G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distribution,” J. Opt. Soc. Am. A 28, 24–39 (2011).

[CrossRef]

G. Gouesbet, “T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates,” Opt. Commun. 283, 517–521(2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. I. General formulation,” Opt. Commun. 283, 3218–3225 (2010).

[CrossRef]

J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. III. Special Euler angles,” Opt. Commun. 283, 3235–3243 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, Y. P. Han, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381 (2009).

[CrossRef]

B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11, 015705, 2009.

[CrossRef]

V. S. C. M. Rao and S. D. Gupta, “Broken azimuthal degeneracy with whispering gallery modes of microspheres,” J. Opt. A 7, 279–285 (2005).

[CrossRef]

P. T. Leung, S. W. Ng, and K. M. Pang, “Morphology-dependent resonances in dielectric spheres with many tiny inclusions,” Opt. Lett. 27, 1749–1751 (2002).

[CrossRef]

M. Hentschel and K. Richter, “Quantum chaos in optical systems: the annular billiard,” Phys. Rev. E 66, 056207 (2002).

[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).

[CrossRef]
[PubMed]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

D. Ngo, G. Videen, and P. Chýlek, “A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion,” Comput. Phys. Commun. 99, 94–112 (1996).

[CrossRef]

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, and W. P. Acker, “Laser diagnostics for droplet characterization: application of morphology dependent resonances,” Progr. Energy Combust. Sci. 22, 163–188 (1996).

[CrossRef]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994).

[CrossRef]
[PubMed]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Light scattering by a coated sphere illuminated with a Gaussian beam,” Appl. Opt. 33, 3308–3314 (1994).

[CrossRef]
[PubMed]

D. Ngo and R. G. Pinnick, “Suppression of scattering resonances in inhomogeneous microdroplets,” J. Opt. Soc. Am. A 11, 1352–1359 (1994).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

K. A. Fuller, “Morphology-dependent resonances in eccentrically stratified sphere,” Opt. Lett. 19, 1272–1274 (1994).

[CrossRef]
[PubMed]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial-wave resonance,” Phys. Rev. A 18, 2229–2233 (1978).

[CrossRef]

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).

[CrossRef]

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, and W. P. Acker, “Laser diagnostics for droplet characterization: application of morphology dependent resonances,” Progr. Energy Combust. Sci. 22, 163–188 (1996).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

P. Chýlek, B. Ramaswamy, A. Ashkin, and J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data,” Appl. Opt. 22, 2302–2307 (1983).

[CrossRef]
[PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).

[CrossRef]
[PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).

[CrossRef]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994).

[CrossRef]
[PubMed]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Light scattering by a coated sphere illuminated with a Gaussian beam,” Appl. Opt. 33, 3308–3314 (1994).

[CrossRef]
[PubMed]

M. M. Mazumder, S. C. Hill, and P. W. Barber, “Morphology-dependent resonances in inhomogeneous spheres: comparison of the layered T-matrix method and the time-independent perturbation method,” J. Opt. Soc. Am. A 9, 1844–1853 (1992).

[CrossRef]

G. Chen, R. K. Chang, S. C. Hill, and P. W. Barber, “Frequency splitting of degenerate spherical cavity mode: stimulated Raman scattering spectrum of deformed droplets,” Opt. Lett. 16, 1269–1271 (1991).

[CrossRef]
[PubMed]

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods, Vol. 2 of Advanced Series in Applied Physics (World Scientific, 1990).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, and W. P. Acker, “Laser diagnostics for droplet characterization: application of morphology dependent resonances,” Progr. Energy Combust. Sci. 22, 163–188 (1996).

[CrossRef]

G. Chen, R. K. Chang, S. C. Hill, and P. W. Barber, “Frequency splitting of degenerate spherical cavity mode: stimulated Raman scattering spectrum of deformed droplets,” Opt. Lett. 16, 1269–1271 (1991).

[CrossRef]
[PubMed]

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9, 273–275 (1984).

[CrossRef]
[PubMed]

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, and W. P. Acker, “Laser diagnostics for droplet characterization: application of morphology dependent resonances,” Progr. Energy Combust. Sci. 22, 163–188 (1996).

[CrossRef]

G. Chen, R. K. Chang, S. C. Hill, and P. W. Barber, “Frequency splitting of degenerate spherical cavity mode: stimulated Raman scattering spectrum of deformed droplets,” Opt. Lett. 16, 1269–1271 (1991).

[CrossRef]
[PubMed]

D. Ngo, G. Videen, and P. Chýlek, “A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion,” Comput. Phys. Commun. 99, 94–112 (1996).

[CrossRef]

P. Chýlek, B. Ramaswamy, A. Ashkin, and J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data,” Appl. Opt. 22, 2302–2307 (1983).

[CrossRef]
[PubMed]

P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial-wave resonance,” Phys. Rev. A 18, 2229–2233 (1978).

[CrossRef]

J. Ducastel, “Etude des résonances morphologiquement dépendantes et application à la caractérisation de microparticules en milieu diphasique,” Ph.D. thesis (Institut National des Sciences Appliquées de Rouen, 2007).

P. Chýlek, B. Ramaswamy, A. Ashkin, and J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data,” Appl. Opt. 22, 2302–2307 (1983).

[CrossRef]
[PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).

[CrossRef]
[PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distribution,” J. Opt. Soc. Am. A 28, 24–39 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, Y. P. Han, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

G. Gouesbet, “T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates,” Opt. Commun. 283, 517–521(2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. I. General formulation,” Opt. Commun. 283, 3218–3225 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. III. Special Euler angles,” Opt. Commun. 283, 3235–3243 (2010).

[CrossRef]

Y. P. Han, L. Méès, G. Gouesbet, Z. S. Wu, and G. Gréhan, “Resonant spectra of a deformed spherical microcavity,” J. Opt. Soc. Am. B 23, 1390–1397 (2006).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999).

[CrossRef]

F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).

[CrossRef]
[PubMed]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer, 2011).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distribution,” J. Opt. Soc. Am. A 28, 24–39 (2011).

[CrossRef]

G. Gouesbet, J. J. Wang, Y. P. Han, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

Y. P. Han, L. Méès, G. Gouesbet, Z. S. Wu, and G. Gréhan, “Resonant spectra of a deformed spherical microcavity,” J. Opt. Soc. Am. B 23, 1390–1397 (2006).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).

[CrossRef]
[PubMed]

G. Gouesbet, G. Gréhan, and B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer, 2011).

[CrossRef]

V. S. C. M. Rao and S. D. Gupta, “Broken azimuthal degeneracy with whispering gallery modes of microspheres,” J. Opt. A 7, 279–285 (2005).

[CrossRef]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381 (2009).

[CrossRef]

G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25, 2064–2072 (2008).

[CrossRef]

Y. P. Han, H. Y. Zhang, and G. X. Han, “The expansion coefficients of arbitrary shaped beam in oblique illumination,” Opt. Express 15, 735–746 (2007).

[CrossRef]
[PubMed]

B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11, 015705, 2009.

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distribution,” J. Opt. Soc. Am. A 28, 24–39 (2011).

[CrossRef]

G. Gouesbet, J. J. Wang, Y. P. Han, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. I. General formulation,” Opt. Commun. 283, 3218–3225 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. III. Special Euler angles,” Opt. Commun. 283, 3235–3243 (2010).

[CrossRef]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381 (2009).

[CrossRef]

G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25, 2064–2072 (2008).

[CrossRef]

Y. P. Han, H. Y. Zhang, and G. X. Han, “The expansion coefficients of arbitrary shaped beam in oblique illumination,” Opt. Express 15, 735–746 (2007).

[CrossRef]
[PubMed]

Y. P. Han, L. Méès, G. Gouesbet, Z. S. Wu, and G. Gréhan, “Resonant spectra of a deformed spherical microcavity,” J. Opt. Soc. Am. B 23, 1390–1397 (2006).

[CrossRef]

M. Hentschel and K. Richter, “Quantum chaos in optical systems: the annular billiard,” Phys. Rev. E 66, 056207 (2002).

[CrossRef]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Light scattering by a coated sphere illuminated with a Gaussian beam,” Appl. Opt. 33, 3308–3314 (1994).

[CrossRef]
[PubMed]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994).

[CrossRef]
[PubMed]

M. M. Mazumder, S. C. Hill, and P. W. Barber, “Morphology-dependent resonances in inhomogeneous spheres: comparison of the layered T-matrix method and the time-independent perturbation method,” J. Opt. Soc. Am. A 9, 1844–1853 (1992).

[CrossRef]

G. Chen, R. K. Chang, S. C. Hill, and P. W. Barber, “Frequency splitting of degenerate spherical cavity mode: stimulated Raman scattering spectrum of deformed droplets,” Opt. Lett. 16, 1269–1271 (1991).

[CrossRef]
[PubMed]

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods, Vol. 2 of Advanced Series in Applied Physics (World Scientific, 1990).

[CrossRef]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Light scattering by a coated sphere illuminated with a Gaussian beam,” Appl. Opt. 33, 3308–3314 (1994).

[CrossRef]
[PubMed]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994).

[CrossRef]
[PubMed]

P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial-wave resonance,” Phys. Rev. A 18, 2229–2233 (1978).

[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).

[CrossRef]
[PubMed]

P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial-wave resonance,” Phys. Rev. A 18, 2229–2233 (1978).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

J. A. Lock, “An improved Gaussian beam scattering algorithm,” Appl. Opt. 34, 559–570 (1995).

[CrossRef]
[PubMed]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, and W. P. Acker, “Laser diagnostics for droplet characterization: application of morphology dependent resonances,” Progr. Energy Combust. Sci. 22, 163–188 (1996).

[CrossRef]

M. M. Mazumder, S. C. Hill, and P. W. Barber, “Morphology-dependent resonances in inhomogeneous spheres: comparison of the layered T-matrix method and the time-independent perturbation method,” J. Opt. Soc. Am. A 9, 1844–1853 (1992).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001).

[CrossRef]

V. S. C. M. Rao and S. D. Gupta, “Broken azimuthal degeneracy with whispering gallery modes of microspheres,” J. Opt. A 7, 279–285 (2005).

[CrossRef]

B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11, 015705, 2009.

[CrossRef]

M. Hentschel and K. Richter, “Quantum chaos in optical systems: the annular billiard,” Phys. Rev. E 66, 056207 (2002).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).

[CrossRef]
[PubMed]

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, and W. P. Acker, “Laser diagnostics for droplet characterization: application of morphology dependent resonances,” Progr. Energy Combust. Sci. 22, 163–188 (1996).

[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).

[CrossRef]
[PubMed]

H. C. van de Hulst, Light Scattering by Small Particles (Peter Smith, 1982).

D. Ngo, G. Videen, and P. Chýlek, “A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion,” Comput. Phys. Commun. 99, 94–112 (1996).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distribution,” J. Opt. Soc. Am. A 28, 24–39 (2011).

[CrossRef]

J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, Y. P. Han, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. III. Special Euler angles,” Opt. Commun. 283, 3235–3243 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. I. General formulation,” Opt. Commun. 283, 3218–3225 (2010).

[CrossRef]

B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11, 015705, 2009.

[CrossRef]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381 (2009).

[CrossRef]

Y. P. Han, H. Y. Zhang, and G. X. Han, “The expansion coefficients of arbitrary shaped beam in oblique illumination,” Opt. Express 15, 735–746 (2007).

[CrossRef]
[PubMed]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381 (2009).

[CrossRef]

G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25, 2064–2072 (2008).

[CrossRef]

A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).

[CrossRef]
[PubMed]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524–532 (1994).

[CrossRef]
[PubMed]

E. E. M. Khaled, S. C. Hill, and P. W. Barber, “Light scattering by a coated sphere illuminated with a Gaussian beam,” Appl. Opt. 33, 3308–3314 (1994).

[CrossRef]
[PubMed]

J. A. Lock, “An improved Gaussian beam scattering algorithm,” Appl. Opt. 34, 559–570 (1995).

[CrossRef]
[PubMed]

F. Onofri, G. Gréhan, and G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).

[CrossRef]
[PubMed]

P. Chýlek, B. Ramaswamy, A. Ashkin, and J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data,” Appl. Opt. 22, 2302–2307 (1983).

[CrossRef]
[PubMed]

M. I. Mishchenko and A. A. Lacis, “Morphology-dependent resonances of nearly spherical particles in random orientation,” Appl. Opt. 42, 5551–5556 (2003).

[CrossRef]
[PubMed]

D. Ngo, G. Videen, and P. Chýlek, “A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion,” Comput. Phys. Commun. 99, 94–112 (1996).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).

[CrossRef]

G. Gouesbet and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

B. Yan, X. Han, and K. F. Ren, “Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion,” J. Opt. A 11, 015705, 2009.

[CrossRef]

V. S. C. M. Rao and S. D. Gupta, “Broken azimuthal degeneracy with whispering gallery modes of microspheres,” J. Opt. A 7, 279–285 (2005).

[CrossRef]

M. M. Mazumder, S. C. Hill, and P. W. Barber, “Morphology-dependent resonances in inhomogeneous spheres: comparison of the layered T-matrix method and the time-independent perturbation method,” J. Opt. Soc. Am. A 9, 1844–1853 (1992).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz–Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).

[CrossRef]

D. Ngo and R. G. Pinnick, “Suppression of scattering resonances in inhomogeneous microdroplets,” J. Opt. Soc. Am. A 11, 1352–1359 (1994).

[CrossRef]

J. A. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz–Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999).

[CrossRef]

J. J. Wang, G. Gouesbet, Y. P. Han, and G. Gréhan, “Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distribution,” J. Opt. Soc. Am. A 28, 24–39 (2011).

[CrossRef]

G. X. Han, Y. P. Han, J. Y. Liu, and Y. Zhang, “Scattering of an eccentric sphere arbitrarily located in a shaped beam,” J. Opt. Soc. Am. B 25, 2064–2072 (2008).

[CrossRef]

Y. P. Han, L. Méès, G. Gouesbet, Z. S. Wu, and G. Gréhan, “Resonant spectra of a deformed spherical microcavity,” J. Opt. Soc. Am. B 23, 1390–1397 (2006).

[CrossRef]

Y. P. Han, Y. Zhang, H. Y. Zhang, and G. X. Han, “Scattering of typical particles by beam shape in oblique illumination,” J. Quant. Spectrosc. Radiat. Transfer 110, 1375–1381 (2009).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).

[CrossRef]
[PubMed]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. I. General formulation,” Opt. Commun. 283, 3218–3225 (2010).

[CrossRef]

J. J. Wang, G. Gouesbet, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. II. Axisymmetric beams,” Opt. Commun. 283, 3226–3234 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, and Y. P. Han, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. III. Special Euler angles,” Opt. Commun. 283, 3235–3243 (2010).

[CrossRef]

G. Gouesbet, J. J. Wang, Y. P. Han, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. IV. Plane waves,” Opt. Commun. 283, 3244–3254 (2010).

[CrossRef]

G. Gouesbet, J. A. Lock, J. J. Wang, and G. Gréhan, “Transformations of spherical beam shape coefficients in generalized Lorenz–Mie theories through rotations of coordinate systems. V. Localized beam models,” Opt. Commun. 284, 411–417 (2011).

[CrossRef]

G. Gouesbet, “T-matrix formulation and generalized Lorenz–Mie theories in spherical coordinates,” Opt. Commun. 283, 517–521(2010).

[CrossRef]

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9, 273–275 (1984).

[CrossRef]
[PubMed]

G. Chen, R. K. Chang, S. C. Hill, and P. W. Barber, “Frequency splitting of degenerate spherical cavity mode: stimulated Raman scattering spectrum of deformed droplets,” Opt. Lett. 16, 1269–1271 (1991).

[CrossRef]
[PubMed]

K. A. Fuller, “Morphology-dependent resonances in eccentrically stratified sphere,” Opt. Lett. 19, 1272–1274 (1994).

[CrossRef]
[PubMed]

P. T. Leung, S. W. Ng, and K. M. Pang, “Morphology-dependent resonances in dielectric spheres with many tiny inclusions,” Opt. Lett. 27, 1749–1751 (2002).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located inclusion, and optical chaos,” Part. Part. Syst. Charact. 18, 190–195 (2001).

[CrossRef]

P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial-wave resonance,” Phys. Rev. A 18, 2229–2233 (1978).

[CrossRef]

G. Gouesbet, S. Meunier-Guttin-Cluzel, and G. Gréhan, “Periodic orbits in Hamiltonian chaos of the annular billiard,” Phys. Rev. E 65, 016212 (2001).

[CrossRef]

M. Hentschel and K. Richter, “Quantum chaos in optical systems: the annular billiard,” Phys. Rev. E 66, 056207 (2002).

[CrossRef]

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).

[CrossRef]

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, and W. P. Acker, “Laser diagnostics for droplet characterization: application of morphology dependent resonances,” Progr. Energy Combust. Sci. 22, 163–188 (1996).

[CrossRef]

J. Ducastel, “Etude des résonances morphologiquement dépendantes et application à la caractérisation de microparticules en milieu diphasique,” Ph.D. thesis (Institut National des Sciences Appliquées de Rouen, 2007).

H. C. van de Hulst, Light Scattering by Small Particles (Peter Smith, 1982).

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods, Vol. 2 of Advanced Series in Applied Physics (World Scientific, 1990).

[CrossRef]

G. Gouesbet and G. Gréhan, Generalized Lorenz–Mie Theories (Springer, 2011).

[CrossRef]