Abstract

The mechanisms of compensation of aberration between cornea and lens are somehow modified during both accommodation and aging. In 15 individualized ocular models of young and unaccommodated eyes, we used morphological data of the lens to simulate the effect of accommodation and aging on these mechanisms. The predicted changes in aberrations were compared to data from the literature. In general, only the variation of the lens curvature was enough to reproduce the decrease in ocular spherical aberration (SA) during accommodation. However, the increase in SA with age could only be explained as a consequence of an increase in the conic constant of the lens and/or additional changes on the gradient index.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. El Hage and F. Berny, “Contribution of crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63, 205–211 (1973).
    [CrossRef] [PubMed]
  2. P. Artal and A. Guirao, “Contribution of cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
    [CrossRef]
  3. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vision 1, 1–8 (2001).
    [CrossRef]
  4. J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
    [CrossRef]
  5. P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
    [CrossRef]
  6. P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
    [CrossRef]
  7. J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007).
    [CrossRef]
  8. A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism in the human eye,” Am. J. Ophthalmol. 147, 424–431 (2009).
    [CrossRef]
  9. A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
    [PubMed]
  10. J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32, 406–408 (2007).
    [CrossRef] [PubMed]
  11. D. A. Atchison, E. Markwell, S. Kasturirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision 8, 1–20 (2008).
    [CrossRef]
  12. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
    [CrossRef] [PubMed]
  13. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005).
    [CrossRef]
  14. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected scheimpflug images,” Opt. Vis. Sci. 78, 411–416 (2001).
    [CrossRef]
  15. M. Dubbleman, V. A. D. P. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46, 993–1001 (2006).
    [CrossRef]
  16. P. Artal, M. Ferro, I. Miranda, and R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662(1993).
    [CrossRef] [PubMed]
  17. A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, and P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).
  18. R. I. Calver, M. J. Cox, and D. B. Elliot, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16, 2069–2078 (1999).
    [CrossRef]
  19. J. S. McLellan, S. Marcos, and S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).
  20. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
    [CrossRef]
  21. I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438–5446 (2003).
    [CrossRef]
  22. R. A. Applegate, W. J. Donnelly, J. D. Marsack, and D. E. Koenig, “Three-dimensional relationship between high-order root-mean-square wavefront error, pupil diameter, and aging,” J. Opt. Soc. Am. A 24, 578–587 (2007).
    [CrossRef]
  23. D. A. Atchison and E. L. Markwell, “Aberration of emmetropic subjects at different ages,” Vision Res. 48, 2224–2231 (2008).
    [CrossRef] [PubMed]
  24. E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vision 10, 34 (2010).
    [CrossRef]
  25. P. Artal, E. J. Fernández, and S. Manzanera, “Are optical aberrations during accommodation a significant problem for refractive surgery?” J. Refract. Surg. 18, S563–S566 (2002).
    [PubMed]
  26. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
    [CrossRef]
  27. S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vision 5, 466–477 (2005).
    [CrossRef]
  28. H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vision 7, 1–21(2007).
    [CrossRef]
  29. J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
    [CrossRef] [PubMed]
  30. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
    [CrossRef]
  31. Y. Le Grand and S. G. El Hage, Physiological Optics, Springer Series in Optical Sciences (Springer-Verlag, 1980).
  32. T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).
  33. A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
    [CrossRef]
  34. R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
    [CrossRef] [PubMed]
  35. L. N. Hazra and C. A. Delisle, “Primary aberrations of a thin lens with different object and image space media,” J. Opt. Soc. Am. A 15, 945–953 (1998).
    [CrossRef]
  36. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci. 49, 2531–2540 (2008).
    [CrossRef]
  37. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vision 11, 1–16 (2011).
    [CrossRef]
  38. C. E. Campbell, “Nested shell optical model of the lens of the human eye,” J. Opt. Soc. Am. A 27, 2432–2441 (2010).
    [CrossRef]
  39. R. Navarro, F. Palos, and L. M. González, “Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens,” J. Opt. Soc. Am. A 24, 2911–2920 (2007).
    [CrossRef]

2011 (1)

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vision 11, 1–16 (2011).
[CrossRef]

2010 (2)

C. E. Campbell, “Nested shell optical model of the lens of the human eye,” J. Opt. Soc. Am. A 27, 2432–2441 (2010).
[CrossRef]

E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vision 10, 34 (2010).
[CrossRef]

2009 (1)

A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism in the human eye,” Am. J. Ophthalmol. 147, 424–431 (2009).
[CrossRef]

2008 (4)

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
[CrossRef]

D. A. Atchison, E. Markwell, S. Kasturirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision 8, 1–20 (2008).
[CrossRef]

D. A. Atchison and E. L. Markwell, “Aberration of emmetropic subjects at different ages,” Vision Res. 48, 2224–2231 (2008).
[CrossRef] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci. 49, 2531–2540 (2008).
[CrossRef]

2007 (5)

2006 (3)

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

M. Dubbleman, V. A. D. P. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46, 993–1001 (2006).
[CrossRef]

J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[CrossRef] [PubMed]

2005 (2)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005).
[CrossRef]

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vision 5, 466–477 (2005).
[CrossRef]

2004 (2)

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
[CrossRef]

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

2003 (1)

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438–5446 (2003).
[CrossRef]

2002 (3)

P. Artal, E. J. Fernández, and S. Manzanera, “Are optical aberrations during accommodation a significant problem for refractive surgery?” J. Refract. Surg. 18, S563–S566 (2002).
[PubMed]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[PubMed]

2001 (4)

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected scheimpflug images,” Opt. Vis. Sci. 78, 411–416 (2001).
[CrossRef]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
[CrossRef] [PubMed]

J. S. McLellan, S. Marcos, and S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

2000 (2)

1999 (3)

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, and P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

R. I. Calver, M. J. Cox, and D. B. Elliot, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16, 2069–2078 (1999).
[CrossRef]

1998 (2)

1993 (1)

1985 (1)

1973 (1)

Alcón, E.

Applegate, R. A.

R. A. Applegate, W. J. Donnelly, J. D. Marsack, and D. E. Koenig, “Three-dimensional relationship between high-order root-mean-square wavefront error, pupil diameter, and aging,” J. Opt. Soc. Am. A 24, 578–587 (2007).
[CrossRef]

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

Artal, P.

E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vision 10, 34 (2010).
[CrossRef]

A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism in the human eye,” Am. J. Ophthalmol. 147, 424–431 (2009).
[CrossRef]

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
[CrossRef]

J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007).
[CrossRef]

J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32, 406–408 (2007).
[CrossRef] [PubMed]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[CrossRef] [PubMed]

P. Artal, E. J. Fernández, and S. Manzanera, “Are optical aberrations during accommodation a significant problem for refractive surgery?” J. Refract. Surg. 18, S563–S566 (2002).
[PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[PubMed]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[CrossRef]

A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
[CrossRef]

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, and P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

P. Artal and A. Guirao, “Contribution of cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[CrossRef]

P. Artal, M. Ferro, I. Miranda, and R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662(1993).
[CrossRef] [PubMed]

Atchison, D. A.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vision 11, 1–16 (2011).
[CrossRef]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci. 49, 2531–2540 (2008).
[CrossRef]

D. A. Atchison and E. L. Markwell, “Aberration of emmetropic subjects at different ages,” Vision Res. 48, 2224–2231 (2008).
[CrossRef] [PubMed]

D. A. Atchison, E. Markwell, S. Kasturirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision 8, 1–20 (2008).
[CrossRef]

Barnett, J. K.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Benito, A.

A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism in the human eye,” Am. J. Ophthalmol. 147, 424–431 (2009).
[CrossRef]

J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007).
[CrossRef]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[CrossRef] [PubMed]

Berny, F.

Berrio, E.

E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vision 10, 34 (2010).
[CrossRef]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

Bescós, J.

Brunette, I.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438–5446 (2003).
[CrossRef]

Bueno, J. M.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438–5446 (2003).
[CrossRef]

Burns, S. A.

J. S. McLellan, S. Marcos, and S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

Calver, R. I.

Campbell, C. E.

Charman, W. N.

H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vision 7, 1–21(2007).
[CrossRef]

Cheng, H.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Cox, M. J.

Delisle, C. A.

Donnelly, W. J.

Dubbelman, M.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005).
[CrossRef]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected scheimpflug images,” Opt. Vis. Sci. 78, 411–416 (2001).
[CrossRef]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
[CrossRef] [PubMed]

Dubbleman, M.

M. Dubbleman, V. A. D. P. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46, 993–1001 (2006).
[CrossRef]

El Hage, S. G.

S. G. El Hage and F. Berny, “Contribution of crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63, 205–211 (1973).
[CrossRef] [PubMed]

Y. Le Grand and S. G. El Hage, Physiological Optics, Springer Series in Optical Sciences (Springer-Verlag, 1980).

Elliot, D. B.

Fernández, E. J.

P. Artal, E. J. Fernández, and S. Manzanera, “Are optical aberrations during accommodation a significant problem for refractive surgery?” J. Refract. Surg. 18, S563–S566 (2002).
[PubMed]

Ferro, M.

Geraghty, E.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[PubMed]

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, and P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Ginis, H. S.

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vision 5, 466–477 (2005).
[CrossRef]

Goelz, S.

Gonzalez, C.

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, and P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

González, L. M.

Guirao, A.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[PubMed]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
[CrossRef]

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, and P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

P. Artal and A. Guirao, “Contribution of cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[CrossRef]

Hamam, H.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438–5446 (2003).
[CrossRef]

Hazra, L. N.

Howland, H. C.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
[CrossRef]

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

Kasthurirangan, S.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vision 11, 1–16 (2011).
[CrossRef]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci. 49, 2531–2540 (2008).
[CrossRef]

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Kasturirangan, S.

D. A. Atchison, E. Markwell, S. Kasturirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision 8, 1–20 (2008).
[CrossRef]

Kelly, J. E.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
[CrossRef]

Klyce, S. D.

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

Koenig, D. E.

Le Grand, Y.

Y. Le Grand and S. G. El Hage, Physiological Optics, Springer Series in Optical Sciences (Springer-Verlag, 1980).

Manzanera, S.

P. Artal, E. J. Fernández, and S. Manzanera, “Are optical aberrations during accommodation a significant problem for refractive surgery?” J. Refract. Surg. 18, S563–S566 (2002).
[PubMed]

Marcos, S.

J. S. McLellan, S. Marcos, and S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

Markwell, E.

D. A. Atchison, E. Markwell, S. Kasturirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision 8, 1–20 (2008).
[CrossRef]

Markwell, E. L.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vision 11, 1–16 (2011).
[CrossRef]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci. 49, 2531–2540 (2008).
[CrossRef]

D. A. Atchison and E. L. Markwell, “Aberration of emmetropic subjects at different ages,” Vision Res. 48, 2224–2231 (2008).
[CrossRef] [PubMed]

Marsack, J. D.

R. A. Applegate, W. J. Donnelly, J. D. Marsack, and D. E. Koenig, “Three-dimensional relationship between high-order root-mean-square wavefront error, pupil diameter, and aging,” J. Opt. Soc. Am. A 24, 578–587 (2007).
[CrossRef]

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

McLellan, J. S.

J. S. McLellan, S. Marcos, and S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

Mihashi, T.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
[CrossRef]

Miranda, I.

Navarro, R.

Norrby, S.

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[PubMed]

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, and P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Nourrit, V.

Oshika, T.

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

Pallikaris, A.

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vision 5, 466–477 (2005).
[CrossRef]

Palos, F.

Parent, M.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438–5446 (2003).
[CrossRef]

Piers, P.

J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32, 406–408 (2007).
[CrossRef] [PubMed]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[PubMed]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

Plainis, S.

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vision 5, 466–477 (2005).
[CrossRef]

Pope, J. M.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vision 11, 1–16 (2011).
[CrossRef]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci. 49, 2531–2540 (2008).
[CrossRef]

D. A. Atchison, E. Markwell, S. Kasturirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision 8, 1–20 (2008).
[CrossRef]

Prieto, P. M.

Radhakrishnan, H.

H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vision 7, 1–21(2007).
[CrossRef]

Redondo, M.

A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism in the human eye,” Am. J. Ophthalmol. 147, 424–431 (2009).
[CrossRef]

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[PubMed]

A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
[CrossRef]

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, and P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

Roorda, A.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Santamaría, J.

Sicam, V. A. D. P.

M. Dubbleman, V. A. D. P. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46, 993–1001 (2006).
[CrossRef]

Simonet, P.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438–5446 (2003).
[CrossRef]

Smith, G.

D. A. Atchison, E. Markwell, S. Kasturirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision 8, 1–20 (2008).
[CrossRef]

Swann, P. G.

D. A. Atchison, E. Markwell, S. Kasturirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision 8, 1–20 (2008).
[CrossRef]

Tabernero, J.

E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vision 10, 34 (2010).
[CrossRef]

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
[CrossRef]

J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007).
[CrossRef]

J. Tabernero, P. Piers, and P. Artal, “Intraocular lens to correct corneal coma,” Opt. Lett. 32, 406–408 (2007).
[CrossRef] [PubMed]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

J. Tabernero, A. Benito, V. Nourrit, and P. Artal, “Instrument for measuring the misalignments of ocular surfaces,” Opt. Express 14, 10945–10956 (2006).
[CrossRef] [PubMed]

Van der Heijde, G. L.

M. Dubbleman, V. A. D. P. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46, 993–1001 (2006).
[CrossRef]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005).
[CrossRef]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected scheimpflug images,” Opt. Vis. Sci. 78, 411–416 (2001).
[CrossRef]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
[CrossRef] [PubMed]

Vargas-Martín, F.

Vilupuru, A. S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005).
[CrossRef]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected scheimpflug images,” Opt. Vis. Sci. 78, 411–416 (2001).
[CrossRef]

Williams, D. R.

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

Am. J. Ophthalmol. (1)

A. Benito, M. Redondo, and P. Artal, “Laser in situ keratomileusis disrupts the aberration compensation mechanism in the human eye,” Am. J. Ophthalmol. 147, 424–431 (2009).
[CrossRef]

Arch. Ophthalmol. (1)

A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, “Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted,” Arch. Ophthalmol. 120, 1143–1151 (2002).
[PubMed]

Invest. Ophthalmol. Visual Sci. (5)

A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, and P. Artal, “Average optical performance of the human eye as a function of age in a normal population,” Invest. Ophthalmol. Visual Sci. 40, 203–213 (1999).

J. S. McLellan, S. Marcos, and S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Visual Sci. 44, 5438–5446 (2003).
[CrossRef]

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Invest. Ophthalmol. Visual Sci. 49, 2531–2540 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (11)

R. I. Calver, M. J. Cox, and D. B. Elliot, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16, 2069–2078 (1999).
[CrossRef]

J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A 24, 3274–3283 (2007).
[CrossRef]

P. Artal, M. Ferro, I. Miranda, and R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10, 1656–1662(1993).
[CrossRef] [PubMed]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[CrossRef]

A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000).
[CrossRef]

R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
[CrossRef] [PubMed]

L. N. Hazra and C. A. Delisle, “Primary aberrations of a thin lens with different object and image space media,” J. Opt. Soc. Am. A 15, 945–953 (1998).
[CrossRef]

R. A. Applegate, W. J. Donnelly, J. D. Marsack, and D. E. Koenig, “Three-dimensional relationship between high-order root-mean-square wavefront error, pupil diameter, and aging,” J. Opt. Soc. Am. A 24, 578–587 (2007).
[CrossRef]

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

C. E. Campbell, “Nested shell optical model of the lens of the human eye,” J. Opt. Soc. Am. A 27, 2432–2441 (2010).
[CrossRef]

R. Navarro, F. Palos, and L. M. González, “Adaptive model of the gradient index of the human lens. II. Optics of the accommodating aging lens,” J. Opt. Soc. Am. A 24, 2911–2920 (2007).
[CrossRef]

J. Refract. Surg. (1)

P. Artal, E. J. Fernández, and S. Manzanera, “Are optical aberrations during accommodation a significant problem for refractive surgery?” J. Refract. Surg. 18, S563–S566 (2002).
[PubMed]

J. Vision (9)

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vision 5, 466–477 (2005).
[CrossRef]

H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vision 7, 1–21(2007).
[CrossRef]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vision 11, 1–16 (2011).
[CrossRef]

D. A. Atchison, E. Markwell, S. Kasturirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vision 8, 1–20 (2008).
[CrossRef]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
[CrossRef]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vision 10, 34 (2010).
[CrossRef]

Nat. Photonics (1)

P. Artal and J. Tabernero, “The eye’s aplanatic answer,” Nat. Photonics 2, 586–589 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Vis. Sci. (1)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected scheimpflug images,” Opt. Vis. Sci. 78, 411–416 (2001).
[CrossRef]

Vision Res. (4)

M. Dubbleman, V. A. D. P. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46, 993–1001 (2006).
[CrossRef]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
[CrossRef] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005).
[CrossRef]

D. A. Atchison and E. L. Markwell, “Aberration of emmetropic subjects at different ages,” Vision Res. 48, 2224–2231 (2008).
[CrossRef] [PubMed]

Other (1)

Y. Le Grand and S. G. El Hage, Physiological Optics, Springer Series in Optical Sciences (Springer-Verlag, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Predicted (from the models) versus measured horizontal coma ( C 3 1 ) for the 15 eyes of the study (left plot). The difference between predictions and measurements are plotted against the average of the two values (right plot).

Fig. 2
Fig. 2

Schematic diagram of the procedure to build up the individualized eye models used in this work.

Fig. 3
Fig. 3

Changes in (a) SA and (b), (c) coma for the 15 eye models considered in the study when the accommodation stimulus was “virtually” increased up to 7 D, changing only lens curvatures.

Fig. 4
Fig. 4

Changes in SA as a function of the accommodation stimulus. Solid curved line represents the average data of Fig. 3a (changes in the crystalline lens surfaces included curvature but not asphericity). Dotted curved line represents the average data from the 15 eye models when asphericity was also allowed to change as a function of the accommodation level. The thin solid lines represents the standard deviation interval from the mean changes for this last predictive case. Solid straight line represents the experimental tendency measured in 74 subjects by Cheng et al. [26]. The data were all calculated for a fixed 5 mm pupil diameter.

Fig. 5
Fig. 5

Average SA of the cornea, internal (crystalline lens), and total eye for three different accommodative states (infinity, 3 D, and 6 D). Pupil diameter was 5 mm .

Fig. 6
Fig. 6

Comparison between (a) simulated data and (b) experimental data from the literature for the ocular SA as a function of age. The simulations included three different approaches to the rate of change in asphericity. Prediction 1 did not include changes in asphericity with age. Prediction 2 took a positive change in asphericity from Dubbelman and Van der Heijde’s work [12]. Prediction 3 included a positive change but reduced by half compared to prediction 2. Standard deviation intervals from the mean value are also shown in the case of prediction 3. Pupil diameter was 5 mm for all data presented here.

Fig. 7
Fig. 7

Comparison between (a) simulated data and (b) experimental data from the literature for the ocular coma rms as a function of age. The simulations included three different approaches to the change in asphericity. Prediction 1 did not include changes in asphericity with age. Prediction 2 took a positive change in asphericity from Dubbelman and Van der Heijde’s work [12]. Prediction 3 included a positive change but reduced by half compared to prediction 2. Standard deviation intervals from the mean value are also shown in the case of prediction 3. Pupil diameter was 5 mm for all data presented here.

Fig. 8
Fig. 8

Average SA of the cornea, internal (crystalline lens), and total eye for three different ages (20, 45, and 75 years). Pupil diameter was 5 mm .

Metrics