Abstract

We provide both an extensive experimental characterization and a model for metal oxide, slanted columnar thin films fabricated using glancing angle deposition. The model is applicable to slanted posts of any type, deposited at a constant deposition angle, with variable azimuthal substrate rotation. The model is capable of predicting the column tilt, principal refractive indices, and in-plane birefringence under a single unified framework, given knowledge of common material parameters. This paper also establishes a number of additional important results, including the occurrence of negative in-plane birefringence and the occurrence of uniaxial films with nonzero columnar tilt.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Steele, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. Actuators. B Chem. 120, 213–219 (2006).
    [CrossRef]
  2. K. D. Harris, A. C. van Popta, J. C. Sit, D. J. Broer, and M. J. Brett, “A birefringent and transparent electrical conductor,” Adv. Funct. Mater. 18, 2147–2153 (2008).
    [CrossRef]
  3. P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, T. D. Dunbar, J. S. Huizinga, and L. A. Whitehead, “Application of transparent nanostructured electrodes for modulation of total internal reflection,” Proc. SPIE 6647, 66470A/1–12 (2007).
    [CrossRef]
  4. V. Leontyev, N. G. Wakefield, K. Tabunshchyk, J. C. Sit, M. J. Brett, and A. Kovalenko, “Selective transmittance of linearly polarized light in thin films rationally designed by FDTD and FDFD theories and fabricated by glancing angle deposition,” J. Appl. Phys. 104, 104302 (2008).
    [CrossRef]
  5. S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573–4579 (2003).
    [CrossRef] [PubMed]
  6. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
    [CrossRef]
  7. K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, “Vacuum evaporated porous silicon photonic interference filters,” Appl. Opt. 42, 4212–4219 (2003).
    [CrossRef] [PubMed]
  8. M. Jensen and M. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Express 13, 3348–3354 (2005).
    [CrossRef] [PubMed]
  9. M. M. Hawkeye, R. Joseph, J. C. Sit, and M. J. Brett, “Coupled defects in one-dimensional photonic crystal films fabricated with glancing angle deposition,” Opt. Express 18, 13220–13226(2010).
    [CrossRef] [PubMed]
  10. K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
    [CrossRef]
  11. M. T. Taschuk, M. M. Hawkeye, and M. J. Brett, “Glancing angle deposition,” in Handbook of Deposition Technologies for Films and Coatings, 3rd ed. (Elsevier, 2010), pp. 621–678.
    [CrossRef]
  12. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914(2009).
    [CrossRef]
  13. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin film,” Opt. Lett. 34, 992–994 (2009).
    [CrossRef] [PubMed]
  14. Y.-J. Jen and C.-F. Lin, “Anisotropic optical thin films finely sculptured by substrate sweep technology,” Opt. Express 16, 5372–5377 (2008).
    [CrossRef] [PubMed]
  15. K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
    [CrossRef]
  16. M. O. Jensen and M. J. Brett, “Porosity engineering in glancing angle deposition thin films,” Appl. Phys. 80, 763–768 (2005).
    [CrossRef]
  17. I. Hodgkinson and Q. H. Wu, “Ion-beam control of thin-film microstructural columnar angle,” Mod. Phys. Lett. B 15, 1328–1331 (2001).
    [CrossRef]
  18. J. B. Sorge and M. J. Brett, “Film morphology modification in ion-assisted glancing angle deposition,” Thin Solid Films 519, 1356–1360 (2010).
    [CrossRef]
  19. M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
    [CrossRef]
  20. M. T. Taschuk, K. M. Krause, J. J. Steele, M. A. Summers, and M. J. Brett, “Growth scaling of metal oxide columnar thin films deposited by glancing angle depositions,” J. Vac. Sci. Technol. B 27, 2106–2111 (2009).
    [CrossRef]
  21. S. Mukherjee and D. Gall, “Power law scaling during physical vapor deposition under extreme shadowing conditions,” J. Appl. Phys. 107, 084301 (2010).
    [CrossRef]
  22. I. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
    [CrossRef]
  23. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).
  24. I. Hodgkinson, Q. H. Wu, and S. Collett, “Dispersion equations for vacuum-deposited tilted-columnar biaxial media,” Appl. Opt. 40, 452–457 (2001).
    [CrossRef]
  25. D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
    [CrossRef]
  26. G. W. Milton, The Theory of Composites (Cambridge University, 2002).
    [CrossRef]
  27. J. Wang, J. Shao, and Z. Fan, “Extended effective medium model for refractive indices of thin films with oblique columnar structure,” Opt. Commun. 247, 107–110 (2005).
    [CrossRef]
  28. I. Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38, 3621–3625 (1999).
    [CrossRef]
  29. K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26, 4368–4376(2010).
    [CrossRef]
  30. A. C. van Popta, K. R. van Popta, J. C. Sit, and M. J. Brett, “Sidelobe suppression in chiral optical filters by apodization of the local form birefringence,” J. Opt. Soc. Am. A 24, 3140–3149 (2007).
    [CrossRef]
  31. R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
    [CrossRef]
  32. D.-X. Ye, Y.-P. Zhao, G.-R. Yang, Y.-G. Zhao, G.-C. Wang, and T.-M. Lu, “Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition,” Nanotech. 13, 615–618(2002).
    [CrossRef]
  33. A. C. van Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films,” Appl. Opt. 43, 3632–3639 (2004).
    [CrossRef] [PubMed]
  34. M. O. Jensen and M. J. Brett, “Periodically structured glancing angle deposition thin films,” IEEE Trans. Nanotechnol. 4, 269–277 (2005).
    [CrossRef]
  35. For those cases where ϕ1≲2πk, one should instead approximate sin⁡ϕ1 by the third order Taylor series, sinϕ1≈2(ϕ1−2πk)−(2(ϕ1−2πk)3)/(3!). This is still a small correction, and b¯2 can still be approximated as real and negative, so that the broadening is still predominantly along the y axis. This approximation can be used for 0.8<ϕ1/(2πk)<1.
  36. G. Beydaghyan, K. Kaminska, T. Brown, and K. Robbie, “Enhanced birefringence in vacuum evaporated silicon thin films,” Appl. Opt. 43, 5343–5349 (2004).
    [CrossRef] [PubMed]
  37. D. A. Gish, M. A. Summers, and M. J. Brett, “Morphology of periodic nanostructures for photonic crystals grown by glancing angle deposition,” Photon. Nanostr. Fundam. Appl. 4, 23–29(2006).
    [CrossRef]
  38. B. Szeto, P. C. P. Hrudey, J. Gospodyn, J. C. Sit, and M. J. Brett, “Obliquely deposited tris(8-hydroxyquinoline) aluminium (Alq3) biaxial thin films with negative in-plane birefringence,” J. Opt. A: Pure Appl. Opt. 9, 457–462 (2007).
    [CrossRef]
  39. Column tilt angle was obtained by taking two column tilt measurements, β1′ and β2′, along nonparallel cleaved edges. The true column tilt, β′, can then be found from tan⁡β′=1sin⁡ψtan2β1′+tan2β2′−2tan⁡β1′tan⁡β2′cos⁡ψ, where ψ is the angle between the two edges.
  40. N. G. Wakefield and J. C. Sit, “On the uniformity of films fabricated by glancing angle deposition,” J. Appl. Phys. 109, 084332 (2011).
    [CrossRef]
  41. J. Gospodyn and J. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. 29, 318–325 (2006).
    [CrossRef]
  42. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11, 431–441 (1963).
    [CrossRef]
  43. K. D. Harris, D. Vick, T. Smy, and M. J. Brett, “Column angle variations in porous chevron thin films,” J. Vac. Sci. Technol. A 20, 2062–2067 (2002).
    [CrossRef]
  44. M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100, 044322 (2006).
    [CrossRef]
  45. K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
    [CrossRef]
  46. D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93, 101914 (2008).
    [CrossRef]

2011 (1)

N. G. Wakefield and J. C. Sit, “On the uniformity of films fabricated by glancing angle deposition,” J. Appl. Phys. 109, 084332 (2011).
[CrossRef]

2010 (4)

J. B. Sorge and M. J. Brett, “Film morphology modification in ion-assisted glancing angle deposition,” Thin Solid Films 519, 1356–1360 (2010).
[CrossRef]

S. Mukherjee and D. Gall, “Power law scaling during physical vapor deposition under extreme shadowing conditions,” J. Appl. Phys. 107, 084301 (2010).
[CrossRef]

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26, 4368–4376(2010).
[CrossRef]

M. M. Hawkeye, R. Joseph, J. C. Sit, and M. J. Brett, “Coupled defects in one-dimensional photonic crystal films fabricated with glancing angle deposition,” Opt. Express 18, 13220–13226(2010).
[CrossRef] [PubMed]

2009 (3)

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin film,” Opt. Lett. 34, 992–994 (2009).
[CrossRef] [PubMed]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914(2009).
[CrossRef]

M. T. Taschuk, K. M. Krause, J. J. Steele, M. A. Summers, and M. J. Brett, “Growth scaling of metal oxide columnar thin films deposited by glancing angle depositions,” J. Vac. Sci. Technol. B 27, 2106–2111 (2009).
[CrossRef]

2008 (4)

K. D. Harris, A. C. van Popta, J. C. Sit, D. J. Broer, and M. J. Brett, “A birefringent and transparent electrical conductor,” Adv. Funct. Mater. 18, 2147–2153 (2008).
[CrossRef]

V. Leontyev, N. G. Wakefield, K. Tabunshchyk, J. C. Sit, M. J. Brett, and A. Kovalenko, “Selective transmittance of linearly polarized light in thin films rationally designed by FDTD and FDFD theories and fabricated by glancing angle deposition,” J. Appl. Phys. 104, 104302 (2008).
[CrossRef]

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93, 101914 (2008).
[CrossRef]

Y.-J. Jen and C.-F. Lin, “Anisotropic optical thin films finely sculptured by substrate sweep technology,” Opt. Express 16, 5372–5377 (2008).
[CrossRef] [PubMed]

2007 (5)

A. C. van Popta, K. R. van Popta, J. C. Sit, and M. J. Brett, “Sidelobe suppression in chiral optical filters by apodization of the local form birefringence,” J. Opt. Soc. Am. A 24, 3140–3149 (2007).
[CrossRef]

B. Szeto, P. C. P. Hrudey, J. Gospodyn, J. C. Sit, and M. J. Brett, “Obliquely deposited tris(8-hydroxyquinoline) aluminium (Alq3) biaxial thin films with negative in-plane birefringence,” J. Opt. A: Pure Appl. Opt. 9, 457–462 (2007).
[CrossRef]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[CrossRef]

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, T. D. Dunbar, J. S. Huizinga, and L. A. Whitehead, “Application of transparent nanostructured electrodes for modulation of total internal reflection,” Proc. SPIE 6647, 66470A/1–12 (2007).
[CrossRef]

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[CrossRef]

2006 (4)

J. J. Steele, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. Actuators. B Chem. 120, 213–219 (2006).
[CrossRef]

D. A. Gish, M. A. Summers, and M. J. Brett, “Morphology of periodic nanostructures for photonic crystals grown by glancing angle deposition,” Photon. Nanostr. Fundam. Appl. 4, 23–29(2006).
[CrossRef]

J. Gospodyn and J. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. 29, 318–325 (2006).
[CrossRef]

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100, 044322 (2006).
[CrossRef]

2005 (4)

J. Wang, J. Shao, and Z. Fan, “Extended effective medium model for refractive indices of thin films with oblique columnar structure,” Opt. Commun. 247, 107–110 (2005).
[CrossRef]

M. O. Jensen and M. J. Brett, “Periodically structured glancing angle deposition thin films,” IEEE Trans. Nanotechnol. 4, 269–277 (2005).
[CrossRef]

M. O. Jensen and M. J. Brett, “Porosity engineering in glancing angle deposition thin films,” Appl. Phys. 80, 763–768 (2005).
[CrossRef]

M. Jensen and M. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Express 13, 3348–3354 (2005).
[CrossRef] [PubMed]

2004 (3)

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

A. C. van Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films,” Appl. Opt. 43, 3632–3639 (2004).
[CrossRef] [PubMed]

G. Beydaghyan, K. Kaminska, T. Brown, and K. Robbie, “Enhanced birefringence in vacuum evaporated silicon thin films,” Appl. Opt. 43, 5343–5349 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (2)

K. D. Harris, D. Vick, T. Smy, and M. J. Brett, “Column angle variations in porous chevron thin films,” J. Vac. Sci. Technol. A 20, 2062–2067 (2002).
[CrossRef]

D.-X. Ye, Y.-P. Zhao, G.-R. Yang, Y.-G. Zhao, G.-C. Wang, and T.-M. Lu, “Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition,” Nanotech. 13, 615–618(2002).
[CrossRef]

2001 (2)

I. Hodgkinson and Q. H. Wu, “Ion-beam control of thin-film microstructural columnar angle,” Mod. Phys. Lett. B 15, 1328–1331 (2001).
[CrossRef]

I. Hodgkinson, Q. H. Wu, and S. Collett, “Dispersion equations for vacuum-deposited tilted-columnar biaxial media,” Appl. Opt. 40, 452–457 (2001).
[CrossRef]

1999 (2)

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
[CrossRef]

I. Hodgkinson and Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38, 3621–3625 (1999).
[CrossRef]

1998 (2)

1993 (1)

R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[CrossRef]

1982 (1)

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

1963 (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Adams, J.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

Beydaghyan, G.

Booso, B.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914(2009).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin film,” Opt. Lett. 34, 992–994 (2009).
[CrossRef] [PubMed]

Brett, M.

Brett, M. J.

J. B. Sorge and M. J. Brett, “Film morphology modification in ion-assisted glancing angle deposition,” Thin Solid Films 519, 1356–1360 (2010).
[CrossRef]

M. M. Hawkeye, R. Joseph, J. C. Sit, and M. J. Brett, “Coupled defects in one-dimensional photonic crystal films fabricated with glancing angle deposition,” Opt. Express 18, 13220–13226(2010).
[CrossRef] [PubMed]

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26, 4368–4376(2010).
[CrossRef]

M. T. Taschuk, K. M. Krause, J. J. Steele, M. A. Summers, and M. J. Brett, “Growth scaling of metal oxide columnar thin films deposited by glancing angle depositions,” J. Vac. Sci. Technol. B 27, 2106–2111 (2009).
[CrossRef]

K. D. Harris, A. C. van Popta, J. C. Sit, D. J. Broer, and M. J. Brett, “A birefringent and transparent electrical conductor,” Adv. Funct. Mater. 18, 2147–2153 (2008).
[CrossRef]

V. Leontyev, N. G. Wakefield, K. Tabunshchyk, J. C. Sit, M. J. Brett, and A. Kovalenko, “Selective transmittance of linearly polarized light in thin films rationally designed by FDTD and FDFD theories and fabricated by glancing angle deposition,” J. Appl. Phys. 104, 104302 (2008).
[CrossRef]

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[CrossRef]

A. C. van Popta, K. R. van Popta, J. C. Sit, and M. J. Brett, “Sidelobe suppression in chiral optical filters by apodization of the local form birefringence,” J. Opt. Soc. Am. A 24, 3140–3149 (2007).
[CrossRef]

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, T. D. Dunbar, J. S. Huizinga, and L. A. Whitehead, “Application of transparent nanostructured electrodes for modulation of total internal reflection,” Proc. SPIE 6647, 66470A/1–12 (2007).
[CrossRef]

B. Szeto, P. C. P. Hrudey, J. Gospodyn, J. C. Sit, and M. J. Brett, “Obliquely deposited tris(8-hydroxyquinoline) aluminium (Alq3) biaxial thin films with negative in-plane birefringence,” J. Opt. A: Pure Appl. Opt. 9, 457–462 (2007).
[CrossRef]

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100, 044322 (2006).
[CrossRef]

D. A. Gish, M. A. Summers, and M. J. Brett, “Morphology of periodic nanostructures for photonic crystals grown by glancing angle deposition,” Photon. Nanostr. Fundam. Appl. 4, 23–29(2006).
[CrossRef]

J. J. Steele, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. Actuators. B Chem. 120, 213–219 (2006).
[CrossRef]

M. O. Jensen and M. J. Brett, “Porosity engineering in glancing angle deposition thin films,” Appl. Phys. 80, 763–768 (2005).
[CrossRef]

M. O. Jensen and M. J. Brett, “Periodically structured glancing angle deposition thin films,” IEEE Trans. Nanotechnol. 4, 269–277 (2005).
[CrossRef]

A. C. van Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films,” Appl. Opt. 43, 3632–3639 (2004).
[CrossRef] [PubMed]

S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition,” Appl. Opt. 42, 4573–4579 (2003).
[CrossRef] [PubMed]

K. D. Harris, D. Vick, T. Smy, and M. J. Brett, “Column angle variations in porous chevron thin films,” J. Vac. Sci. Technol. A 20, 2062–2067 (2002).
[CrossRef]

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
[CrossRef]

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[CrossRef]

M. T. Taschuk, M. M. Hawkeye, and M. J. Brett, “Glancing angle deposition,” in Handbook of Deposition Technologies for Films and Coatings, 3rd ed. (Elsevier, 2010), pp. 621–678.
[CrossRef]

Broer, D. J.

K. D. Harris, A. C. van Popta, J. C. Sit, D. J. Broer, and M. J. Brett, “A birefringent and transparent electrical conductor,” Adv. Funct. Mater. 18, 2147–2153 (2008).
[CrossRef]

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
[CrossRef]

Brown, T.

Buriak, J. M.

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26, 4368–4376(2010).
[CrossRef]

Buzea, C.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

Chen, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[CrossRef]

Collett, S.

Dean, C.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

Dunbar, T. D.

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, T. D. Dunbar, J. S. Huizinga, and L. A. Whitehead, “Application of transparent nanostructured electrodes for modulation of total internal reflection,” Proc. SPIE 6647, 66470A/1–12 (2007).
[CrossRef]

Fan, Z.

J. Wang, J. Shao, and Z. Fan, “Extended effective medium model for refractive indices of thin films with oblique columnar structure,” Opt. Commun. 247, 107–110 (2005).
[CrossRef]

Gall, D.

S. Mukherjee and D. Gall, “Power law scaling during physical vapor deposition under extreme shadowing conditions,” J. Appl. Phys. 107, 084301 (2010).
[CrossRef]

Gish, D. A.

D. A. Gish, M. A. Summers, and M. J. Brett, “Morphology of periodic nanostructures for photonic crystals grown by glancing angle deposition,” Photon. Nanostr. Fundam. Appl. 4, 23–29(2006).
[CrossRef]

Gospodyn, J.

B. Szeto, P. C. P. Hrudey, J. Gospodyn, J. C. Sit, and M. J. Brett, “Obliquely deposited tris(8-hydroxyquinoline) aluminium (Alq3) biaxial thin films with negative in-plane birefringence,” J. Opt. A: Pure Appl. Opt. 9, 457–462 (2007).
[CrossRef]

J. Gospodyn and J. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. 29, 318–325 (2006).
[CrossRef]

Harris, K. D.

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26, 4368–4376(2010).
[CrossRef]

K. D. Harris, A. C. van Popta, J. C. Sit, D. J. Broer, and M. J. Brett, “A birefringent and transparent electrical conductor,” Adv. Funct. Mater. 18, 2147–2153 (2008).
[CrossRef]

K. D. Harris, D. Vick, T. Smy, and M. J. Brett, “Column angle variations in porous chevron thin films,” J. Vac. Sci. Technol. A 20, 2062–2067 (2002).
[CrossRef]

Hawkeye, M. M.

M. M. Hawkeye, R. Joseph, J. C. Sit, and M. J. Brett, “Coupled defects in one-dimensional photonic crystal films fabricated with glancing angle deposition,” Opt. Express 18, 13220–13226(2010).
[CrossRef] [PubMed]

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[CrossRef]

J. J. Steele, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. Actuators. B Chem. 120, 213–219 (2006).
[CrossRef]

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100, 044322 (2006).
[CrossRef]

M. T. Taschuk, M. M. Hawkeye, and M. J. Brett, “Glancing angle deposition,” in Handbook of Deposition Technologies for Films and Coatings, 3rd ed. (Elsevier, 2010), pp. 621–678.
[CrossRef]

Hazel, J.

Hodgkinson, I.

Hofmann, T.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin film,” Opt. Lett. 34, 992–994 (2009).
[CrossRef] [PubMed]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914(2009).
[CrossRef]

Hrudey, P. C. P.

B. Szeto, P. C. P. Hrudey, J. Gospodyn, J. C. Sit, and M. J. Brett, “Obliquely deposited tris(8-hydroxyquinoline) aluminium (Alq3) biaxial thin films with negative in-plane birefringence,” J. Opt. A: Pure Appl. Opt. 9, 457–462 (2007).
[CrossRef]

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, T. D. Dunbar, J. S. Huizinga, and L. A. Whitehead, “Application of transparent nanostructured electrodes for modulation of total internal reflection,” Proc. SPIE 6647, 66470A/1–12 (2007).
[CrossRef]

Huizinga, J. S.

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, T. D. Dunbar, J. S. Huizinga, and L. A. Whitehead, “Application of transparent nanostructured electrodes for modulation of total internal reflection,” Proc. SPIE 6647, 66470A/1–12 (2007).
[CrossRef]

Jen, Y.-J.

Jensen, M.

Jensen, M. O.

M. O. Jensen and M. J. Brett, “Porosity engineering in glancing angle deposition thin films,” Appl. Phys. 80, 763–768 (2005).
[CrossRef]

M. O. Jensen and M. J. Brett, “Periodically structured glancing angle deposition thin films,” IEEE Trans. Nanotechnol. 4, 269–277 (2005).
[CrossRef]

Joseph, R.

Kaminska, K.

Kennedy, S. R.

Kim, J. K.

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93, 101914 (2008).
[CrossRef]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[CrossRef]

Kovalenko, A.

V. Leontyev, N. G. Wakefield, K. Tabunshchyk, J. C. Sit, M. J. Brett, and A. Kovalenko, “Selective transmittance of linearly polarized light in thin films rationally designed by FDTD and FDFD theories and fabricated by glancing angle deposition,” J. Appl. Phys. 104, 104302 (2008).
[CrossRef]

Krause, K. M.

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26, 4368–4376(2010).
[CrossRef]

M. T. Taschuk, K. M. Krause, J. J. Steele, M. A. Summers, and M. J. Brett, “Growth scaling of metal oxide columnar thin films deposited by glancing angle depositions,” J. Vac. Sci. Technol. B 27, 2106–2111 (2009).
[CrossRef]

Leontyev, V.

V. Leontyev, N. G. Wakefield, K. Tabunshchyk, J. C. Sit, M. J. Brett, and A. Kovalenko, “Selective transmittance of linearly polarized light in thin films rationally designed by FDTD and FDFD theories and fabricated by glancing angle deposition,” J. Appl. Phys. 104, 104302 (2008).
[CrossRef]

Lin, C.-F.

Lin, S.-Y.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[CrossRef]

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[CrossRef]

Lu, T.-M.

D.-X. Ye, Y.-P. Zhao, G.-R. Yang, Y.-G. Zhao, G.-C. Wang, and T.-M. Lu, “Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition,” Nanotech. 13, 615–618(2002).
[CrossRef]

Marquardt, D. W.

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Martinuk, M. A.

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, T. D. Dunbar, J. S. Huizinga, and L. A. Whitehead, “Application of transparent nanostructured electrodes for modulation of total internal reflection,” Proc. SPIE 6647, 66470A/1–12 (2007).
[CrossRef]

Milton, G. W.

G. W. Milton, The Theory of Composites (Cambridge University, 2002).
[CrossRef]

Mont, F. W.

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93, 101914 (2008).
[CrossRef]

Mossman, M. A.

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, T. D. Dunbar, J. S. Huizinga, and L. A. Whitehead, “Application of transparent nanostructured electrodes for modulation of total internal reflection,” Proc. SPIE 6647, 66470A/1–12 (2007).
[CrossRef]

Mukherjee, S.

S. Mukherjee and D. Gall, “Power law scaling during physical vapor deposition under extreme shadowing conditions,” J. Appl. Phys. 107, 084301 (2010).
[CrossRef]

Poxson, D. J.

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93, 101914 (2008).
[CrossRef]

Rider, D. A.

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26, 4368–4376(2010).
[CrossRef]

Robbie, K.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

G. Beydaghyan, K. Kaminska, T. Brown, and K. Robbie, “Enhanced birefringence in vacuum evaporated silicon thin films,” Appl. Opt. 43, 5343–5349 (2004).
[CrossRef] [PubMed]

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, “Vacuum evaporated porous silicon photonic interference filters,” Appl. Opt. 42, 4212–4219 (2003).
[CrossRef] [PubMed]

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
[CrossRef]

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).

Sarangan, A.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914(2009).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin film,” Opt. Lett. 34, 992–994 (2009).
[CrossRef] [PubMed]

Schmidt, D.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin film,” Opt. Lett. 34, 992–994 (2009).
[CrossRef] [PubMed]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914(2009).
[CrossRef]

Schubert, E.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914(2009).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin film,” Opt. Lett. 34, 992–994 (2009).
[CrossRef] [PubMed]

Schubert, E. F.

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93, 101914 (2008).
[CrossRef]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[CrossRef]

Schubert, M.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin film,” Opt. Lett. 34, 992–994 (2009).
[CrossRef] [PubMed]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914(2009).
[CrossRef]

Schubert, M. F.

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93, 101914 (2008).
[CrossRef]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[CrossRef]

Shao, J.

J. Wang, J. Shao, and Z. Fan, “Extended effective medium model for refractive indices of thin films with oblique columnar structure,” Opt. Commun. 247, 107–110 (2005).
[CrossRef]

Sit, J.

J. Gospodyn and J. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. 29, 318–325 (2006).
[CrossRef]

Sit, J. C.

N. G. Wakefield and J. C. Sit, “On the uniformity of films fabricated by glancing angle deposition,” J. Appl. Phys. 109, 084332 (2011).
[CrossRef]

M. M. Hawkeye, R. Joseph, J. C. Sit, and M. J. Brett, “Coupled defects in one-dimensional photonic crystal films fabricated with glancing angle deposition,” Opt. Express 18, 13220–13226(2010).
[CrossRef] [PubMed]

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26, 4368–4376(2010).
[CrossRef]

K. D. Harris, A. C. van Popta, J. C. Sit, D. J. Broer, and M. J. Brett, “A birefringent and transparent electrical conductor,” Adv. Funct. Mater. 18, 2147–2153 (2008).
[CrossRef]

V. Leontyev, N. G. Wakefield, K. Tabunshchyk, J. C. Sit, M. J. Brett, and A. Kovalenko, “Selective transmittance of linearly polarized light in thin films rationally designed by FDTD and FDFD theories and fabricated by glancing angle deposition,” J. Appl. Phys. 104, 104302 (2008).
[CrossRef]

A. C. van Popta, K. R. van Popta, J. C. Sit, and M. J. Brett, “Sidelobe suppression in chiral optical filters by apodization of the local form birefringence,” J. Opt. Soc. Am. A 24, 3140–3149 (2007).
[CrossRef]

B. Szeto, P. C. P. Hrudey, J. Gospodyn, J. C. Sit, and M. J. Brett, “Obliquely deposited tris(8-hydroxyquinoline) aluminium (Alq3) biaxial thin films with negative in-plane birefringence,” J. Opt. A: Pure Appl. Opt. 9, 457–462 (2007).
[CrossRef]

J. J. Steele, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. Actuators. B Chem. 120, 213–219 (2006).
[CrossRef]

A. C. van Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films,” Appl. Opt. 43, 3632–3639 (2004).
[CrossRef] [PubMed]

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[CrossRef]

Smy, T.

K. D. Harris, D. Vick, T. Smy, and M. J. Brett, “Column angle variations in porous chevron thin films,” J. Vac. Sci. Technol. A 20, 2062–2067 (2002).
[CrossRef]

R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[CrossRef]

Sorge, J. B.

J. B. Sorge and M. J. Brett, “Film morphology modification in ion-assisted glancing angle deposition,” Thin Solid Films 519, 1356–1360 (2010).
[CrossRef]

Steele, J. J.

M. T. Taschuk, K. M. Krause, J. J. Steele, M. A. Summers, and M. J. Brett, “Growth scaling of metal oxide columnar thin films deposited by glancing angle depositions,” J. Vac. Sci. Technol. B 27, 2106–2111 (2009).
[CrossRef]

J. J. Steele, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. Actuators. B Chem. 120, 213–219 (2006).
[CrossRef]

Summers, M. A.

M. T. Taschuk, K. M. Krause, J. J. Steele, M. A. Summers, and M. J. Brett, “Growth scaling of metal oxide columnar thin films deposited by glancing angle depositions,” J. Vac. Sci. Technol. B 27, 2106–2111 (2009).
[CrossRef]

D. A. Gish, M. A. Summers, and M. J. Brett, “Morphology of periodic nanostructures for photonic crystals grown by glancing angle deposition,” Photon. Nanostr. Fundam. Appl. 4, 23–29(2006).
[CrossRef]

Szeto, B.

B. Szeto, P. C. P. Hrudey, J. Gospodyn, J. C. Sit, and M. J. Brett, “Obliquely deposited tris(8-hydroxyquinoline) aluminium (Alq3) biaxial thin films with negative in-plane birefringence,” J. Opt. A: Pure Appl. Opt. 9, 457–462 (2007).
[CrossRef]

Tabunshchyk, K.

V. Leontyev, N. G. Wakefield, K. Tabunshchyk, J. C. Sit, M. J. Brett, and A. Kovalenko, “Selective transmittance of linearly polarized light in thin films rationally designed by FDTD and FDFD theories and fabricated by glancing angle deposition,” J. Appl. Phys. 104, 104302 (2008).
[CrossRef]

Tait, R. N.

R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[CrossRef]

Taschuk, M. T.

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26, 4368–4376(2010).
[CrossRef]

M. T. Taschuk, K. M. Krause, J. J. Steele, M. A. Summers, and M. J. Brett, “Growth scaling of metal oxide columnar thin films deposited by glancing angle depositions,” J. Vac. Sci. Technol. B 27, 2106–2111 (2009).
[CrossRef]

M. T. Taschuk, M. M. Hawkeye, and M. J. Brett, “Glancing angle deposition,” in Handbook of Deposition Technologies for Films and Coatings, 3rd ed. (Elsevier, 2010), pp. 621–678.
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).

Thommes, M.

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26, 4368–4376(2010).
[CrossRef]

van Popta, A. C.

K. D. Harris, A. C. van Popta, J. C. Sit, D. J. Broer, and M. J. Brett, “A birefringent and transparent electrical conductor,” Adv. Funct. Mater. 18, 2147–2153 (2008).
[CrossRef]

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, T. D. Dunbar, J. S. Huizinga, and L. A. Whitehead, “Application of transparent nanostructured electrodes for modulation of total internal reflection,” Proc. SPIE 6647, 66470A/1–12 (2007).
[CrossRef]

A. C. van Popta, K. R. van Popta, J. C. Sit, and M. J. Brett, “Sidelobe suppression in chiral optical filters by apodization of the local form birefringence,” J. Opt. Soc. Am. A 24, 3140–3149 (2007).
[CrossRef]

J. J. Steele, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. Actuators. B Chem. 120, 213–219 (2006).
[CrossRef]

A. C. van Popta, J. C. Sit, and M. J. Brett, “Optical properties of porous helical thin films,” Appl. Opt. 43, 3632–3639 (2004).
[CrossRef] [PubMed]

van Popta, K. R.

Vick, D.

K. D. Harris, D. Vick, T. Smy, and M. J. Brett, “Column angle variations in porous chevron thin films,” J. Vac. Sci. Technol. A 20, 2062–2067 (2002).
[CrossRef]

Wakefield, N. G.

N. G. Wakefield and J. C. Sit, “On the uniformity of films fabricated by glancing angle deposition,” J. Appl. Phys. 109, 084332 (2011).
[CrossRef]

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26, 4368–4376(2010).
[CrossRef]

V. Leontyev, N. G. Wakefield, K. Tabunshchyk, J. C. Sit, M. J. Brett, and A. Kovalenko, “Selective transmittance of linearly polarized light in thin films rationally designed by FDTD and FDFD theories and fabricated by glancing angle deposition,” J. Appl. Phys. 104, 104302 (2008).
[CrossRef]

Wang, G.-C.

D.-X. Ye, Y.-P. Zhao, G.-R. Yang, Y.-G. Zhao, G.-C. Wang, and T.-M. Lu, “Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition,” Nanotech. 13, 615–618(2002).
[CrossRef]

Wang, J.

J. Wang, J. Shao, and Z. Fan, “Extended effective medium model for refractive indices of thin films with oblique columnar structure,” Opt. Commun. 247, 107–110 (2005).
[CrossRef]

Whitehead, L. A.

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, T. D. Dunbar, J. S. Huizinga, and L. A. Whitehead, “Application of transparent nanostructured electrodes for modulation of total internal reflection,” Proc. SPIE 6647, 66470A/1–12 (2007).
[CrossRef]

Wu, Q. H.

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[CrossRef]

Yang, G.-R.

D.-X. Ye, Y.-P. Zhao, G.-R. Yang, Y.-G. Zhao, G.-C. Wang, and T.-M. Lu, “Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition,” Nanotech. 13, 615–618(2002).
[CrossRef]

Ye, D.-X.

D.-X. Ye, Y.-P. Zhao, G.-R. Yang, Y.-G. Zhao, G.-C. Wang, and T.-M. Lu, “Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition,” Nanotech. 13, 615–618(2002).
[CrossRef]

Zhao, Y.-G.

D.-X. Ye, Y.-P. Zhao, G.-R. Yang, Y.-G. Zhao, G.-C. Wang, and T.-M. Lu, “Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition,” Nanotech. 13, 615–618(2002).
[CrossRef]

Zhao, Y.-P.

D.-X. Ye, Y.-P. Zhao, G.-R. Yang, Y.-G. Zhao, G.-C. Wang, and T.-M. Lu, “Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition,” Nanotech. 13, 615–618(2002).
[CrossRef]

Adv. Funct. Mater. (1)

K. D. Harris, A. C. van Popta, J. C. Sit, D. J. Broer, and M. J. Brett, “A birefringent and transparent electrical conductor,” Adv. Funct. Mater. 18, 2147–2153 (2008).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. (1)

M. O. Jensen and M. J. Brett, “Porosity engineering in glancing angle deposition thin films,” Appl. Phys. 80, 763–768 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94, 011914(2009).
[CrossRef]

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition,” Appl. Phys. Lett. 93, 101914 (2008).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

M. O. Jensen and M. J. Brett, “Periodically structured glancing angle deposition thin films,” IEEE Trans. Nanotechnol. 4, 269–277 (2005).
[CrossRef]

J. Appl. Phys. (4)

S. Mukherjee and D. Gall, “Power law scaling during physical vapor deposition under extreme shadowing conditions,” J. Appl. Phys. 107, 084301 (2010).
[CrossRef]

V. Leontyev, N. G. Wakefield, K. Tabunshchyk, J. C. Sit, M. J. Brett, and A. Kovalenko, “Selective transmittance of linearly polarized light in thin films rationally designed by FDTD and FDFD theories and fabricated by glancing angle deposition,” J. Appl. Phys. 104, 104302 (2008).
[CrossRef]

N. G. Wakefield and J. C. Sit, “On the uniformity of films fabricated by glancing angle deposition,” J. Appl. Phys. 109, 084332 (2011).
[CrossRef]

M. M. Hawkeye and M. J. Brett, “Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films,” J. Appl. Phys. 100, 044322 (2006).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

B. Szeto, P. C. P. Hrudey, J. Gospodyn, J. C. Sit, and M. J. Brett, “Obliquely deposited tris(8-hydroxyquinoline) aluminium (Alq3) biaxial thin films with negative in-plane birefringence,” J. Opt. A: Pure Appl. Opt. 9, 457–462 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. A (2)

K. D. Harris, D. Vick, T. Smy, and M. J. Brett, “Column angle variations in porous chevron thin films,” J. Vac. Sci. Technol. A 20, 2062–2067 (2002).
[CrossRef]

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007).
[CrossRef]

J. Vac. Sci. Technol. B (2)

M. T. Taschuk, K. M. Krause, J. J. Steele, M. A. Summers, and M. J. Brett, “Growth scaling of metal oxide columnar thin films deposited by glancing angle depositions,” J. Vac. Sci. Technol. B 27, 2106–2111 (2009).
[CrossRef]

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technol. B 16, 1115–1122 (1998).
[CrossRef]

Langmuir (1)

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26, 4368–4376(2010).
[CrossRef]

Mod. Phys. Lett. B (1)

I. Hodgkinson and Q. H. Wu, “Ion-beam control of thin-film microstructural columnar angle,” Mod. Phys. Lett. B 15, 1328–1331 (2001).
[CrossRef]

Nanotech. (1)

D.-X. Ye, Y.-P. Zhao, G.-R. Yang, Y.-G. Zhao, G.-C. Wang, and T.-M. Lu, “Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition,” Nanotech. 13, 615–618(2002).
[CrossRef]

Nat. Photonics (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
[CrossRef]

Nature (1)

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
[CrossRef]

Opt. Commun. (1)

J. Wang, J. Shao, and Z. Fan, “Extended effective medium model for refractive indices of thin films with oblique columnar structure,” Opt. Commun. 247, 107–110 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

J. Gospodyn and J. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Mater. 29, 318–325 (2006).
[CrossRef]

Photon. Nanostr. Fundam. Appl. (1)

D. A. Gish, M. A. Summers, and M. J. Brett, “Morphology of periodic nanostructures for photonic crystals grown by glancing angle deposition,” Photon. Nanostr. Fundam. Appl. 4, 23–29(2006).
[CrossRef]

Proc. SPIE (1)

P. C. P. Hrudey, M. A. Martinuk, M. A. Mossman, A. C. van Popta, M. J. Brett, T. D. Dunbar, J. S. Huizinga, and L. A. Whitehead, “Application of transparent nanostructured electrodes for modulation of total internal reflection,” Proc. SPIE 6647, 66470A/1–12 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, and C. Buzea, “Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure,” Rev. Sci. Instrum. 75, 1089–1097 (2004).
[CrossRef]

Sens. Actuators. B Chem. (1)

J. J. Steele, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, “Nanostructured gradient index optical filter for high-speed humidity sensing,” Sens. Actuators. B Chem. 120, 213–219 (2006).
[CrossRef]

SIAM J. Appl. Math. (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM J. Appl. Math. 11, 431–441 (1963).
[CrossRef]

Thin Solid Films (3)

J. B. Sorge and M. J. Brett, “Film morphology modification in ion-assisted glancing angle deposition,” Thin Solid Films 519, 1356–1360 (2010).
[CrossRef]

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

R. N. Tait, T. Smy, and M. J. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993).
[CrossRef]

Other (5)

For those cases where ϕ1≲2πk, one should instead approximate sin⁡ϕ1 by the third order Taylor series, sinϕ1≈2(ϕ1−2πk)−(2(ϕ1−2πk)3)/(3!). This is still a small correction, and b¯2 can still be approximated as real and negative, so that the broadening is still predominantly along the y axis. This approximation can be used for 0.8<ϕ1/(2πk)<1.

Column tilt angle was obtained by taking two column tilt measurements, β1′ and β2′, along nonparallel cleaved edges. The true column tilt, β′, can then be found from tan⁡β′=1sin⁡ψtan2β1′+tan2β2′−2tan⁡β1′tan⁡β2′cos⁡ψ, where ψ is the angle between the two edges.

G. W. Milton, The Theory of Composites (Cambridge University, 2002).
[CrossRef]

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).

M. T. Taschuk, M. M. Hawkeye, and M. J. Brett, “Glancing angle deposition,” in Handbook of Deposition Technologies for Films and Coatings, 3rd ed. (Elsevier, 2010), pp. 621–678.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of glancing angle deposition: (a) oblique view, and (b) looking along substrate normal (in z ^ direction). The substrate holder is tilted to an angle, α, such that vapor flux impinges obliquely and may rotate about the substrate normal (z axis). α is the substrate tilt angle and ϕ is the azimuthal rotation angle.

Fig. 2
Fig. 2

(a) Principal coordinate system for a slanted post GLAD film. SEM images with cleaved edges of substrate corresponding to (b)  x z plane and (c)  y z plane. The arrows in the SEM images show the direction of preferred broadening of the columns (along the y axis).

Fig. 3
Fig. 3

Substrate motion algorithms for the three film structures under consideration: (a) spin-pause, (b) zig-zag, (c) PhiSweep. The period of the algorithm is ( P + δ ) in all cases.

Fig. 4
Fig. 4

Column tilt angle, β , as a function of the structure parameter, a, for (a)  TiO 2 and (b)  SiO 2 films grown at α = 70 ° .

Fig. 5
Fig. 5

Modeled [lines; from Eq. (7)] and experimental (points) n avg as a function of normalized density, ϱ, for TiO 2 and SiO 2 films of all types.

Fig. 6
Fig. 6

Modeled (lines) and experimental (points) principal indices, n x , n y , and n z for (a)  TiO 2 spin-pause, (b)  TiO 2 zig-zag, (c)  TiO 2 PhiSweep, and (d)  SiO 2 PhiSweep films grown at α = 70 ° . Solid lines indicate predicted values for the mean value of ϱ; the bands encompass the uncertainty in the prediction due to the uncertainty in the measurement of ϱ.

Fig. 7
Fig. 7

Modeled [lines; from Eq. (10)] and experimental (points) values for the in-plane birefringence, Δ n , for SiO 2 and TiO 2 films of all types.

Fig. 8
Fig. 8

x-polarized and y-polarized transmittance of S-shaped films.

Fig. 9
Fig. 9

Normalized transmittance, ( T y T x ) / ( T y + T x ) , of S-shaped films.

Tables (3)

Tables Icon

Table 1 List of Main Symbols Used, In Order of First Mention

Tables Icon

Table 2 Characteristics of Films Grown by Different Algorithms

Tables Icon

Table 3 Film Samples and Their Measured Properties (Optical Constants Given at 500 nm )

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

ε = R ( n x 2 0 0 0 n y 2 0 0 0 n z 2 ) R 1 = R ( ε x 0 0 0 ε y 0 0 0 ε z ) R 1 ,
R = ( cos β 0 sin β 0 1 0 sin β 0 cos β ) .
n y = n y .
1 n x 2 = cos 2 β n x 2 + sin 2 β n z 2 .
( 1 ϱ ) ( 1 n i 2 1 + ( q i 1 1 ) n i 2 ) + ϱ ( N 2 n i 2 N 2 + ( q i 1 1 ) n i 2 ) = 0 , i = x , y , z .
n avg = ( n x + n y + n z ) / 3.
n avg 1 N 1 = ϱ ( 1 N 1 10 ( 1 ϱ ) ) .
R ^ OS = sin α cos ϕ x ^ sin α sin ϕ y ^ + cos α z ^ .
b ^ = z ^ × R ^ OS | z ^ × R ^ OS | = sin ϕ x ^ + cos ϕ y ^ = cos ( π 2 ϕ ) x ^ + sin ( π 2 ϕ ) y ^ .
Δ n = n y n x = b ¯ 2 Δ n max ,
r 1 = f P ( tan β x ^ + z ^ ) , r 2 = ( 1 f ) P z ^ , r 3 = δ z ^ , R s p = r 1 + r 2 + r 3 = P f tan β x ^ + ( P + δ ) z ^ .
tan β s p = P f tan β P + δ = γ f tan β .
b ¯ s p 2 = 1 P + δ ( f P + e i ϕ 1 2 π ( p v p δ ) sin ϕ 1 ) ,
b ¯ s p = γ f y ^ .
r 1 = P ξ + 1 ( tan β x ^ + z ^ ) , r 2 = ( δ / 2 ) z ^ , r 3 = ξ P ξ + 1 ( tan β x ^ + z ^ ) , r 4 = ( δ / 2 ) z ^ , R zz = r 1 + r 2 + r 3 + r 4 = P ( 1 ξ 1 + ξ ) tan β x ^ + ( P + δ ) z ^ .
tan β zz = γ ( 1 ξ 1 + ξ ) tan β .
b ¯ zz = γ y ^ .
r 1 = P 2 ( tan β cos ϕ s x ^ + tan β sin ϕ s y ^ + z ^ ) , r 2 = δ 2 z ^ , r 3 = P 2 ( tan β cos ϕ s x ^ tan β sin ϕ s y ^ + z ^ ) , r 4 = δ 2 z ^ .
R ϕ = r 1 + r 2 + r 3 + r 4 = P tan β cos ϕ s x ^ + ( P + δ ) z ^ .
tan β ϕ = γ cos ϕ s tan β .
b ¯ ϕ 2 = γ ( cos 2 ϕ s + δ 2 P ϕ s sin 2 ϕ s ) .
b ¯ ϕ = γ cos 2 ϕ s y ^ , 0 ϕ s π / 4 .
b ¯ ϕ = γ cos 2 ϕ s x ^ , π / 4 < ϕ s π / 2 .
cos 2 ϕ s + δ 2 P ϕ s sin 2 ϕ s = 0 .
tan β = a γ tan β ,
n i = A i + B i λ 2 + C i λ 4 , i = x , y , z .
λ = ( n i 1 + n i 2 2 ) Ω ,
ϱ = c c + α tan α .

Metrics