Abstract

In three-dimensional fluorescence microscopy the point spread function (PSF) changes with depth, inducing errors in the restored images when these variations are neglected during the deconvolution of thick specimens. Some deconvolution algorithms have been developed to take the depth variations of the PSF into consideration. For these algorithms, the accuracy of the estimated structures depends on the knowledge of the PSF at various depths. We propose an alternative to measuring all required PSFs at different depths. The needed PSFs are interpolated from a limited measured PSF set using a method based on Zernike moments. The proposed method offers the possibility to obtain an accurate PSF interpolation at different depths using only a few measured ones.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function

Joshua W. Shaevitz and Daniel A. Fletcher
J. Opt. Soc. Am. A 24(9) 2622-2627 (2007)

A Parallel Product-Convolution approach for representing depth varying Point Spread Functions in 3D widefield microscopy based on principal component analysis

Muthuvel Arigovindan, Joshua Shaevitz, John McGowan, John W. Sedat, and David A. Agard
Opt. Express 18(7) 6461-6476 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription