Abstract

The stochastic transfer function (STF) has been introduced in previous publications [J. Opt. Soc. Am. A 26, 1622 (2009)]. This encompasses the conventional transfer function as well as a measure of the noise at each spatial frequency. We use the STF as a metric to characterize the noise performance of structured illumination microscopy where the final image is synthesized from several constituent images. In particular, we examine the effect of different processing strategies on the signal to noise at different spatial frequencies. We extend the so-called weighted average approach to account for different grating periods, where the noise in different image contributions is correlated. Finally, we demonstrate by simulation that a superior STF does lead to better imaging of a two-point object.

© 2011 Optical Society of America

Full Article  |  PDF Article
Related Articles
Knox–Thompson and triple-correlation imaging through atmospheric turbulence

G. R. Ayers, M. J. Northcott, and J. C. Dainty
J. Opt. Soc. Am. A 5(7) 963-985 (1988)

High-resolution image reconstruction in fluorescence microscopy with patterned excitation

Rainer Heintzmann and Pier A. Benedetti
Appl. Opt. 45(20) 5037-5045 (2006)

Combined PMD-PDL effects on BERs in simplified optical systems: an analytical approach

Liang Chen, Zhongxi Zhang, and Xiaoyi Bao
Opt. Express 15(5) 2106-2119 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription