Abstract

The interest in the eye’s off-axis aberrations has increased strongly. On-axis the conversion of the aberration magnitude between different wavelengths is well known. We verified if this compensation is correct also for off-axis measurements by building a wavelength tunable peripheral Hartmann–Shack sensor and measuring 11 subjects out to ±30° in the horizontal visual field. At the fovea, an average longitudinal chromatic aberration of 1D between red (671nm) and blue (473nm) light was found, and it increased slightly with eccentricity (up to 1.2D). A similar trend was measured for astigmatism as a function of wavelength (increase 0.15D). Computational ray tracing in model eyes showed that the origin of the small increase of chromatic aberrations with eccentricity is the change of the oblique power of the refractive surfaces in the eye. Factors related to increase of axial length and refractive index of the eye were found to have a very small influence.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res. 28, 639–657 (1988).
    [CrossRef] [PubMed]
  2. E. L. Smith, C. Kee, R. Ramamirham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965–3972 (2005).
    [CrossRef]
  3. S. Diether and F. Schaeffel, “Local changes in eye growth induced by imposed local refractive error despite active accommodation,” Vision Res. 37, 659–668 (1997).
    [CrossRef] [PubMed]
  4. E. L. Smith, L. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vision Res. 49, 2389–2392 (2009).
    [CrossRef]
  5. E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: Evidence for local, regionally selective mechanisms,” Invest. Ophthalmol. Visual Sci. 51, 3864–3873 (2010).
    [CrossRef]
  6. J. Hoogerheide, F. Rempt, and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215(1971).
    [CrossRef] [PubMed]
  7. D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Visual Sci. 48, 2510–2519(2007).
    [CrossRef]
  8. J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
    [CrossRef] [PubMed]
  9. L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 17 (2009).
    [CrossRef]
  10. L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
    [CrossRef]
  11. D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 46, 1450–1458(2005).
    [CrossRef]
  12. D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022–1030 (2000).
  13. A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363–2373(2002).
    [CrossRef]
  14. P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
    [CrossRef] [PubMed]
  15. L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
    [CrossRef] [PubMed]
  16. J. Santamaría, P. Artal, and J. Bescós, “Determination of the point spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114(1987).
    [CrossRef] [PubMed]
  17. A. Guirao and P. Artal, “Off-axis monchromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207–217 (1999).
    [CrossRef] [PubMed]
  18. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
    [CrossRef]
  19. D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann–Shack aberrometry,” J. Opt. Soc. Am. A 24, 2963–2973(2007).
    [CrossRef]
  20. E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8 to 1070 nm,” Opt. Express 16, 21199–21208 (2008).
    [CrossRef] [PubMed]
  21. S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16, 7748–7755 (2008).
    [CrossRef] [PubMed]
  22. W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
    [CrossRef] [PubMed]
  23. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberrations in humans,” Appl. Opt. 31-19, 3594–3600 (1992).
    [CrossRef]
  24. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37(2005).
    [CrossRef]
  25. J. Nam, J. Rubinstein, and L. N. Thibos, “Wavelength adjustment using an eye model from aberrometry data,” J. Opt. Soc. Am. A 27, 1561–1574 (2010).
    [CrossRef]
  26. C. E. Campbell, “Relative importance of sources of chromatic refractive error in the human eye,” J. Opt. Soc. Am. A 27, 730–738 (2010).
    [CrossRef]
  27. Y. Wang and L. N. Thibos, “Oblique (off-axis) astigmatism of the reduced schematic eye with elliptical refracting surface,” Optometry Vision Sci. 74, 557–562 (1997).
    [CrossRef]
  28. M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
    [CrossRef] [PubMed]
  29. I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
    [CrossRef]
  30. Y. U. Ogboso and H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4, 1666–1672 (1987).
    [CrossRef] [PubMed]
  31. L. Lundström and P. Unsbo, “Unwrapping Hartmann–Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method,” Optometry Vision Sci. 81, 569–577 (2004).
    [CrossRef]
  32. American National Standards Institute, “Methods for reporting optical aberrations of eyes,” Tech. Rep. ANSI Z80.28-2004(2004).
  33. H. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14, 1684–1695(1997).
    [CrossRef]
  34. D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450–1458 (2006).
    [CrossRef]
  35. B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19, 7903–7913 (2011).
    [CrossRef] [PubMed]

2011

2010

J. Nam, J. Rubinstein, and L. N. Thibos, “Wavelength adjustment using an eye model from aberrometry data,” J. Opt. Soc. Am. A 27, 1561–1574 (2010).
[CrossRef]

C. E. Campbell, “Relative importance of sources of chromatic refractive error in the human eye,” J. Opt. Soc. Am. A 27, 730–738 (2010).
[CrossRef]

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: Evidence for local, regionally selective mechanisms,” Invest. Ophthalmol. Visual Sci. 51, 3864–3873 (2010).
[CrossRef]

2009

E. L. Smith, L. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vision Res. 49, 2389–2392 (2009).
[CrossRef]

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 17 (2009).
[CrossRef]

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
[CrossRef]

2008

2007

2006

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450–1458 (2006).
[CrossRef]

2005

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37(2005).
[CrossRef]

E. L. Smith, C. Kee, R. Ramamirham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965–3972 (2005).
[CrossRef]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 46, 1450–1458(2005).
[CrossRef]

2004

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[CrossRef] [PubMed]

L. Lundström and P. Unsbo, “Unwrapping Hartmann–Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method,” Optometry Vision Sci. 81, 569–577 (2004).
[CrossRef]

2002

2000

D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022–1030 (2000).

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[CrossRef]

1999

A. Guirao and P. Artal, “Off-axis monchromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207–217 (1999).
[CrossRef] [PubMed]

I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
[CrossRef]

1998

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
[CrossRef] [PubMed]

1997

H. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14, 1684–1695(1997).
[CrossRef]

Y. Wang and L. N. Thibos, “Oblique (off-axis) astigmatism of the reduced schematic eye with elliptical refracting surface,” Optometry Vision Sci. 74, 557–562 (1997).
[CrossRef]

S. Diether and F. Schaeffel, “Local changes in eye growth induced by imposed local refractive error despite active accommodation,” Vision Res. 37, 659–668 (1997).
[CrossRef] [PubMed]

1995

P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
[CrossRef] [PubMed]

1992

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberrations in humans,” Appl. Opt. 31-19, 3594–3600 (1992).
[CrossRef]

1988

F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res. 28, 639–657 (1988).
[CrossRef] [PubMed]

1987

1976

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

1971

J. Hoogerheide, F. Rempt, and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215(1971).
[CrossRef] [PubMed]

Artal, P.

B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19, 7903–7913 (2011).
[CrossRef] [PubMed]

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 17 (2009).
[CrossRef]

E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8 to 1070 nm,” Opt. Express 16, 21199–21208 (2008).
[CrossRef] [PubMed]

S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16, 7748–7755 (2008).
[CrossRef] [PubMed]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007).
[CrossRef] [PubMed]

A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363–2373(2002).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[CrossRef]

A. Guirao and P. Artal, “Off-axis monchromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207–217 (1999).
[CrossRef] [PubMed]

P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
[CrossRef] [PubMed]

J. Santamaría, P. Artal, and J. Bescós, “Determination of the point spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114(1987).
[CrossRef] [PubMed]

Atchison, D. A.

D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann–Shack aberrometry,” J. Opt. Soc. Am. A 24, 2963–2973(2007).
[CrossRef]

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450–1458 (2006).
[CrossRef]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37(2005).
[CrossRef]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 46, 1450–1458(2005).
[CrossRef]

Ayala, D. B.

Bedell, H. E.

Bescós, J.

Blasdel, T. L.

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: Evidence for local, regionally selective mechanisms,” Invest. Ophthalmol. Visual Sci. 51, 3864–3873 (2010).
[CrossRef]

Bockhorst, K. H.

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: Evidence for local, regionally selective mechanisms,” Invest. Ophthalmol. Visual Sci. 51, 3864–3873 (2010).
[CrossRef]

Bradley, A.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberrations in humans,” Appl. Opt. 31-19, 3594–3600 (1992).
[CrossRef]

Brennan, N. A.

Campbell, C. E.

Canovas, C.

Charman, W. N.

D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann–Shack aberrometry,” J. Opt. Soc. Am. A 24, 2963–2973(2007).
[CrossRef]

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

Colombo, E.

P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
[CrossRef] [PubMed]

Derrington, A. M.

P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
[CrossRef] [PubMed]

Diether, S.

S. Diether and F. Schaeffel, “Local changes in eye growth induced by imposed local refractive error despite active accommodation,” Vision Res. 37, 659–668 (1997).
[CrossRef] [PubMed]

Escudero-Sanz, I.

Fernández, E. J.

Friedman, N. E.

D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022–1030 (2000).

Glasser, A.

F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res. 28, 639–657 (1988).
[CrossRef] [PubMed]

Goelz, S.

Gorceix, N.

Gotter, S. A.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Visual Sci. 48, 2510–2519(2007).
[CrossRef]

Guirao, A.

A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363–2373(2002).
[CrossRef]

A. Guirao and P. Artal, “Off-axis monchromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207–217 (1999).
[CrossRef] [PubMed]

Gustafsson, J.

Hayes, J. R.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Visual Sci. 48, 2510–2519(2007).
[CrossRef]

Hoogenboom, W. P. H.

J. Hoogerheide, F. Rempt, and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215(1971).
[CrossRef] [PubMed]

Hoogerheide, J.

J. Hoogerheide, F. Rempt, and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215(1971).
[CrossRef] [PubMed]

Howland, H. C.

F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res. 28, 639–657 (1988).
[CrossRef] [PubMed]

Huang, J.

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: Evidence for local, regionally selective mechanisms,” Invest. Ophthalmol. Visual Sci. 51, 3864–3873 (2010).
[CrossRef]

E. L. Smith, L. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vision Res. 49, 2389–2392 (2009).
[CrossRef]

Humbird, T. L.

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: Evidence for local, regionally selective mechanisms,” Invest. Ophthalmol. Visual Sci. 51, 3864–3873 (2010).
[CrossRef]

Hung, L.

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: Evidence for local, regionally selective mechanisms,” Invest. Ophthalmol. Visual Sci. 51, 3864–3873 (2010).
[CrossRef]

E. L. Smith, L. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vision Res. 49, 2389–2392 (2009).
[CrossRef]

E. L. Smith, C. Kee, R. Ramamirham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965–3972 (2005).
[CrossRef]

Jaeken, B.

Jennings, J. A. M.

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

Jones, C. E.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 46, 1450–1458(2005).
[CrossRef]

Jones, L. A.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Visual Sci. 48, 2510–2519(2007).
[CrossRef]

Kee, C.

E. L. Smith, C. Kee, R. Ramamirham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965–3972 (2005).
[CrossRef]

Kleinstein, R. N.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Visual Sci. 48, 2510–2519(2007).
[CrossRef]

Liou, H.

Lopez-Gil, N.

Losada, M. A.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
[CrossRef] [PubMed]

Lundström, L.

Manny, R. E.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Visual Sci. 48, 2510–2519(2007).
[CrossRef]

Manzanera, S.

Mira-Agudelo, A.

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 17 (2009).
[CrossRef]

Mitchell, G. L.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Visual Sci. 48, 2510–2519(2007).
[CrossRef]

Moeschberger, M. L.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Visual Sci. 48, 2510–2519(2007).
[CrossRef]

Mutti, D. O.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Visual Sci. 48, 2510–2519(2007).
[CrossRef]

D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022–1030 (2000).

Nam, J.

Navarro, R.

I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
[CrossRef]

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
[CrossRef] [PubMed]

Ogboso, Y. U.

Pope, J. M.

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 46, 1450–1458(2005).
[CrossRef]

Prieto, P. M.

Pritchard, N.

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450–1458 (2006).
[CrossRef]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 46, 1450–1458(2005).
[CrossRef]

Qiao-Grider, Y.

E. L. Smith, C. Kee, R. Ramamirham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965–3972 (2005).
[CrossRef]

Ramamirham, R.

E. L. Smith, C. Kee, R. Ramamirham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965–3972 (2005).
[CrossRef]

Rempt, F.

J. Hoogerheide, F. Rempt, and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215(1971).
[CrossRef] [PubMed]

Rubinstein, J.

Rynders, M. C.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
[CrossRef] [PubMed]

Santamaría, J.

Schaeffel, F.

A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363–2373(2002).
[CrossRef]

S. Diether and F. Schaeffel, “Local changes in eye growth induced by imposed local refractive error despite active accommodation,” Vision Res. 37, 659–668 (1997).
[CrossRef] [PubMed]

F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res. 28, 639–657 (1988).
[CrossRef] [PubMed]

Schmid, K. L.

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450–1458 (2006).
[CrossRef]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 46, 1450–1458(2005).
[CrossRef]

Scott, D. H.

D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann–Shack aberrometry,” J. Opt. Soc. Am. A 24, 2963–2973(2007).
[CrossRef]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 46, 1450–1458(2005).
[CrossRef]

Seidemann, A.

Sholtz, R. I.

D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022–1030 (2000).

Smith, E. L.

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: Evidence for local, regionally selective mechanisms,” Invest. Ophthalmol. Visual Sci. 51, 3864–3873 (2010).
[CrossRef]

E. L. Smith, L. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vision Res. 49, 2389–2392 (2009).
[CrossRef]

E. L. Smith, C. Kee, R. Ramamirham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965–3972 (2005).
[CrossRef]

Smith, G.

Thibos, L. N.

J. Nam, J. Rubinstein, and L. N. Thibos, “Wavelength adjustment using an eye model from aberrometry data,” J. Opt. Soc. Am. A 27, 1561–1574 (2010).
[CrossRef]

Y. Wang and L. N. Thibos, “Oblique (off-axis) astigmatism of the reduced schematic eye with elliptical refracting surface,” Optometry Vision Sci. 74, 557–562 (1997).
[CrossRef]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberrations in humans,” Appl. Opt. 31-19, 3594–3600 (1992).
[CrossRef]

Twelker, J. D.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Visual Sci. 48, 2510–2519(2007).
[CrossRef]

Unsbo, P.

Vargas-Martín, F.

Wallman, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang and L. N. Thibos, “Oblique (off-axis) astigmatism of the reduced schematic eye with elliptical refracting surface,” Optometry Vision Sci. 74, 557–562 (1997).
[CrossRef]

Winawer, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[CrossRef] [PubMed]

Ye, M.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberrations in humans,” Appl. Opt. 31-19, 3594–3600 (1992).
[CrossRef]

Zadnik, K.

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Visual Sci. 48, 2510–2519(2007).
[CrossRef]

D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022–1030 (2000).

Zhang, X.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberrations in humans,” Appl. Opt. 31-19, 3594–3600 (1992).
[CrossRef]

Appl. Opt.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberrations in humans,” Appl. Opt. 31-19, 3594–3600 (1992).
[CrossRef]

Invest. Ophthalmol. Visual Sci.

E. L. Smith, C. Kee, R. Ramamirham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965–3972 (2005).
[CrossRef]

E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: Evidence for local, regionally selective mechanisms,” Invest. Ophthalmol. Visual Sci. 51, 3864–3873 (2010).
[CrossRef]

D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Visual Sci. 48, 2510–2519(2007).
[CrossRef]

D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 46, 1450–1458(2005).
[CrossRef]

D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022–1030 (2000).

J. Opt. Soc. Am. A

A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363–2373(2002).
[CrossRef]

L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009).
[CrossRef]

J. Santamaría, P. Artal, and J. Bescós, “Determination of the point spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114(1987).
[CrossRef] [PubMed]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37(2005).
[CrossRef]

J. Nam, J. Rubinstein, and L. N. Thibos, “Wavelength adjustment using an eye model from aberrometry data,” J. Opt. Soc. Am. A 27, 1561–1574 (2010).
[CrossRef]

C. E. Campbell, “Relative importance of sources of chromatic refractive error in the human eye,” J. Opt. Soc. Am. A 27, 730–738 (2010).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
[CrossRef]

D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann–Shack aberrometry,” J. Opt. Soc. Am. A 24, 2963–2973(2007).
[CrossRef]

I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
[CrossRef]

Y. U. Ogboso and H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4, 1666–1672 (1987).
[CrossRef] [PubMed]

H. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14, 1684–1695(1997).
[CrossRef]

J. Vision

L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 17 (2009).
[CrossRef]

Neuron

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004).
[CrossRef] [PubMed]

Ophthalmologica

J. Hoogerheide, F. Rempt, and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215(1971).
[CrossRef] [PubMed]

Opt. Express

Optometry Vision Sci.

Y. Wang and L. N. Thibos, “Oblique (off-axis) astigmatism of the reduced schematic eye with elliptical refracting surface,” Optometry Vision Sci. 74, 557–562 (1997).
[CrossRef]

L. Lundström and P. Unsbo, “Unwrapping Hartmann–Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method,” Optometry Vision Sci. 81, 569–577 (2004).
[CrossRef]

Vision Res.

D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450–1458 (2006).
[CrossRef]

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998).
[CrossRef] [PubMed]

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

A. Guirao and P. Artal, “Off-axis monchromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207–217 (1999).
[CrossRef] [PubMed]

P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995).
[CrossRef] [PubMed]

S. Diether and F. Schaeffel, “Local changes in eye growth induced by imposed local refractive error despite active accommodation,” Vision Res. 37, 659–668 (1997).
[CrossRef] [PubMed]

E. L. Smith, L. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vision Res. 49, 2389–2392 (2009).
[CrossRef]

F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res. 28, 639–657 (1988).
[CrossRef] [PubMed]

Other

American National Standards Institute, “Methods for reporting optical aberrations of eyes,” Tech. Rep. ANSI Z80.28-2004(2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic overview of the instrument setup.

Fig. 2
Fig. 2

Average values of mean spherical equivalent (M) for the five emmetropes. The error bars represent the standard deviation of M between the subjects.

Fig. 3
Fig. 3

Longitudinal chromatic aberration (Mred-Mblue) as a function of eccentricity for the two refractive groups separately (emmetropes, myopes) and the two combined (all). The error bars give the standard deviation of the calculated LCA between the different subjects. Also, the LCA found in the model eye (simulation) is plotted.

Fig. 4
Fig. 4

(a) Left figure contains the chromatic difference (red-blue) as function of eccentricity for the measured data. The mean values over all subjects (11) for Zernike coefficients C 2 2 , C 3 1 , and C 4 0 and high_RMS (third-order and fourth-order) are plotted in micrometers. The error bars show the standard deviation over the 11 subjects. (b) Same data as the left figure but calculated from the simulations. N stands for nasal and T for temporal retina.

Fig. 5
Fig. 5

(a) Variation of M with eccentricity at 532 nm for the different simulated cases: original model eye (org), 4 D myopic eye (myop), retinal conic constant of 1 (obl), retinal conic constant of 0.9 (prol), compensation for TCA (noTCA), uniform distribution of refractive index of the crystalline lens with nref = 1.45 (noGRIN1) and nref = 1.38 (noGRIN2), and the use of the whole wavefront information to fit Zernike coefficients (noELPS). (b) LCA (red-blue) for the different simulated cases. All show an increase with eccentricity.

Fig. 6
Fig. 6

(a) Variation of LCA with eccentricity for three different model eyes. The Liou and Brennan model eye (org), the Indiana reduced model eye (Indiana), and the simple one spherical surface model eye (sph sim). All three predict an increase of LCA with eccentricity, which is the result of the increase of the oblique power of the surface. (b) Variation of the other chromatic aberrations with eccentricity simulated with the complex model eye (CM, narrow colored bars) and the reduced Indiana model eye (RM, wide colored bars). The difference is in micrometers and calculated for a 4 mm pupil.

Fig. 7
Fig. 7

Bland–Altmann plot comparing the estimation of the red data from the blue data using only a foveal offset (circles and striped lines) with the estimation using the new method (crosses and dotted lines). The outermost lines give the 95% limits of agreement and the central line gives the mean. The letter E indicates the estimated value.

Tables (6)

Tables Icon

Table 1 Overview of the p Values Comparing the Chromatic Variation Between Blue and Red

Tables Icon

Table 2 Results of Paired t Tests Comparing If the Estimated Red Value Differs Significantly from the Measured Red Value Using the New and the Old Conversion Method

Tables Icon

Table 3 Surface Information and Values of Coefficients Used in the Model Eye for the Liou and Brennan Eye Model Geometry

Tables Icon

Table 4 Values of the Schott Dispersion Coefficients Used in the Model Eye

Tables Icon

Table 5 Values of the Sellmeier Dispersion Coefficients for a Crystalline Lens

Tables Icon

Table 6 Different Values for the Used Field Angle (FA), Decentration (DEC), and Visual Angle (VA) for the Original Liou and Brennan Model Eye Simulation a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n ref = n 0 + n r 2 r 2 + n r 4 r 4 + n z 1 z + n z 2 z 2 + n z 3 z 3 + n z 4 z 4 ,
r = ( x 2 + y 2 ) 1 / 2 .
n ( λ ) 2 = a 0 + a 1 λ 2 + a 2 λ 2 + a 3 λ 4 + a 4 λ 6 + a 5 λ 8 .
n ( λ ) 2 = n ( λ ref ) 2 + i = 1 3 K i ( λ 2 λ ref 2 ) λ 2 L i ,
K i = j = 1 2 K i j ( n ref ) j 1 .

Metrics