multilayer coatings with high reflectance in the EUV spectral region from 50 to 121.6 nm,” Appl. Opt. 38, 1231–1236 (1999).
    [CrossRef]
  5. J. I. Larruquert and R. A. M. Keski-Kuha, “Sub-quarterwave multilayer coatings with high reflectance in the extreme ultraviolet,” Appl. Opt. 41, 5398–5404 (2002).
    [CrossRef] [PubMed]
  6. D. L. Windt, S. Donguy, J. F. Seely, B. Kjornrattanawanich, E. M. Gullikson, C. C. Walton, L. Golub, and E. DeLuca, “EUV multilayers for solar physics,” Proc. SPIE 5168, 1–11 (2004).
    [CrossRef]
  7. F. Delmotte, J. Gautier, M. F. Ravet, F. Bridou, and A. Jérome, “Optiques multicouches pour l´extrême UV,” J. Phys. IV 127, 69–75 (2005).
    [CrossRef]
  8. J. Gautier, F. Delmotte, M. Roulliay, F. Bridou, M.-F. Ravet, and A. Jérome, “Study of normal incidence of three-component multilayer mirrors in the range 20–40 nm,” Appl. Opt. 44, 384–390 (2005).
    [CrossRef] [PubMed]
  9. Z. Wang, S. Zhang, W. Wu, J. Zhu, H. Wang, C. Li, Y. Xu, F. Wang, Z. Zhang, L. Chen, H. Zhou, and T. Huo, “B4C/Mo/Si high reflectivity multilayer mirror at 30.4 nm,” Chin. Opt. Lett. 4, 611–613(2006).
  10. S. Bajt, J. B. Alameda, T. W. Barbee, Jr., J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo/Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
    [CrossRef]
  11. S. Braun, H. Mai, M. Moss, and R. Scholz, “Microstructure of Mo/Si multilayers with barrier layers,” Proc. SPIE 4782, 185–195(2002).
    [CrossRef]
  12. T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, and E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
    [CrossRef]
  13. Yu. Platonov, J. Rodriguez, M. Kriese, E. Gullikson, T. Harada, T. Watanabe, and H. Kinoshita, “Multilayers for next generation EUVL at 6.X nm,” Proc. SPIE 8076, 80760N (2011).
    [CrossRef]
  14. R. Soufli, S. L. Baker, J. C. Robinson, T. J. McCarville, M. J. Pivovaroff, S. P. Hau-Riege, and R. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors,” Proc. SPIE 7361, 73610U (2009).
    [CrossRef]
  15. C. Tarrio, R. N. Watts, T. B. Lucatorto, J. M. Slaughter, and C. M. Falco, “Optical constants of in situ-deposited films of important extreme-ultraviolet multilayer mirror materials,” Appl. Opt. 37, 4100–4104 (1998).
    [CrossRef]
  16. F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
    [CrossRef]
  17. G. Monaco, D. Garoli, R. Frison, V. Mattarello, P. Nicolosi, M. G. Pelizzo, V. Rigato, L. Armelao, A. Giglia, and S. Nannarone, “Optical constants in the EUV Soft x-ray (5–152 nm) spectral range of B4C thin films deposited by different deposition techniques,” Proc. SPIE 6317, 631712 (2006).
    [CrossRef]
  18. R. Soufli, A. L. Aquila, F. Salmassi, M. Fernández-Perea, and E. M. Gullikson, “Optical constants of magnetron-sputtered boron carbide thin films from photoabsorption data in the range 30 to 770 eV,” Appl. Opt. 47, 4633–4639 (2008).
    [CrossRef] [PubMed]
  19. M. Nayak, G. S. Lodha, T. T. Prasad, P. Nageswararao, and A. K. Sinha, “Probing porosity at buried interfaces using soft x-ray resonant reflectivity,” J. Appl. Phys. 107, 023529 (2010).
    [CrossRef]
  20. D. Ksenzov, T. Panzner, C. Schlemper, C. Morawe, and U. Pietsch, “Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru=B4Cmultilayer,” Appl. Opt. 48, 6684–6691 (2009).
    [CrossRef] [PubMed]
  21. G. A. Samara, H. L. Tardy, E. L. Venturini, T. L. Aselage, and D. Emin, “ac hopping conductivities, dielectric constants, and reflectivities of boron carbides,” Phys. Rev. B 48, 1468–1477(1993).
    [CrossRef]
  22. C. Ronning, D. Schwen, S. Eyhusen, U. Vetter, and H. Hofsäss, “Ion beam synthesis of boron carbide thin films,” Surf. Coat. Technol. 158–159, 382–387 (2002).
    [CrossRef]
  23. A. A. Ahmad, N. J. Ianno, P. G. Snyder, D. Welipitiya, D. Byun, and P. A. Dowben, “Optical properties of boron carbide (B5C) thin films fabricated by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 79, 8643–8647(1996).
    [CrossRef]
  24. G. Monaco, D. Garoli, M. Natali, F. Romanato, and P. Nicolosi, “Spectroscopic study of beta-SiC prepared via PLD at 1064 nm,” Cryst. Res. Technol. 46, 784–788 (2011).
    [CrossRef]
  25. V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron carbide: structure, properties, and stability under stress,” J. Am. Ceram. Soc. 94, 3605–3628, doi: 10.1111/j.1551-2916.2011.04865.x (2011). .
    [CrossRef]
  26. S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films (Oxford University, 1948).
  27. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection, E=100–2000 eV, Z=1−94,” At. Data Nucl. Data Tables 27, 1–144(1982).
    [CrossRef]
  28. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1−92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
    [CrossRef]
  29. http://henke.lbl.gov/optical_constants/.
  30. G. E. Jellison, Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
    [CrossRef]
  31. M. Fernández-Perea, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, M. Vidal-Dasilva, E. M. Gullikson, A. Aquila, R. Soufli, and J. L. G. Fierro, “Optical constants of electron-beam evaporated boron films in the 6.8–900 eV photon energy range,” J. Opt. Soc. Am. A 24, 3800–3807 (2007).
    [CrossRef]
  32. N. Morita, “Optical constants of boron in visible and near infrared,” J. Sci. Res. Inst. 48, 8–12 (1954).
  33. E. A. Fagen, “Optical and electrical properties of amorphous silicon carbide films,” in Amorphous and Liquid Semiconductors: Proceedings, Vol. 1, J.Stuke and W.Brenig, eds., (Taylor & Francis, 1974), pp. 601–607. It contains part of the proceedings of the International Conference on Amorphous and Liquid Semiconductors held at Garmisch-Partenkirchen, Germany, in 1973.
  34. The data are available on request at the following e-mail address: larruquert@io.cfmac.csic.es.
  35. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
    [CrossRef]
  36. J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3, 37–46 (1968).
    [CrossRef]
  37. M. L. Theye, “Optical properties of a-Ge, a-Si and a-III-V compounds,” in Amorphous and Liquid Semiconductors:Proceedings, Vol. 1, J.Stuke and W.Brenig, eds. (Taylor & Francis, 1974), pp. 479–498. It contains part of the proceedings of the International Conference on Amorphous and Liquid Semiconductors held at Garmisch-Partenkirchen, Germany, in 1973.
  38. O. Stenzel, The Physics of Thin Film Optical Spectra: an Introduction, (Springer-Verlag, 2005) p. 214.
  39. A. A. Ahmad, N. J. Ianno, S.-D. Hwang, and P. A. Dowben, “Sputter deposition of high resistivity boron carbide,” Thin Solid Films 335, 174–177 (1998).
    [CrossRef]
  40. J. Melsheimer and D. Ziegler, “Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide,” Thin Solid Films 129, 35–47(1985).
    [CrossRef]
  41. S. Lee, J. Mazurowski, G. Ramseyer, and P. A. Dowben, “Characterization of boron carbide thin films fabricated by plasma enhanced chemical vapor deposition from boranes,” J. Appl. Phys. 72, 4925–4933 (1992).
    [CrossRef]
  42. H. Werheit, H. Binnenbruck, and A. Hausen, “Optical properties of boron carbide and comparison with β-rhombohedral boron,” Phys. Status Solidi B 47, 153–158 (1971).
    [CrossRef]
  43. D. R. Armstrong, J. Bolland, P. G. Perkins, G. Will, and A. Kirfel, “The nature of the chemical bonding in boron carbide. IV. electronic band structure of boron carbide, B13C2, and three models of the structure B12C3,” Acta Crystallogr. B B39, 324–329 (1983).
    [CrossRef]
  44. D. M. Bylander, L. Kleinman, and S. Lee, “Self-consistent calculations of the energy bands and bonding properties of B12C3,” Phys. Rev. B 42, 1394–1403 (1990).
    [CrossRef]
  45. E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminium,” Phys. Rev. B 22, 1612–1628 (1980).
    [CrossRef]
  46. Downloaded from the following website of Physical Reference Data, Physics Laboratory at NIST: http://physics.nist.gov/PhysRefData/FFast/html/form.html.
  47. M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and sum rules for the optical constants,” Phys. Rev. B 6, 4502–4509 (1972).
    [CrossRef]
  48. M. Altarelli and D. Y. Smith, “Superconvergence and sum rules for the optical constants: physical meaning, comparison with experiment, and generalization,” Phys. Rev. B 9, 1290–1298 (1974).
    [CrossRef]
  49. J. I. Larruquert, A. P. Pérez-Marín, S. García-Cortés, L. Rodríguez-de Marcos, J. A. Aznárez, and J. A. Méndez, “Self-consistent optical constants of SiC thin films,” J. Opt. Soc. Am. A 28, 2340–2345 (2011).
    [CrossRef]
  50. M. Fernández-Perea, M. Vidal-Dasilva, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, E. Gullikson, A. Aquila, and R. Soufli, “Optical constants of evaporation-deposited silicon monoxide films in the 7.1–800 eV photon energy range,” J. Appl. Phys. 105, 113505 (2009).
    [CrossRef]

2011 (4)

Yu. Platonov, J. Rodriguez, M. Kriese, E. Gullikson, T. Harada, T. Watanabe, and H. Kinoshita, “Multilayers for next generation EUVL at 6.X nm,” Proc. SPIE 8076, 80760N (2011).
[CrossRef]

G. Monaco, D. Garoli, M. Natali, F. Romanato, and P. Nicolosi, “Spectroscopic study of beta-SiC prepared via PLD at 1064 nm,” Cryst. Res. Technol. 46, 784–788 (2011).
[CrossRef]

V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron carbide: structure, properties, and stability under stress,” J. Am. Ceram. Soc. 94, 3605–3628, doi: 10.1111/j.1551-2916.2011.04865.x (2011). .
[CrossRef]

J. I. Larruquert, A. P. Pérez-Marín, S. García-Cortés, L. Rodríguez-de Marcos, J. A. Aznárez, and J. A. Méndez, “Self-consistent optical constants of SiC thin films,” J. Opt. Soc. Am. A 28, 2340–2345 (2011).
[CrossRef]

2010 (1)

M. Nayak, G. S. Lodha, T. T. Prasad, P. Nageswararao, and A. K. Sinha, “Probing porosity at buried interfaces using soft x-ray resonant reflectivity,” J. Appl. Phys. 107, 023529 (2010).
[CrossRef]

2009 (3)

R. Soufli, S. L. Baker, J. C. Robinson, T. J. McCarville, M. J. Pivovaroff, S. P. Hau-Riege, and R. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors,” Proc. SPIE 7361, 73610U (2009).
[CrossRef]

M. Fernández-Perea, M. Vidal-Dasilva, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, E. Gullikson, A. Aquila, and R. Soufli, “Optical constants of evaporation-deposited silicon monoxide films in the 7.1–800 eV photon energy range,” J. Appl. Phys. 105, 113505 (2009).
[CrossRef]

D. Ksenzov, T. Panzner, C. Schlemper, C. Morawe, and U. Pietsch, “Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru=B4Cmultilayer,” Appl. Opt. 48, 6684–6691 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (2)

Z. Wang, S. Zhang, W. Wu, J. Zhu, H. Wang, C. Li, Y. Xu, F. Wang, Z. Zhang, L. Chen, H. Zhou, and T. Huo, “B4C/Mo/Si high reflectivity multilayer mirror at 30.4 nm,” Chin. Opt. Lett. 4, 611–613(2006).

G. Monaco, D. Garoli, R. Frison, V. Mattarello, P. Nicolosi, M. G. Pelizzo, V. Rigato, L. Armelao, A. Giglia, and S. Nannarone, “Optical constants in the EUV Soft x-ray (5–152 nm) spectral range of B4C thin films deposited by different deposition techniques,” Proc. SPIE 6317, 631712 (2006).
[CrossRef]

2005 (3)

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

F. Delmotte, J. Gautier, M. F. Ravet, F. Bridou, and A. Jérome, “Optiques multicouches pour l´extrême UV,” J. Phys. IV 127, 69–75 (2005).
[CrossRef]

J. Gautier, F. Delmotte, M. Roulliay, F. Bridou, M.-F. Ravet, and A. Jérome, “Study of normal incidence of three-component multilayer mirrors in the range 20–40 nm,” Appl. Opt. 44, 384–390 (2005).
[CrossRef] [PubMed]

2004 (1)

D. L. Windt, S. Donguy, J. F. Seely, B. Kjornrattanawanich, E. M. Gullikson, C. C. Walton, L. Golub, and E. DeLuca, “EUV multilayers for solar physics,” Proc. SPIE 5168, 1–11 (2004).
[CrossRef]

2003 (1)

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, and E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

2002 (4)

S. Bajt, J. B. Alameda, T. W. Barbee, Jr., J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo/Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

S. Braun, H. Mai, M. Moss, and R. Scholz, “Microstructure of Mo/Si multilayers with barrier layers,” Proc. SPIE 4782, 185–195(2002).
[CrossRef]

C. Ronning, D. Schwen, S. Eyhusen, U. Vetter, and H. Hofsäss, “Ion beam synthesis of boron carbide thin films,” Surf. Coat. Technol. 158–159, 382–387 (2002).
[CrossRef]

J. I. Larruquert and R. A. M. Keski-Kuha, “Sub-quarterwave multilayer coatings with high reflectance in the extreme ultraviolet,” Appl. Opt. 41, 5398–5404 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

1998 (2)

1996 (2)

A. A. Ahmad, N. J. Ianno, P. G. Snyder, D. Welipitiya, D. Byun, and P. A. Dowben, “Optical properties of boron carbide (B5C) thin films fabricated by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 79, 8643–8647(1996).
[CrossRef]

G. E. Jellison, Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

1995 (1)

G. M. Blumenstock, R. A. M. Keski-Kuha, and M. L. Ginter, “Extreme ultraviolet optical properties of ion-beam-deposited boron carbide thin films,” Proc. SPIE 2515, 558–564 (1995).
[CrossRef]

1994 (1)

1993 (2)

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1−92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

G. A. Samara, H. L. Tardy, E. L. Venturini, T. L. Aselage, and D. Emin, “ac hopping conductivities, dielectric constants, and reflectivities of boron carbides,” Phys. Rev. B 48, 1468–1477(1993).
[CrossRef]

1992 (1)

S. Lee, J. Mazurowski, G. Ramseyer, and P. A. Dowben, “Characterization of boron carbide thin films fabricated by plasma enhanced chemical vapor deposition from boranes,” J. Appl. Phys. 72, 4925–4933 (1992).
[CrossRef]

1990 (1)

D. M. Bylander, L. Kleinman, and S. Lee, “Self-consistent calculations of the energy bands and bonding properties of B12C3,” Phys. Rev. B 42, 1394–1403 (1990).
[CrossRef]

1985 (1)

J. Melsheimer and D. Ziegler, “Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide,” Thin Solid Films 129, 35–47(1985).
[CrossRef]

1983 (1)

D. R. Armstrong, J. Bolland, P. G. Perkins, G. Will, and A. Kirfel, “The nature of the chemical bonding in boron carbide. IV. electronic band structure of boron carbide, B13C2, and three models of the structure B12C3,” Acta Crystallogr. B B39, 324–329 (1983).
[CrossRef]

1982 (1)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection, E=100–2000 eV, Z=1−94,” At. Data Nucl. Data Tables 27, 1–144(1982).
[CrossRef]

1980 (1)

E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminium,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

1974 (1)

M. Altarelli and D. Y. Smith, “Superconvergence and sum rules for the optical constants: physical meaning, comparison with experiment, and generalization,” Phys. Rev. B 9, 1290–1298 (1974).
[CrossRef]

1972 (1)

M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and sum rules for the optical constants,” Phys. Rev. B 6, 4502–4509 (1972).
[CrossRef]

1971 (1)

H. Werheit, H. Binnenbruck, and A. Hausen, “Optical properties of boron carbide and comparison with β-rhombohedral boron,” Phys. Status Solidi B 47, 153–158 (1971).
[CrossRef]

1968 (1)

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3, 37–46 (1968).
[CrossRef]

1966 (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
[CrossRef]

1954 (1)

N. Morita, “Optical constants of boron in visible and near infrared,” J. Sci. Res. Inst. 48, 8–12 (1954).

Ahmad, A. A.

A. A. Ahmad, N. J. Ianno, S.-D. Hwang, and P. A. Dowben, “Sputter deposition of high resistivity boron carbide,” Thin Solid Films 335, 174–177 (1998).
[CrossRef]

A. A. Ahmad, N. J. Ianno, P. G. Snyder, D. Welipitiya, D. Byun, and P. A. Dowben, “Optical properties of boron carbide (B5C) thin films fabricated by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 79, 8643–8647(1996).
[CrossRef]

Alameda, J. B.

S. Bajt, J. B. Alameda, T. W. Barbee, Jr., J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo/Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Altarelli, M.

M. Altarelli and D. Y. Smith, “Superconvergence and sum rules for the optical constants: physical meaning, comparison with experiment, and generalization,” Phys. Rev. B 9, 1290–1298 (1974).
[CrossRef]

M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and sum rules for the optical constants,” Phys. Rev. B 6, 4502–4509 (1972).
[CrossRef]

Antonucci, E.

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

Aquila, A.

M. Fernández-Perea, M. Vidal-Dasilva, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, E. Gullikson, A. Aquila, and R. Soufli, “Optical constants of evaporation-deposited silicon monoxide films in the 7.1–800 eV photon energy range,” J. Appl. Phys. 105, 113505 (2009).
[CrossRef]

M. Fernández-Perea, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, M. Vidal-Dasilva, E. M. Gullikson, A. Aquila, R. Soufli, and J. L. G. Fierro, “Optical constants of electron-beam evaporated boron films in the 6.8–900 eV photon energy range,” J. Opt. Soc. Am. A 24, 3800–3807 (2007).
[CrossRef]

Aquila, A. L.

Armelao, L.

G. Monaco, D. Garoli, R. Frison, V. Mattarello, P. Nicolosi, M. G. Pelizzo, V. Rigato, L. Armelao, A. Giglia, and S. Nannarone, “Optical constants in the EUV Soft x-ray (5–152 nm) spectral range of B4C thin films deposited by different deposition techniques,” Proc. SPIE 6317, 631712 (2006).
[CrossRef]

Armstrong, D. R.

D. R. Armstrong, J. Bolland, P. G. Perkins, G. Will, and A. Kirfel, “The nature of the chemical bonding in boron carbide. IV. electronic band structure of boron carbide, B13C2, and three models of the structure B12C3,” Acta Crystallogr. B B39, 324–329 (1983).
[CrossRef]

Aselage, T. L.

G. A. Samara, H. L. Tardy, E. L. Venturini, T. L. Aselage, and D. Emin, “ac hopping conductivities, dielectric constants, and reflectivities of boron carbides,” Phys. Rev. B 48, 1468–1477(1993).
[CrossRef]

Aznárez, J. A.

Bajt, S.

S. Bajt, J. B. Alameda, T. W. Barbee, Jr., J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo/Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Baker, S. L.

R. Soufli, S. L. Baker, J. C. Robinson, T. J. McCarville, M. J. Pivovaroff, S. P. Hau-Riege, and R. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors,” Proc. SPIE 7361, 73610U (2009).
[CrossRef]

Barbee, T. W.

S. Bajt, J. B. Alameda, T. W. Barbee, Jr., J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo/Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Beyer, E.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, and E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

Binnenbruck, H.

H. Werheit, H. Binnenbruck, and A. Hausen, “Optical properties of boron carbide and comparison with β-rhombohedral boron,” Phys. Status Solidi B 47, 153–158 (1971).
[CrossRef]

Bionta, R.

R. Soufli, S. L. Baker, J. C. Robinson, T. J. McCarville, M. J. Pivovaroff, S. P. Hau-Riege, and R. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors,” Proc. SPIE 7361, 73610U (2009).
[CrossRef]

Blumenstock, G. M.

G. M. Blumenstock, R. A. M. Keski-Kuha, and M. L. Ginter, “Extreme ultraviolet optical properties of ion-beam-deposited boron carbide thin films,” Proc. SPIE 2515, 558–564 (1995).
[CrossRef]

G. M. Blumenstock and R. A. M. Keski-Kuha, “Ion-beam-deposited boron carbide coatings for the extreme ultraviolet,” Appl. Opt. 33, 5962–5963 (1994).
[CrossRef] [PubMed]

Bolland, J.

D. R. Armstrong, J. Bolland, P. G. Perkins, G. Will, and A. Kirfel, “The nature of the chemical bonding in boron carbide. IV. electronic band structure of boron carbide, B13C2, and three models of the structure B12C3,” Acta Crystallogr. B B39, 324–329 (1983).
[CrossRef]

Böttger, T.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, and E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

Braun, S.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, and E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

S. Braun, H. Mai, M. Moss, and R. Scholz, “Microstructure of Mo/Si multilayers with barrier layers,” Proc. SPIE 4782, 185–195(2002).
[CrossRef]

Bridou, F.

Bylander, D. M.

D. M. Bylander, L. Kleinman, and S. Lee, “Self-consistent calculations of the energy bands and bonding properties of B12C3,” Phys. Rev. B 42, 1394–1403 (1990).
[CrossRef]

Byun, D.

A. A. Ahmad, N. J. Ianno, P. G. Snyder, D. Welipitiya, D. Byun, and P. A. Dowben, “Optical properties of boron carbide (B5C) thin films fabricated by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 79, 8643–8647(1996).
[CrossRef]

Chen, L.

Chhowalla, M.

V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron carbide: structure, properties, and stability under stress,” J. Am. Ceram. Soc. 94, 3605–3628, doi: 10.1111/j.1551-2916.2011.04865.x (2011). .
[CrossRef]

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1−92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Delmotte, F.

DeLuca, E.

D. L. Windt, S. Donguy, J. F. Seely, B. Kjornrattanawanich, E. M. Gullikson, C. C. Walton, L. Golub, and E. DeLuca, “EUV multilayers for solar physics,” Proc. SPIE 5168, 1–11 (2004).
[CrossRef]

Dexter, D. L.

M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and sum rules for the optical constants,” Phys. Rev. B 6, 4502–4509 (1972).
[CrossRef]

Domnich, V.

V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron carbide: structure, properties, and stability under stress,” J. Am. Ceram. Soc. 94, 3605–3628, doi: 10.1111/j.1551-2916.2011.04865.x (2011). .
[CrossRef]

Donguy, S.

D. L. Windt, S. Donguy, J. F. Seely, B. Kjornrattanawanich, E. M. Gullikson, C. C. Walton, L. Golub, and E. DeLuca, “EUV multilayers for solar physics,” Proc. SPIE 5168, 1–11 (2004).
[CrossRef]

Dowben, P. A.

A. A. Ahmad, N. J. Ianno, S.-D. Hwang, and P. A. Dowben, “Sputter deposition of high resistivity boron carbide,” Thin Solid Films 335, 174–177 (1998).
[CrossRef]

A. A. Ahmad, N. J. Ianno, P. G. Snyder, D. Welipitiya, D. Byun, and P. A. Dowben, “Optical properties of boron carbide (B5C) thin films fabricated by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 79, 8643–8647(1996).
[CrossRef]

S. Lee, J. Mazurowski, G. Ramseyer, and P. A. Dowben, “Characterization of boron carbide thin films fabricated by plasma enhanced chemical vapor deposition from boranes,” J. Appl. Phys. 72, 4925–4933 (1992).
[CrossRef]

Emin, D.

G. A. Samara, H. L. Tardy, E. L. Venturini, T. L. Aselage, and D. Emin, “ac hopping conductivities, dielectric constants, and reflectivities of boron carbides,” Phys. Rev. B 48, 1468–1477(1993).
[CrossRef]

Eyhusen, S.

C. Ronning, D. Schwen, S. Eyhusen, U. Vetter, and H. Hofsäss, “Ion beam synthesis of boron carbide thin films,” Surf. Coat. Technol. 158–159, 382–387 (2002).
[CrossRef]

Fagen, E. A.

E. A. Fagen, “Optical and electrical properties of amorphous silicon carbide films,” in Amorphous and Liquid Semiconductors: Proceedings, Vol. 1, J.Stuke and W.Brenig, eds., (Taylor & Francis, 1974), pp. 601–607. It contains part of the proceedings of the International Conference on Amorphous and Liquid Semiconductors held at Garmisch-Partenkirchen, Germany, in 1973.

Falco, C. M.

Fernández-Perea, M.

Fierro, J. L. G.

Fineschi, S.

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

Folta, J. A.

S. Bajt, J. B. Alameda, T. W. Barbee, Jr., J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo/Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Frassetto, F.

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

Frison, R.

G. Monaco, D. Garoli, R. Frison, V. Mattarello, P. Nicolosi, M. G. Pelizzo, V. Rigato, L. Armelao, A. Giglia, and S. Nannarone, “Optical constants in the EUV Soft x-ray (5–152 nm) spectral range of B4C thin films deposited by different deposition techniques,” Proc. SPIE 6317, 631712 (2006).
[CrossRef]

Fujikawa, B. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection, E=100–2000 eV, Z=1−94,” At. Data Nucl. Data Tables 27, 1–144(1982).
[CrossRef]

García-Cortés, S.

Garoli, D.

G. Monaco, D. Garoli, M. Natali, F. Romanato, and P. Nicolosi, “Spectroscopic study of beta-SiC prepared via PLD at 1064 nm,” Cryst. Res. Technol. 46, 784–788 (2011).
[CrossRef]

G. Monaco, D. Garoli, R. Frison, V. Mattarello, P. Nicolosi, M. G. Pelizzo, V. Rigato, L. Armelao, A. Giglia, and S. Nannarone, “Optical constants in the EUV Soft x-ray (5–152 nm) spectral range of B4C thin films deposited by different deposition techniques,” Proc. SPIE 6317, 631712 (2006).
[CrossRef]

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

Gautier, J.

Giglia, A.

G. Monaco, D. Garoli, R. Frison, V. Mattarello, P. Nicolosi, M. G. Pelizzo, V. Rigato, L. Armelao, A. Giglia, and S. Nannarone, “Optical constants in the EUV Soft x-ray (5–152 nm) spectral range of B4C thin films deposited by different deposition techniques,” Proc. SPIE 6317, 631712 (2006).
[CrossRef]

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

Ginter, M. L.

G. M. Blumenstock, R. A. M. Keski-Kuha, and M. L. Ginter, “Extreme ultraviolet optical properties of ion-beam-deposited boron carbide thin films,” Proc. SPIE 2515, 558–564 (1995).
[CrossRef]

Golub, L.

D. L. Windt, S. Donguy, J. F. Seely, B. Kjornrattanawanich, E. M. Gullikson, C. C. Walton, L. Golub, and E. DeLuca, “EUV multilayers for solar physics,” Proc. SPIE 5168, 1–11 (2004).
[CrossRef]

Grigorovici, R.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
[CrossRef]

Gullikson, E.

Yu. Platonov, J. Rodriguez, M. Kriese, E. Gullikson, T. Harada, T. Watanabe, and H. Kinoshita, “Multilayers for next generation EUVL at 6.X nm,” Proc. SPIE 8076, 80760N (2011).
[CrossRef]

M. Fernández-Perea, M. Vidal-Dasilva, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, E. Gullikson, A. Aquila, and R. Soufli, “Optical constants of evaporation-deposited silicon monoxide films in the 7.1–800 eV photon energy range,” J. Appl. Phys. 105, 113505 (2009).
[CrossRef]

Gullikson, E. M.

R. Soufli, A. L. Aquila, F. Salmassi, M. Fernández-Perea, and E. M. Gullikson, “Optical constants of magnetron-sputtered boron carbide thin films from photoabsorption data in the range 30 to 770 eV,” Appl. Opt. 47, 4633–4639 (2008).
[CrossRef] [PubMed]

M. Fernández-Perea, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, M. Vidal-Dasilva, E. M. Gullikson, A. Aquila, R. Soufli, and J. L. G. Fierro, “Optical constants of electron-beam evaporated boron films in the 6.8–900 eV photon energy range,” J. Opt. Soc. Am. A 24, 3800–3807 (2007).
[CrossRef]

D. L. Windt, S. Donguy, J. F. Seely, B. Kjornrattanawanich, E. M. Gullikson, C. C. Walton, L. Golub, and E. DeLuca, “EUV multilayers for solar physics,” Proc. SPIE 5168, 1–11 (2004).
[CrossRef]

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1−92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Haber, R. A.

V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron carbide: structure, properties, and stability under stress,” J. Am. Ceram. Soc. 94, 3605–3628, doi: 10.1111/j.1551-2916.2011.04865.x (2011). .
[CrossRef]

Harada, T.

Yu. Platonov, J. Rodriguez, M. Kriese, E. Gullikson, T. Harada, T. Watanabe, and H. Kinoshita, “Multilayers for next generation EUVL at 6.X nm,” Proc. SPIE 8076, 80760N (2011).
[CrossRef]

Hau-Riege, S. P.

R. Soufli, S. L. Baker, J. C. Robinson, T. J. McCarville, M. J. Pivovaroff, S. P. Hau-Riege, and R. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors,” Proc. SPIE 7361, 73610U (2009).
[CrossRef]

Hausen, A.

H. Werheit, H. Binnenbruck, and A. Hausen, “Optical properties of boron carbide and comparison with β-rhombohedral boron,” Phys. Status Solidi B 47, 153–158 (1971).
[CrossRef]

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1−92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection, E=100–2000 eV, Z=1−94,” At. Data Nucl. Data Tables 27, 1–144(1982).
[CrossRef]

Hofsäss, H.

C. Ronning, D. Schwen, S. Eyhusen, U. Vetter, and H. Hofsäss, “Ion beam synthesis of boron carbide thin films,” Surf. Coat. Technol. 158–159, 382–387 (2002).
[CrossRef]

Huo, T.

Hwang, S.-D.

A. A. Ahmad, N. J. Ianno, S.-D. Hwang, and P. A. Dowben, “Sputter deposition of high resistivity boron carbide,” Thin Solid Films 335, 174–177 (1998).
[CrossRef]

Ianno, N. J.

A. A. Ahmad, N. J. Ianno, S.-D. Hwang, and P. A. Dowben, “Sputter deposition of high resistivity boron carbide,” Thin Solid Films 335, 174–177 (1998).
[CrossRef]

A. A. Ahmad, N. J. Ianno, P. G. Snyder, D. Welipitiya, D. Byun, and P. A. Dowben, “Optical properties of boron carbide (B5C) thin films fabricated by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 79, 8643–8647(1996).
[CrossRef]

Inokuti, M.

E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminium,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

Jellison, G. E.

G. E. Jellison, Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

Jérome, A.

Kaufmann, B.

S. Bajt, J. B. Alameda, T. W. Barbee, Jr., J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo/Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Keski-Kuha, R. A. M.

Kinoshita, H.

Yu. Platonov, J. Rodriguez, M. Kriese, E. Gullikson, T. Harada, T. Watanabe, and H. Kinoshita, “Multilayers for next generation EUVL at 6.X nm,” Proc. SPIE 8076, 80760N (2011).
[CrossRef]

Kirfel, A.

D. R. Armstrong, J. Bolland, P. G. Perkins, G. Will, and A. Kirfel, “The nature of the chemical bonding in boron carbide. IV. electronic band structure of boron carbide, B13C2, and three models of the structure B12C3,” Acta Crystallogr. B B39, 324–329 (1983).
[CrossRef]

Kjornrattanawanich, B.

D. L. Windt, S. Donguy, J. F. Seely, B. Kjornrattanawanich, E. M. Gullikson, C. C. Walton, L. Golub, and E. DeLuca, “EUV multilayers for solar physics,” Proc. SPIE 5168, 1–11 (2004).
[CrossRef]

Kleinman, L.

D. M. Bylander, L. Kleinman, and S. Lee, “Self-consistent calculations of the energy bands and bonding properties of B12C3,” Phys. Rev. B 42, 1394–1403 (1990).
[CrossRef]

Kriese, M.

Yu. Platonov, J. Rodriguez, M. Kriese, E. Gullikson, T. Harada, T. Watanabe, and H. Kinoshita, “Multilayers for next generation EUVL at 6.X nm,” Proc. SPIE 8076, 80760N (2011).
[CrossRef]

Ksenzov, D.

Larruquert, J. I.

Lee, P.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection, E=100–2000 eV, Z=1−94,” At. Data Nucl. Data Tables 27, 1–144(1982).
[CrossRef]

Lee, S.

S. Lee, J. Mazurowski, G. Ramseyer, and P. A. Dowben, “Characterization of boron carbide thin films fabricated by plasma enhanced chemical vapor deposition from boranes,” J. Appl. Phys. 72, 4925–4933 (1992).
[CrossRef]

D. M. Bylander, L. Kleinman, and S. Lee, “Self-consistent calculations of the energy bands and bonding properties of B12C3,” Phys. Rev. B 42, 1394–1403 (1990).
[CrossRef]

Li, C.

Lodha, G. S.

M. Nayak, G. S. Lodha, T. T. Prasad, P. Nageswararao, and A. K. Sinha, “Probing porosity at buried interfaces using soft x-ray resonant reflectivity,” J. Appl. Phys. 107, 023529 (2010).
[CrossRef]

Lucatorto, T. B.

Mai, H.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, and E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

S. Braun, H. Mai, M. Moss, and R. Scholz, “Microstructure of Mo/Si multilayers with barrier layers,” Proc. SPIE 4782, 185–195(2002).
[CrossRef]

Mattarello, V.

G. Monaco, D. Garoli, R. Frison, V. Mattarello, P. Nicolosi, M. G. Pelizzo, V. Rigato, L. Armelao, A. Giglia, and S. Nannarone, “Optical constants in the EUV Soft x-ray (5–152 nm) spectral range of B4C thin films deposited by different deposition techniques,” Proc. SPIE 6317, 631712 (2006).
[CrossRef]

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

Mazurowski, J.

S. Lee, J. Mazurowski, G. Ramseyer, and P. A. Dowben, “Characterization of boron carbide thin films fabricated by plasma enhanced chemical vapor deposition from boranes,” J. Appl. Phys. 72, 4925–4933 (1992).
[CrossRef]

McCarville, T. J.

R. Soufli, S. L. Baker, J. C. Robinson, T. J. McCarville, M. J. Pivovaroff, S. P. Hau-Riege, and R. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors,” Proc. SPIE 7361, 73610U (2009).
[CrossRef]

Melsheimer, J.

J. Melsheimer and D. Ziegler, “Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide,” Thin Solid Films 129, 35–47(1985).
[CrossRef]

Méndez, J. A.

Meyer, D. C.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, and E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

Modine, F. A.

G. E. Jellison, Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

Monaco, G.

G. Monaco, D. Garoli, M. Natali, F. Romanato, and P. Nicolosi, “Spectroscopic study of beta-SiC prepared via PLD at 1064 nm,” Cryst. Res. Technol. 46, 784–788 (2011).
[CrossRef]

G. Monaco, D. Garoli, R. Frison, V. Mattarello, P. Nicolosi, M. G. Pelizzo, V. Rigato, L. Armelao, A. Giglia, and S. Nannarone, “Optical constants in the EUV Soft x-ray (5–152 nm) spectral range of B4C thin films deposited by different deposition techniques,” Proc. SPIE 6317, 631712 (2006).
[CrossRef]

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

Morawe, C.

Morita, N.

N. Morita, “Optical constants of boron in visible and near infrared,” J. Sci. Res. Inst. 48, 8–12 (1954).

Moss, M.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, and E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

S. Braun, H. Mai, M. Moss, and R. Scholz, “Microstructure of Mo/Si multilayers with barrier layers,” Proc. SPIE 4782, 185–195(2002).
[CrossRef]

Nageswararao, P.

M. Nayak, G. S. Lodha, T. T. Prasad, P. Nageswararao, and A. K. Sinha, “Probing porosity at buried interfaces using soft x-ray resonant reflectivity,” J. Appl. Phys. 107, 023529 (2010).
[CrossRef]

Nannarone, S.

G. Monaco, D. Garoli, R. Frison, V. Mattarello, P. Nicolosi, M. G. Pelizzo, V. Rigato, L. Armelao, A. Giglia, and S. Nannarone, “Optical constants in the EUV Soft x-ray (5–152 nm) spectral range of B4C thin films deposited by different deposition techniques,” Proc. SPIE 6317, 631712 (2006).
[CrossRef]

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

Natali, M.

G. Monaco, D. Garoli, M. Natali, F. Romanato, and P. Nicolosi, “Spectroscopic study of beta-SiC prepared via PLD at 1064 nm,” Cryst. Res. Technol. 46, 784–788 (2011).
[CrossRef]

Nayak, M.

M. Nayak, G. S. Lodha, T. T. Prasad, P. Nageswararao, and A. K. Sinha, “Probing porosity at buried interfaces using soft x-ray resonant reflectivity,” J. Appl. Phys. 107, 023529 (2010).
[CrossRef]

Nicolosi, P.

G. Monaco, D. Garoli, M. Natali, F. Romanato, and P. Nicolosi, “Spectroscopic study of beta-SiC prepared via PLD at 1064 nm,” Cryst. Res. Technol. 46, 784–788 (2011).
[CrossRef]

G. Monaco, D. Garoli, R. Frison, V. Mattarello, P. Nicolosi, M. G. Pelizzo, V. Rigato, L. Armelao, A. Giglia, and S. Nannarone, “Optical constants in the EUV Soft x-ray (5–152 nm) spectral range of B4C thin films deposited by different deposition techniques,” Proc. SPIE 6317, 631712 (2006).
[CrossRef]

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

Nussenzveig, H. M.

M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and sum rules for the optical constants,” Phys. Rev. B 6, 4502–4509 (1972).
[CrossRef]

Panzner, T.

Pascolini, M.

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

Patelli, A.

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

Paufler, P.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, and E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

Pelizzo, M. G.

G. Monaco, D. Garoli, R. Frison, V. Mattarello, P. Nicolosi, M. G. Pelizzo, V. Rigato, L. Armelao, A. Giglia, and S. Nannarone, “Optical constants in the EUV Soft x-ray (5–152 nm) spectral range of B4C thin films deposited by different deposition techniques,” Proc. SPIE 6317, 631712 (2006).
[CrossRef]

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

Pérez-Marín, A. P.

Perkins, P. G.

D. R. Armstrong, J. Bolland, P. G. Perkins, G. Will, and A. Kirfel, “The nature of the chemical bonding in boron carbide. IV. electronic band structure of boron carbide, B13C2, and three models of the structure B12C3,” Acta Crystallogr. B B39, 324–329 (1983).
[CrossRef]

Pietsch, U.

Pivovaroff, M. J.

R. Soufli, S. L. Baker, J. C. Robinson, T. J. McCarville, M. J. Pivovaroff, S. P. Hau-Riege, and R. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors,” Proc. SPIE 7361, 73610U (2009).
[CrossRef]

Platonov, Yu.

Yu. Platonov, J. Rodriguez, M. Kriese, E. Gullikson, T. Harada, T. Watanabe, and H. Kinoshita, “Multilayers for next generation EUVL at 6.X nm,” Proc. SPIE 8076, 80760N (2011).
[CrossRef]

Prasad, T. T.

M. Nayak, G. S. Lodha, T. T. Prasad, P. Nageswararao, and A. K. Sinha, “Probing porosity at buried interfaces using soft x-ray resonant reflectivity,” J. Appl. Phys. 107, 023529 (2010).
[CrossRef]

Ramseyer, G.

S. Lee, J. Mazurowski, G. Ramseyer, and P. A. Dowben, “Characterization of boron carbide thin films fabricated by plasma enhanced chemical vapor deposition from boranes,” J. Appl. Phys. 72, 4925–4933 (1992).
[CrossRef]

Ravet, M. F.

F. Delmotte, J. Gautier, M. F. Ravet, F. Bridou, and A. Jérome, “Optiques multicouches pour l´extrême UV,” J. Phys. IV 127, 69–75 (2005).
[CrossRef]

Ravet, M.-F.

Reynaud, S.

V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron carbide: structure, properties, and stability under stress,” J. Am. Ceram. Soc. 94, 3605–3628, doi: 10.1111/j.1551-2916.2011.04865.x (2011). .
[CrossRef]

Rigato, V.

G. Monaco, D. Garoli, R. Frison, V. Mattarello, P. Nicolosi, M. G. Pelizzo, V. Rigato, L. Armelao, A. Giglia, and S. Nannarone, “Optical constants in the EUV Soft x-ray (5–152 nm) spectral range of B4C thin films deposited by different deposition techniques,” Proc. SPIE 6317, 631712 (2006).
[CrossRef]

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

Robinson, J. C.

R. Soufli, S. L. Baker, J. C. Robinson, T. J. McCarville, M. J. Pivovaroff, S. P. Hau-Riege, and R. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors,” Proc. SPIE 7361, 73610U (2009).
[CrossRef]

Rodriguez, J.

Yu. Platonov, J. Rodriguez, M. Kriese, E. Gullikson, T. Harada, T. Watanabe, and H. Kinoshita, “Multilayers for next generation EUVL at 6.X nm,” Proc. SPIE 8076, 80760N (2011).
[CrossRef]

Rodríguez-de Marcos, L.

Romanato, F.

G. Monaco, D. Garoli, M. Natali, F. Romanato, and P. Nicolosi, “Spectroscopic study of beta-SiC prepared via PLD at 1064 nm,” Cryst. Res. Technol. 46, 784–788 (2011).
[CrossRef]

Romoli, M.

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

Ronning, C.

C. Ronning, D. Schwen, S. Eyhusen, U. Vetter, and H. Hofsäss, “Ion beam synthesis of boron carbide thin films,” Surf. Coat. Technol. 158–159, 382–387 (2002).
[CrossRef]

Roulliay, M.

Salmassi, F.

Samara, G. A.

G. A. Samara, H. L. Tardy, E. L. Venturini, T. L. Aselage, and D. Emin, “ac hopping conductivities, dielectric constants, and reflectivities of boron carbides,” Phys. Rev. B 48, 1468–1477(1993).
[CrossRef]

Sasaki, T.

E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminium,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

Schlemper, C.

Scholz, R.

S. Braun, H. Mai, M. Moss, and R. Scholz, “Microstructure of Mo/Si multilayers with barrier layers,” Proc. SPIE 4782, 185–195(2002).
[CrossRef]

Schwen, D.

C. Ronning, D. Schwen, S. Eyhusen, U. Vetter, and H. Hofsäss, “Ion beam synthesis of boron carbide thin films,” Surf. Coat. Technol. 158–159, 382–387 (2002).
[CrossRef]

Seely, J. F.

D. L. Windt, S. Donguy, J. F. Seely, B. Kjornrattanawanich, E. M. Gullikson, C. C. Walton, L. Golub, and E. DeLuca, “EUV multilayers for solar physics,” Proc. SPIE 5168, 1–11 (2004).
[CrossRef]

Shiles, E.

E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminium,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection, E=100–2000 eV, Z=1−94,” At. Data Nucl. Data Tables 27, 1–144(1982).
[CrossRef]

Sinha, A. K.

M. Nayak, G. S. Lodha, T. T. Prasad, P. Nageswararao, and A. K. Sinha, “Probing porosity at buried interfaces using soft x-ray resonant reflectivity,” J. Appl. Phys. 107, 023529 (2010).
[CrossRef]

Slaughter, J. M.

Smith, D. Y.

E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminium,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

M. Altarelli and D. Y. Smith, “Superconvergence and sum rules for the optical constants: physical meaning, comparison with experiment, and generalization,” Phys. Rev. B 9, 1290–1298 (1974).
[CrossRef]

M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and sum rules for the optical constants,” Phys. Rev. B 6, 4502–4509 (1972).
[CrossRef]

Snyder, P. G.

A. A. Ahmad, N. J. Ianno, P. G. Snyder, D. Welipitiya, D. Byun, and P. A. Dowben, “Optical properties of boron carbide (B5C) thin films fabricated by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 79, 8643–8647(1996).
[CrossRef]

Soufli, R.

M. Fernández-Perea, M. Vidal-Dasilva, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, E. Gullikson, A. Aquila, and R. Soufli, “Optical constants of evaporation-deposited silicon monoxide films in the 7.1–800 eV photon energy range,” J. Appl. Phys. 105, 113505 (2009).
[CrossRef]

R. Soufli, S. L. Baker, J. C. Robinson, T. J. McCarville, M. J. Pivovaroff, S. P. Hau-Riege, and R. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors,” Proc. SPIE 7361, 73610U (2009).
[CrossRef]

R. Soufli, A. L. Aquila, F. Salmassi, M. Fernández-Perea, and E. M. Gullikson, “Optical constants of magnetron-sputtered boron carbide thin films from photoabsorption data in the range 30 to 770 eV,” Appl. Opt. 47, 4633–4639 (2008).
[CrossRef] [PubMed]

M. Fernández-Perea, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, M. Vidal-Dasilva, E. M. Gullikson, A. Aquila, R. Soufli, and J. L. G. Fierro, “Optical constants of electron-beam evaporated boron films in the 6.8–900 eV photon energy range,” J. Opt. Soc. Am. A 24, 3800–3807 (2007).
[CrossRef]

Spiller, E. A.

S. Bajt, J. B. Alameda, T. W. Barbee, Jr., J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo/Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Stenzel, O.

O. Stenzel, The Physics of Thin Film Optical Spectra: an Introduction, (Springer-Verlag, 2005) p. 214.

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection, E=100–2000 eV, Z=1−94,” At. Data Nucl. Data Tables 27, 1–144(1982).
[CrossRef]

Tardy, H. L.

G. A. Samara, H. L. Tardy, E. L. Venturini, T. L. Aselage, and D. Emin, “ac hopping conductivities, dielectric constants, and reflectivities of boron carbides,” Phys. Rev. B 48, 1468–1477(1993).
[CrossRef]

Tarrio, C.

Tauc, J.

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3, 37–46 (1968).
[CrossRef]

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
[CrossRef]

Theye, M. L.

M. L. Theye, “Optical properties of a-Ge, a-Si and a-III-V compounds,” in Amorphous and Liquid Semiconductors:Proceedings, Vol. 1, J.Stuke and W.Brenig, eds. (Taylor & Francis, 1974), pp. 479–498. It contains part of the proceedings of the International Conference on Amorphous and Liquid Semiconductors held at Garmisch-Partenkirchen, Germany, in 1973.

Tolansky, S.

S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films (Oxford University, 1948).

Vancu, A.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
[CrossRef]

Venturini, E. L.

G. A. Samara, H. L. Tardy, E. L. Venturini, T. L. Aselage, and D. Emin, “ac hopping conductivities, dielectric constants, and reflectivities of boron carbides,” Phys. Rev. B 48, 1468–1477(1993).
[CrossRef]

Vetter, U.

C. Ronning, D. Schwen, S. Eyhusen, U. Vetter, and H. Hofsäss, “Ion beam synthesis of boron carbide thin films,” Surf. Coat. Technol. 158–159, 382–387 (2002).
[CrossRef]

Vidal-Dasilva, M.

M. Fernández-Perea, M. Vidal-Dasilva, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, E. Gullikson, A. Aquila, and R. Soufli, “Optical constants of evaporation-deposited silicon monoxide films in the 7.1–800 eV photon energy range,” J. Appl. Phys. 105, 113505 (2009).
[CrossRef]

M. Fernández-Perea, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, M. Vidal-Dasilva, E. M. Gullikson, A. Aquila, R. Soufli, and J. L. G. Fierro, “Optical constants of electron-beam evaporated boron films in the 6.8–900 eV photon energy range,” J. Opt. Soc. Am. A 24, 3800–3807 (2007).
[CrossRef]

Walton, C. C.

D. L. Windt, S. Donguy, J. F. Seely, B. Kjornrattanawanich, E. M. Gullikson, C. C. Walton, L. Golub, and E. DeLuca, “EUV multilayers for solar physics,” Proc. SPIE 5168, 1–11 (2004).
[CrossRef]

Wang, F.

Wang, H.

Wang, Z.

Watanabe, T.

Yu. Platonov, J. Rodriguez, M. Kriese, E. Gullikson, T. Harada, T. Watanabe, and H. Kinoshita, “Multilayers for next generation EUVL at 6.X nm,” Proc. SPIE 8076, 80760N (2011).
[CrossRef]

Watts, R. N.

Welipitiya, D.

A. A. Ahmad, N. J. Ianno, P. G. Snyder, D. Welipitiya, D. Byun, and P. A. Dowben, “Optical properties of boron carbide (B5C) thin films fabricated by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 79, 8643–8647(1996).
[CrossRef]

Werheit, H.

H. Werheit, H. Binnenbruck, and A. Hausen, “Optical properties of boron carbide and comparison with β-rhombohedral boron,” Phys. Status Solidi B 47, 153–158 (1971).
[CrossRef]

Will, G.

D. R. Armstrong, J. Bolland, P. G. Perkins, G. Will, and A. Kirfel, “The nature of the chemical bonding in boron carbide. IV. electronic band structure of boron carbide, B13C2, and three models of the structure B12C3,” Acta Crystallogr. B B39, 324–329 (1983).
[CrossRef]

Windt, D. L.

D. L. Windt, S. Donguy, J. F. Seely, B. Kjornrattanawanich, E. M. Gullikson, C. C. Walton, L. Golub, and E. DeLuca, “EUV multilayers for solar physics,” Proc. SPIE 5168, 1–11 (2004).
[CrossRef]

Wu, W.

Xu, Y.

Zhang, S.

Zhang, Z.

Zhou, H.

Zhu, J.

Ziegler, D.

J. Melsheimer and D. Ziegler, “Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide,” Thin Solid Films 129, 35–47(1985).
[CrossRef]

Acta Crystallogr. B (1)

D. R. Armstrong, J. Bolland, P. G. Perkins, G. Will, and A. Kirfel, “The nature of the chemical bonding in boron carbide. IV. electronic band structure of boron carbide, B13C2, and three models of the structure B12C3,” Acta Crystallogr. B B39, 324–329 (1983).
[CrossRef]

Appl. Opt. (8)

J. I. Larruquert and R. A. M. Keski-Kuha, “Optical properties of hot-pressed B4C in the extreme ultraviolet,” Appl. Opt. 39, 1537–1540 (2000).
[CrossRef]

J. I. Larruquert and R. A. M. Keski-Kuha, “Multilayer coatings with high reflectance in the EUV spectral region from 50 to 121.6 nm,” Appl. Opt. 38, 1231–1236 (1999).
[CrossRef]

J. I. Larruquert and R. A. M. Keski-Kuha, “Sub-quarterwave multilayer coatings with high reflectance in the extreme ultraviolet,” Appl. Opt. 41, 5398–5404 (2002).
[CrossRef] [PubMed]

J. Gautier, F. Delmotte, M. Roulliay, F. Bridou, M.-F. Ravet, and A. Jérome, “Study of normal incidence of three-component multilayer mirrors in the range 20–40 nm,” Appl. Opt. 44, 384–390 (2005).
[CrossRef] [PubMed]

G. M. Blumenstock and R. A. M. Keski-Kuha, “Ion-beam-deposited boron carbide coatings for the extreme ultraviolet,” Appl. Opt. 33, 5962–5963 (1994).
[CrossRef] [PubMed]

C. Tarrio, R. N. Watts, T. B. Lucatorto, J. M. Slaughter, and C. M. Falco, “Optical constants of in situ-deposited films of important extreme-ultraviolet multilayer mirror materials,” Appl. Opt. 37, 4100–4104 (1998).
[CrossRef]

R. Soufli, A. L. Aquila, F. Salmassi, M. Fernández-Perea, and E. M. Gullikson, “Optical constants of magnetron-sputtered boron carbide thin films from photoabsorption data in the range 30 to 770 eV,” Appl. Opt. 47, 4633–4639 (2008).
[CrossRef] [PubMed]

D. Ksenzov, T. Panzner, C. Schlemper, C. Morawe, and U. Pietsch, “Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru=B4Cmultilayer,” Appl. Opt. 48, 6684–6691 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

G. E. Jellison, Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

At. Data Nucl. Data Tables (2)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection, E=100–2000 eV, Z=1−94,” At. Data Nucl. Data Tables 27, 1–144(1982).
[CrossRef]

B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1−92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Chin. Opt. Lett. (1)

Cryst. Res. Technol. (1)

G. Monaco, D. Garoli, M. Natali, F. Romanato, and P. Nicolosi, “Spectroscopic study of beta-SiC prepared via PLD at 1064 nm,” Cryst. Res. Technol. 46, 784–788 (2011).
[CrossRef]

J. Am. Ceram. Soc. (1)

V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron carbide: structure, properties, and stability under stress,” J. Am. Ceram. Soc. 94, 3605–3628, doi: 10.1111/j.1551-2916.2011.04865.x (2011). .
[CrossRef]

J. Appl. Phys. (4)

A. A. Ahmad, N. J. Ianno, P. G. Snyder, D. Welipitiya, D. Byun, and P. A. Dowben, “Optical properties of boron carbide (B5C) thin films fabricated by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 79, 8643–8647(1996).
[CrossRef]

M. Nayak, G. S. Lodha, T. T. Prasad, P. Nageswararao, and A. K. Sinha, “Probing porosity at buried interfaces using soft x-ray resonant reflectivity,” J. Appl. Phys. 107, 023529 (2010).
[CrossRef]

S. Lee, J. Mazurowski, G. Ramseyer, and P. A. Dowben, “Characterization of boron carbide thin films fabricated by plasma enhanced chemical vapor deposition from boranes,” J. Appl. Phys. 72, 4925–4933 (1992).
[CrossRef]

M. Fernández-Perea, M. Vidal-Dasilva, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, E. Gullikson, A. Aquila, and R. Soufli, “Optical constants of evaporation-deposited silicon monoxide films in the 7.1–800 eV photon energy range,” J. Appl. Phys. 105, 113505 (2009).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. IV (1)

F. Delmotte, J. Gautier, M. F. Ravet, F. Bridou, and A. Jérome, “Optiques multicouches pour l´extrême UV,” J. Phys. IV 127, 69–75 (2005).
[CrossRef]

J. Sci. Res. Inst. (1)

N. Morita, “Optical constants of boron in visible and near infrared,” J. Sci. Res. Inst. 48, 8–12 (1954).

Mater. Res. Bull. (1)

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3, 37–46 (1968).
[CrossRef]

Opt. Eng. (1)

S. Bajt, J. B. Alameda, T. W. Barbee, Jr., J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo/Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Phys. Rev. B (5)

G. A. Samara, H. L. Tardy, E. L. Venturini, T. L. Aselage, and D. Emin, “ac hopping conductivities, dielectric constants, and reflectivities of boron carbides,” Phys. Rev. B 48, 1468–1477(1993).
[CrossRef]

M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and sum rules for the optical constants,” Phys. Rev. B 6, 4502–4509 (1972).
[CrossRef]

M. Altarelli and D. Y. Smith, “Superconvergence and sum rules for the optical constants: physical meaning, comparison with experiment, and generalization,” Phys. Rev. B 9, 1290–1298 (1974).
[CrossRef]

D. M. Bylander, L. Kleinman, and S. Lee, “Self-consistent calculations of the energy bands and bonding properties of B12C3,” Phys. Rev. B 42, 1394–1403 (1990).
[CrossRef]

E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminium,” Phys. Rev. B 22, 1612–1628 (1980).
[CrossRef]

Phys. Status Solidi (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
[CrossRef]

Phys. Status Solidi B (1)

H. Werheit, H. Binnenbruck, and A. Hausen, “Optical properties of boron carbide and comparison with β-rhombohedral boron,” Phys. Status Solidi B 47, 153–158 (1971).
[CrossRef]

Proc. SPIE (7)

S. Braun, H. Mai, M. Moss, and R. Scholz, “Microstructure of Mo/Si multilayers with barrier layers,” Proc. SPIE 4782, 185–195(2002).
[CrossRef]

D. L. Windt, S. Donguy, J. F. Seely, B. Kjornrattanawanich, E. M. Gullikson, C. C. Walton, L. Golub, and E. DeLuca, “EUV multilayers for solar physics,” Proc. SPIE 5168, 1–11 (2004).
[CrossRef]

F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005).
[CrossRef]

G. Monaco, D. Garoli, R. Frison, V. Mattarello, P. Nicolosi, M. G. Pelizzo, V. Rigato, L. Armelao, A. Giglia, and S. Nannarone, “Optical constants in the EUV Soft x-ray (5–152 nm) spectral range of B4C thin films deposited by different deposition techniques,” Proc. SPIE 6317, 631712 (2006).
[CrossRef]

G. M. Blumenstock, R. A. M. Keski-Kuha, and M. L. Ginter, “Extreme ultraviolet optical properties of ion-beam-deposited boron carbide thin films,” Proc. SPIE 2515, 558–564 (1995).
[CrossRef]

Yu. Platonov, J. Rodriguez, M. Kriese, E. Gullikson, T. Harada, T. Watanabe, and H. Kinoshita, “Multilayers for next generation EUVL at 6.X nm,” Proc. SPIE 8076, 80760N (2011).
[CrossRef]

R. Soufli, S. L. Baker, J. C. Robinson, T. J. McCarville, M. J. Pivovaroff, S. P. Hau-Riege, and R. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors,” Proc. SPIE 7361, 73610U (2009).
[CrossRef]

Surf. Coat. Technol. (1)

C. Ronning, D. Schwen, S. Eyhusen, U. Vetter, and H. Hofsäss, “Ion beam synthesis of boron carbide thin films,” Surf. Coat. Technol. 158–159, 382–387 (2002).
[CrossRef]

Thin Solid Films (3)

A. A. Ahmad, N. J. Ianno, S.-D. Hwang, and P. A. Dowben, “Sputter deposition of high resistivity boron carbide,” Thin Solid Films 335, 174–177 (1998).
[CrossRef]

J. Melsheimer and D. Ziegler, “Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide,” Thin Solid Films 129, 35–47(1985).
[CrossRef]

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, and E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

Other (7)

M. L. Theye, “Optical properties of a-Ge, a-Si and a-III-V compounds,” in Amorphous and Liquid Semiconductors:Proceedings, Vol. 1, J.Stuke and W.Brenig, eds. (Taylor & Francis, 1974), pp. 479–498. It contains part of the proceedings of the International Conference on Amorphous and Liquid Semiconductors held at Garmisch-Partenkirchen, Germany, in 1973.

O. Stenzel, The Physics of Thin Film Optical Spectra: an Introduction, (Springer-Verlag, 2005) p. 214.

E. A. Fagen, “Optical and electrical properties of amorphous silicon carbide films,” in Amorphous and Liquid Semiconductors: Proceedings, Vol. 1, J.Stuke and W.Brenig, eds., (Taylor & Francis, 1974), pp. 601–607. It contains part of the proceedings of the International Conference on Amorphous and Liquid Semiconductors held at Garmisch-Partenkirchen, Germany, in 1973.

The data are available on request at the following e-mail address: larruquert@io.cfmac.csic.es.

S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films (Oxford University, 1948).

http://henke.lbl.gov/optical_constants/.

Downloaded from the following website of Physical Reference Data, Physics Laboratory at NIST: http://physics.nist.gov/PhysRefData/FFast/html/form.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Ellipsometry parameters tan ψ and cos Δ , both experimental and fitted, measured at 72 ° as a function of wavelength.

Fig. 2
Fig. 2

Optical constants n and k obtained from ellipsometry measurements as a function of wavelength.

Fig. 3
Fig. 3

Log-log plot of k versus wavelength compared with the literature data of Soufli et al.[18], Monaco et al. [17], and Blumenstock et al. [2], three interpolation ranges, the reststrahlen band obtained from Samara et al. [21], and literature data for B [31, 32].

Fig. 4
Fig. 4

Log-log plot of n versus wavelength obtained with KK analysis compared with the present ellipsometry data and the literature data of Soufli et al.[18], Monaco et al. [17], and Blumenstock et al. [2], along with literature data for B [31]. Inset: δ = 1 n versus wavelength below 20 nm .

Fig. 5
Fig. 5

B 4 C film bandgap obtained as the abscissa intercept of the linear extrapolation of (a)  α E and (b)  ε 2 E 2 as a function of energy.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n ( E ) 1 = 2 π P 0 E k ( E ) E 2 E 2 d E ,
α E ( E E G ) ,
ε 2 E 2 ( E E G ) ,
n eff ( E ) = 4 ε 0 m π N mol e 2 2 0 E E k ( E ) d E ,
0 [ n ( E ) 1 ] d E = 0 ,
ζ = 0 [ n ( E ) 1 ] d E 0 | n ( E ) 1 | d E .

Metrics