Abstract

In general, a dual-input Fourier transform spectrometer (FTS) produces interferograms that have components of both even and odd symmetry. In addition to the desired interferogram contribution due to the source under study, which has even symmetry, each FTS output is often found to exhibit a component of odd symmetry that arises from the fact that the beam splitter is not ideal. Additionally, the beam splitter itself can be a source of emission that produces a modulated signal component at the output of the interferometer. An exploration of the effects, and correction, of nonideal beam-splitter characteristics in FTS interferograms is presented, including examples from the Herschel/SPIRE submillimeter wavelength imaging FTS.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. R. Ade, P. A. Hamilton, and D. A. Naylor, “An absolute dual beam emission spectrometer,” in Fourier Transform Spectroscopy: New Methods and Applications, OSA Technical Digest (Optical Society of America, 1999), paper FWE3.
  2. M. Griffin, A. Abergel, A. Abreu, P. Ade, P. André, and J. Augueres,, “The Herschel-SPIRE instrument and its in-flight performance,” Astron. Astrophys. 518, L3 (2010).
    [CrossRef]
  3. G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel space observatory,” Astron. Astrophys. 518, L1 (2010).
    [CrossRef]
  4. L. D. Spencer, D. A. Naylor, and B. M. Swinyard, “Performance evaluation of the Herschel/SPIRE imaging Fourier transform spectrometer through ground-based measurements,” Meas. Sci. Technol. 21, 065601 (2010).
    [CrossRef]
  5. D. A. Naylor, B. A. Gom, I. S. Schofield, G. J. Tompkins, and G. R. Davis, “Mach-Zehnder Fourier transform spectrometer for astronomical spectroscopy at submillimeter wavelengths,” Proc. SPIE 4855, 540–551 (2003).
    [CrossRef]
  6. L. D. Spencer, “Imaging Fourier transform spectroscopy from a space based platform—the Herschel/SPIRE Fourier transform spectrometer,” Ph.D. dissertation (University of Lethbridge, Department of Physics & Astronomy, 2009).
  7. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).
    [PubMed]
  8. B. Carli, L. Palchetti, and P. Raspollini, “Effect of beam-splitter emission in Fourier-transform emission spectroscopy,” Appl. Opt. 38, 7475–7480 (1999).
    [CrossRef]
  9. J. C. Brasunas, “Phase anomalies in Fourier-transform spectrometers: an absorbing beam splitter is neither sufficient nor necessary,” Appl. Opt. 41, 2481–2487 (2002).
    [CrossRef] [PubMed]
  10. “High Frequency Structural Simulator,” 3D full-wave electromagnetic field simulation, Ansoft Corporation, http://www.ansoft.com/products/hf/hfss/.
  11. P. A. R. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 6275OT (2006).
    [CrossRef]
  12. D. Naylor, T. Clark, A. Schultz, and G. Davis, “Atmospheric transmission at submillimetre wavelengths from Mauna Kea,” Mon. Not. R. Astron. Soc. 251, 199–202 (1991), http://adsabs.harvard.edu/full/1991MNRAS.251..199N.
  13. Minco Corporation, “Minco flexible electronic heaters,” http://www.minco.com.
  14. Epoxy Technology, “EPO-Tek-920 thermal epoxy resin,” http://www.epotek.com.
  15. Dupont Corporation, “Delrin acetal resin,” http://www2.dupont.com.
  16. FLIR Systems Inc., http://www.flir.com/thermography/.
  17. L. D. Spencer, “Spectral characterization of the Herschel SPIRE photometer,” Master’s thesis (University of Lethbridge, 2005).
  18. H. E. Revercomb, W. L. Smith, H. Buijs, H. B. Howell, and D. D. Laporte, “Radiometric calibration of IR Fourier transform spectrometers—solution to a problem with the High-Resolution Interferometer Sounder,” Appl. Opt. 27, 3210–3218 (1988).
    [CrossRef] [PubMed]
  19. J. Schreiber, T. Blumenstock, and H. Fischer, “Effects of the self-emission of an IR Fourier-transform spectrometer on measured absorption spectra,” Appl. Opt. 35, 6203–6209 (1996).
    [CrossRef] [PubMed]
  20. G. Bianchini, L. Palchetti, and B. Carli, “Vectorial combination of signals in Fourier transform spectroscopy,” Infrared Phys. Technol. 52, 19–21 (2008).
    [CrossRef]
  21. L. Spencer, D. Naylor, T. Fulton, J. Baluteau, P. Ade, and B. Swinyard, “Port compensation using the Herschel/SPIRE imaging Fourier transform spectrometer,” in Proceedings IRMMW-THz 32 (IEEE, 2007), Vol.  2, pp. 718–719.
  22. D. Naylor, L. Spencer, and P. Ade, “The effects of beamsplitter emission in a balanced Fourier transform spectrometer,” in Proceedings IRMMW-THz 33 (IEEE, 2008), paper 1633.
  23. O. Trieschmann and C. Weddigen, “Thermal emission from dielectric beam splitters in Michelson interferometers: a schematic analysis,” Appl. Opt. 39, 5834–5842 (2000).
    [CrossRef]
  24. F. Hase, O. Trieschmann, and C. Weddigen, “Response of Fourier-transform spectrometers to absorption and emission in a homogeneous single-layered beam splitter,” Appl. Opt. 40, 5078–5087 (2001).
    [CrossRef]
  25. J.-M. Thériault, “Modeling the responsivity and self-emission of a double-beam Fourier-transform infrared interferometer,” Appl. Opt. 38, 505–515 (1999).
    [CrossRef]
  26. J.-M. Thériault, “Beam splitter layer emission in Fourier-transform infrared interferometers,” Appl. Opt. 37, 8348–8351(1998).
    [CrossRef]

2010 (3)

M. Griffin, A. Abergel, A. Abreu, P. Ade, P. André, and J. Augueres,, “The Herschel-SPIRE instrument and its in-flight performance,” Astron. Astrophys. 518, L3 (2010).
[CrossRef]

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel space observatory,” Astron. Astrophys. 518, L1 (2010).
[CrossRef]

L. D. Spencer, D. A. Naylor, and B. M. Swinyard, “Performance evaluation of the Herschel/SPIRE imaging Fourier transform spectrometer through ground-based measurements,” Meas. Sci. Technol. 21, 065601 (2010).
[CrossRef]

2008 (1)

G. Bianchini, L. Palchetti, and B. Carli, “Vectorial combination of signals in Fourier transform spectroscopy,” Infrared Phys. Technol. 52, 19–21 (2008).
[CrossRef]

2006 (1)

P. A. R. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 6275OT (2006).
[CrossRef]

2003 (1)

D. A. Naylor, B. A. Gom, I. S. Schofield, G. J. Tompkins, and G. R. Davis, “Mach-Zehnder Fourier transform spectrometer for astronomical spectroscopy at submillimeter wavelengths,” Proc. SPIE 4855, 540–551 (2003).
[CrossRef]

2002 (1)

2001 (1)

2000 (1)

1999 (2)

1998 (1)

1996 (1)

1991 (1)

D. Naylor, T. Clark, A. Schultz, and G. Davis, “Atmospheric transmission at submillimetre wavelengths from Mauna Kea,” Mon. Not. R. Astron. Soc. 251, 199–202 (1991), http://adsabs.harvard.edu/full/1991MNRAS.251..199N.

1988 (1)

Abergel, A.

M. Griffin, A. Abergel, A. Abreu, P. Ade, P. André, and J. Augueres,, “The Herschel-SPIRE instrument and its in-flight performance,” Astron. Astrophys. 518, L3 (2010).
[CrossRef]

Abreu, A.

M. Griffin, A. Abergel, A. Abreu, P. Ade, P. André, and J. Augueres,, “The Herschel-SPIRE instrument and its in-flight performance,” Astron. Astrophys. 518, L3 (2010).
[CrossRef]

Ade, P.

M. Griffin, A. Abergel, A. Abreu, P. Ade, P. André, and J. Augueres,, “The Herschel-SPIRE instrument and its in-flight performance,” Astron. Astrophys. 518, L3 (2010).
[CrossRef]

L. Spencer, D. Naylor, T. Fulton, J. Baluteau, P. Ade, and B. Swinyard, “Port compensation using the Herschel/SPIRE imaging Fourier transform spectrometer,” in Proceedings IRMMW-THz 32 (IEEE, 2007), Vol.  2, pp. 718–719.

D. Naylor, L. Spencer, and P. Ade, “The effects of beamsplitter emission in a balanced Fourier transform spectrometer,” in Proceedings IRMMW-THz 33 (IEEE, 2008), paper 1633.

Ade, P. A. R.

P. A. R. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 6275OT (2006).
[CrossRef]

P. A. R. Ade, P. A. Hamilton, and D. A. Naylor, “An absolute dual beam emission spectrometer,” in Fourier Transform Spectroscopy: New Methods and Applications, OSA Technical Digest (Optical Society of America, 1999), paper FWE3.

André, P.

M. Griffin, A. Abergel, A. Abreu, P. Ade, P. André, and J. Augueres,, “The Herschel-SPIRE instrument and its in-flight performance,” Astron. Astrophys. 518, L3 (2010).
[CrossRef]

Augueres, J.

M. Griffin, A. Abergel, A. Abreu, P. Ade, P. André, and J. Augueres,, “The Herschel-SPIRE instrument and its in-flight performance,” Astron. Astrophys. 518, L3 (2010).
[CrossRef]

Baluteau, J.

L. Spencer, D. Naylor, T. Fulton, J. Baluteau, P. Ade, and B. Swinyard, “Port compensation using the Herschel/SPIRE imaging Fourier transform spectrometer,” in Proceedings IRMMW-THz 32 (IEEE, 2007), Vol.  2, pp. 718–719.

Bianchini, G.

G. Bianchini, L. Palchetti, and B. Carli, “Vectorial combination of signals in Fourier transform spectroscopy,” Infrared Phys. Technol. 52, 19–21 (2008).
[CrossRef]

Blumenstock, T.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).
[PubMed]

Brasunas, J. C.

Buijs, H.

Carli, B.

G. Bianchini, L. Palchetti, and B. Carli, “Vectorial combination of signals in Fourier transform spectroscopy,” Infrared Phys. Technol. 52, 19–21 (2008).
[CrossRef]

B. Carli, L. Palchetti, and P. Raspollini, “Effect of beam-splitter emission in Fourier-transform emission spectroscopy,” Appl. Opt. 38, 7475–7480 (1999).
[CrossRef]

Clark, T.

D. Naylor, T. Clark, A. Schultz, and G. Davis, “Atmospheric transmission at submillimetre wavelengths from Mauna Kea,” Mon. Not. R. Astron. Soc. 251, 199–202 (1991), http://adsabs.harvard.edu/full/1991MNRAS.251..199N.

Crone, G.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel space observatory,” Astron. Astrophys. 518, L1 (2010).
[CrossRef]

Davis, G.

D. Naylor, T. Clark, A. Schultz, and G. Davis, “Atmospheric transmission at submillimetre wavelengths from Mauna Kea,” Mon. Not. R. Astron. Soc. 251, 199–202 (1991), http://adsabs.harvard.edu/full/1991MNRAS.251..199N.

Davis, G. R.

D. A. Naylor, B. A. Gom, I. S. Schofield, G. J. Tompkins, and G. R. Davis, “Mach-Zehnder Fourier transform spectrometer for astronomical spectroscopy at submillimeter wavelengths,” Proc. SPIE 4855, 540–551 (2003).
[CrossRef]

Doyle, D.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel space observatory,” Astron. Astrophys. 518, L1 (2010).
[CrossRef]

Fischer, H.

Fulton, T.

L. Spencer, D. Naylor, T. Fulton, J. Baluteau, P. Ade, and B. Swinyard, “Port compensation using the Herschel/SPIRE imaging Fourier transform spectrometer,” in Proceedings IRMMW-THz 32 (IEEE, 2007), Vol.  2, pp. 718–719.

Gageur, U.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel space observatory,” Astron. Astrophys. 518, L1 (2010).
[CrossRef]

Gom, B. A.

D. A. Naylor, B. A. Gom, I. S. Schofield, G. J. Tompkins, and G. R. Davis, “Mach-Zehnder Fourier transform spectrometer for astronomical spectroscopy at submillimeter wavelengths,” Proc. SPIE 4855, 540–551 (2003).
[CrossRef]

Griffin, M.

M. Griffin, A. Abergel, A. Abreu, P. Ade, P. André, and J. Augueres,, “The Herschel-SPIRE instrument and its in-flight performance,” Astron. Astrophys. 518, L3 (2010).
[CrossRef]

Hamilton, P. A.

P. A. R. Ade, P. A. Hamilton, and D. A. Naylor, “An absolute dual beam emission spectrometer,” in Fourier Transform Spectroscopy: New Methods and Applications, OSA Technical Digest (Optical Society of America, 1999), paper FWE3.

Hase, F.

Heras, A. M.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel space observatory,” Astron. Astrophys. 518, L1 (2010).
[CrossRef]

Howell, H. B.

Jewell, C.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel space observatory,” Astron. Astrophys. 518, L1 (2010).
[CrossRef]

Laporte, D. D.

Metcalfe, L.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel space observatory,” Astron. Astrophys. 518, L1 (2010).
[CrossRef]

Naylor, D.

D. Naylor, T. Clark, A. Schultz, and G. Davis, “Atmospheric transmission at submillimetre wavelengths from Mauna Kea,” Mon. Not. R. Astron. Soc. 251, 199–202 (1991), http://adsabs.harvard.edu/full/1991MNRAS.251..199N.

L. Spencer, D. Naylor, T. Fulton, J. Baluteau, P. Ade, and B. Swinyard, “Port compensation using the Herschel/SPIRE imaging Fourier transform spectrometer,” in Proceedings IRMMW-THz 32 (IEEE, 2007), Vol.  2, pp. 718–719.

D. Naylor, L. Spencer, and P. Ade, “The effects of beamsplitter emission in a balanced Fourier transform spectrometer,” in Proceedings IRMMW-THz 33 (IEEE, 2008), paper 1633.

Naylor, D. A.

L. D. Spencer, D. A. Naylor, and B. M. Swinyard, “Performance evaluation of the Herschel/SPIRE imaging Fourier transform spectrometer through ground-based measurements,” Meas. Sci. Technol. 21, 065601 (2010).
[CrossRef]

D. A. Naylor, B. A. Gom, I. S. Schofield, G. J. Tompkins, and G. R. Davis, “Mach-Zehnder Fourier transform spectrometer for astronomical spectroscopy at submillimeter wavelengths,” Proc. SPIE 4855, 540–551 (2003).
[CrossRef]

P. A. R. Ade, P. A. Hamilton, and D. A. Naylor, “An absolute dual beam emission spectrometer,” in Fourier Transform Spectroscopy: New Methods and Applications, OSA Technical Digest (Optical Society of America, 1999), paper FWE3.

Ott, S.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel space observatory,” Astron. Astrophys. 518, L1 (2010).
[CrossRef]

Palchetti, L.

G. Bianchini, L. Palchetti, and B. Carli, “Vectorial combination of signals in Fourier transform spectroscopy,” Infrared Phys. Technol. 52, 19–21 (2008).
[CrossRef]

B. Carli, L. Palchetti, and P. Raspollini, “Effect of beam-splitter emission in Fourier-transform emission spectroscopy,” Appl. Opt. 38, 7475–7480 (1999).
[CrossRef]

Passvogel, T.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel space observatory,” Astron. Astrophys. 518, L1 (2010).
[CrossRef]

Pilbratt, G. L.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel space observatory,” Astron. Astrophys. 518, L1 (2010).
[CrossRef]

Pisano, G.

P. A. R. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 6275OT (2006).
[CrossRef]

Raspollini, P.

Revercomb, H. E.

Riedinger, J. R.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel space observatory,” Astron. Astrophys. 518, L1 (2010).
[CrossRef]

Schmidt, M.

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel space observatory,” Astron. Astrophys. 518, L1 (2010).
[CrossRef]

Schofield, I. S.

D. A. Naylor, B. A. Gom, I. S. Schofield, G. J. Tompkins, and G. R. Davis, “Mach-Zehnder Fourier transform spectrometer for astronomical spectroscopy at submillimeter wavelengths,” Proc. SPIE 4855, 540–551 (2003).
[CrossRef]

Schreiber, J.

Schultz, A.

D. Naylor, T. Clark, A. Schultz, and G. Davis, “Atmospheric transmission at submillimetre wavelengths from Mauna Kea,” Mon. Not. R. Astron. Soc. 251, 199–202 (1991), http://adsabs.harvard.edu/full/1991MNRAS.251..199N.

Smith, W. L.

Spencer, L.

D. Naylor, L. Spencer, and P. Ade, “The effects of beamsplitter emission in a balanced Fourier transform spectrometer,” in Proceedings IRMMW-THz 33 (IEEE, 2008), paper 1633.

L. Spencer, D. Naylor, T. Fulton, J. Baluteau, P. Ade, and B. Swinyard, “Port compensation using the Herschel/SPIRE imaging Fourier transform spectrometer,” in Proceedings IRMMW-THz 32 (IEEE, 2007), Vol.  2, pp. 718–719.

Spencer, L. D.

L. D. Spencer, D. A. Naylor, and B. M. Swinyard, “Performance evaluation of the Herschel/SPIRE imaging Fourier transform spectrometer through ground-based measurements,” Meas. Sci. Technol. 21, 065601 (2010).
[CrossRef]

L. D. Spencer, “Imaging Fourier transform spectroscopy from a space based platform—the Herschel/SPIRE Fourier transform spectrometer,” Ph.D. dissertation (University of Lethbridge, Department of Physics & Astronomy, 2009).

L. D. Spencer, “Spectral characterization of the Herschel SPIRE photometer,” Master’s thesis (University of Lethbridge, 2005).

Swinyard, B.

L. Spencer, D. Naylor, T. Fulton, J. Baluteau, P. Ade, and B. Swinyard, “Port compensation using the Herschel/SPIRE imaging Fourier transform spectrometer,” in Proceedings IRMMW-THz 32 (IEEE, 2007), Vol.  2, pp. 718–719.

Swinyard, B. M.

L. D. Spencer, D. A. Naylor, and B. M. Swinyard, “Performance evaluation of the Herschel/SPIRE imaging Fourier transform spectrometer through ground-based measurements,” Meas. Sci. Technol. 21, 065601 (2010).
[CrossRef]

Thériault, J.-M.

Tompkins, G. J.

D. A. Naylor, B. A. Gom, I. S. Schofield, G. J. Tompkins, and G. R. Davis, “Mach-Zehnder Fourier transform spectrometer for astronomical spectroscopy at submillimeter wavelengths,” Proc. SPIE 4855, 540–551 (2003).
[CrossRef]

Trieschmann, O.

Tucker, C.

P. A. R. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 6275OT (2006).
[CrossRef]

Weaver, S.

P. A. R. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 6275OT (2006).
[CrossRef]

Weddigen, C.

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).
[PubMed]

Appl. Opt. (8)

H. E. Revercomb, W. L. Smith, H. Buijs, H. B. Howell, and D. D. Laporte, “Radiometric calibration of IR Fourier transform spectrometers—solution to a problem with the High-Resolution Interferometer Sounder,” Appl. Opt. 27, 3210–3218 (1988).
[CrossRef] [PubMed]

J.-M. Thériault, “Beam splitter layer emission in Fourier-transform infrared interferometers,” Appl. Opt. 37, 8348–8351(1998).
[CrossRef]

J.-M. Thériault, “Modeling the responsivity and self-emission of a double-beam Fourier-transform infrared interferometer,” Appl. Opt. 38, 505–515 (1999).
[CrossRef]

B. Carli, L. Palchetti, and P. Raspollini, “Effect of beam-splitter emission in Fourier-transform emission spectroscopy,” Appl. Opt. 38, 7475–7480 (1999).
[CrossRef]

J. Schreiber, T. Blumenstock, and H. Fischer, “Effects of the self-emission of an IR Fourier-transform spectrometer on measured absorption spectra,” Appl. Opt. 35, 6203–6209 (1996).
[CrossRef] [PubMed]

O. Trieschmann and C. Weddigen, “Thermal emission from dielectric beam splitters in Michelson interferometers: a schematic analysis,” Appl. Opt. 39, 5834–5842 (2000).
[CrossRef]

F. Hase, O. Trieschmann, and C. Weddigen, “Response of Fourier-transform spectrometers to absorption and emission in a homogeneous single-layered beam splitter,” Appl. Opt. 40, 5078–5087 (2001).
[CrossRef]

J. C. Brasunas, “Phase anomalies in Fourier-transform spectrometers: an absorbing beam splitter is neither sufficient nor necessary,” Appl. Opt. 41, 2481–2487 (2002).
[CrossRef] [PubMed]

Astron. Astrophys. (2)

M. Griffin, A. Abergel, A. Abreu, P. Ade, P. André, and J. Augueres,, “The Herschel-SPIRE instrument and its in-flight performance,” Astron. Astrophys. 518, L3 (2010).
[CrossRef]

G. L. Pilbratt, J. R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A. M. Heras, C. Jewell, L. Metcalfe, S. Ott, and M. Schmidt, “Herschel space observatory,” Astron. Astrophys. 518, L1 (2010).
[CrossRef]

Infrared Phys. Technol. (1)

G. Bianchini, L. Palchetti, and B. Carli, “Vectorial combination of signals in Fourier transform spectroscopy,” Infrared Phys. Technol. 52, 19–21 (2008).
[CrossRef]

Meas. Sci. Technol. (1)

L. D. Spencer, D. A. Naylor, and B. M. Swinyard, “Performance evaluation of the Herschel/SPIRE imaging Fourier transform spectrometer through ground-based measurements,” Meas. Sci. Technol. 21, 065601 (2010).
[CrossRef]

Mon. Not. R. Astron. Soc. (1)

D. Naylor, T. Clark, A. Schultz, and G. Davis, “Atmospheric transmission at submillimetre wavelengths from Mauna Kea,” Mon. Not. R. Astron. Soc. 251, 199–202 (1991), http://adsabs.harvard.edu/full/1991MNRAS.251..199N.

Proc. SPIE (2)

D. A. Naylor, B. A. Gom, I. S. Schofield, G. J. Tompkins, and G. R. Davis, “Mach-Zehnder Fourier transform spectrometer for astronomical spectroscopy at submillimeter wavelengths,” Proc. SPIE 4855, 540–551 (2003).
[CrossRef]

P. A. R. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 6275OT (2006).
[CrossRef]

Other (11)

P. A. R. Ade, P. A. Hamilton, and D. A. Naylor, “An absolute dual beam emission spectrometer,” in Fourier Transform Spectroscopy: New Methods and Applications, OSA Technical Digest (Optical Society of America, 1999), paper FWE3.

L. Spencer, D. Naylor, T. Fulton, J. Baluteau, P. Ade, and B. Swinyard, “Port compensation using the Herschel/SPIRE imaging Fourier transform spectrometer,” in Proceedings IRMMW-THz 32 (IEEE, 2007), Vol.  2, pp. 718–719.

D. Naylor, L. Spencer, and P. Ade, “The effects of beamsplitter emission in a balanced Fourier transform spectrometer,” in Proceedings IRMMW-THz 33 (IEEE, 2008), paper 1633.

L. D. Spencer, “Imaging Fourier transform spectroscopy from a space based platform—the Herschel/SPIRE Fourier transform spectrometer,” Ph.D. dissertation (University of Lethbridge, Department of Physics & Astronomy, 2009).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).
[PubMed]

“High Frequency Structural Simulator,” 3D full-wave electromagnetic field simulation, Ansoft Corporation, http://www.ansoft.com/products/hf/hfss/.

Minco Corporation, “Minco flexible electronic heaters,” http://www.minco.com.

Epoxy Technology, “EPO-Tek-920 thermal epoxy resin,” http://www.epotek.com.

Dupont Corporation, “Delrin acetal resin,” http://www2.dupont.com.

FLIR Systems Inc., http://www.flir.com/thermography/.

L. D. Spencer, “Spectral characterization of the Herschel SPIRE photometer,” Master’s thesis (University of Lethbridge, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Diagram of a Mach–Zehnder Fourier transform spectrometer (MZ-FTS) [1].

Fig. 2
Fig. 2

SPIRE FTS interferograms with either input A dominant (top row) or input B dominant (bottom row) for output 1 (left column) and output 2 (right column). These interferograms were recorded during SPIRE PV testing and illustrate the complementary input/output of an MZ-FTS.

Fig. 3
Fig. 3

HFSS simulation results for the amplitude coefficients of reflection (circles), transmission (triangles), absorption (squares), and the phase (diamonds). The dashed curves with hollow symbols represent perfect material, and the solid curves with filled symbols represent the simulation results including imperfect material properties (i.e., absorption).

Fig. 4
Fig. 4

Simulated interferograms for the HFSS beam-splitter data. The dashed curves indicate results for a perfect structure, while the solid curves show the results including the simulation of finite metal thickness, finite conductivity, and substrate absorption.

Fig. 5
Fig. 5

Interferogram signals observed with the SPIRE FTS with one input source held at a constant temperature while the other input source was allowed to cool. The upper portion of the figure represents the SPIRE SLW array while the lower figure represents the SPIRE SSW array. As the modulation intensity of the interferogram decreases, optimal port compensation is approached. Under optimal port compensation, the even symmetry of the interferogram is lost and the intensity is seen to be nonzero.

Fig. 6
Fig. 6

Peak interferogram modulation intensity for one FTS input held constant while the other was allowed to cool for output 1 (solid curves) and output 2 (dashed curves). The circles represent the theoretical model and diamonds represent the measured observations. In both the simulated and observed data, optimal port compensation occurs at different input settings for each output port.

Fig. 7
Fig. 7

Spectral phase corresponding to the interferograms shown in Fig. 5.

Fig. 8
Fig. 8

Image (top) and schematic diagram (bottom) of the identical infrared blackbody sources used to investigate port compensation.

Fig. 9
Fig. 9

Infrared image of both of the identical blackbody sources set to 30 ° C . The image was recorded using a FLIR A320 [16] infrared camera.

Fig. 10
Fig. 10

Beam-splitter emission interferograms measured for each filter band of the MZ-FTS. The interferograms shown include: input A dominant scans (circles, vertically offset), input B dominant scans (triangles, vertically offset), and balanced interferograms with ambient beam-splitter (squares) and heated beam-splitter (diamonds) scans. Both inputs were held at the same constant temperature for the diamond and square cases. The dashed lines are shown to aid in the comparison of interferograms.

Fig. 11
Fig. 11

SPIRE interferograms corresponding to those shown in Fig. 5 following correction for the effects of port compensation.

Fig. 12
Fig. 12

SPIRE phase corresponding to those shown in Fig. 7 following correction for the effects of port compensation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( z ) = + R T E A 2 ( σ ) cos ( 2 π σ z ) d σ + + R T E B 2 ( σ ) cos ( 2 π σ z ) d σ ,
I 2 ( z ) = + + R T E A 2 ( σ ) cos ( 2 π σ z ) d σ + R T E B 2 ( σ ) cos ( 2 π σ z ) d σ ,
I 1 ( z ) = + E B 2 ( σ ) R T cos ( 2 π σ z ) d σ + + E A 2 ( σ ) R T cos [ 2 ϕ ( σ ) ] cos ( 2 π σ z ) d σ + E A 2 ( σ ) R T sin [ 2 ϕ ( σ ) ] sin ( 2 π σ z ) d σ + + E B S 1 2 ( σ ) R T cos [ ϕ ( σ ) ] cos ( 2 π σ z ) d σ + E B S 1 2 ( σ ) R T sin [ ϕ ( σ ) ] sin ( 2 π σ z ) d σ ,
I 2 ( z ) = + E A 2 ( σ ) R T cos ( 2 π σ z ) d σ + + E B 2 ( σ ) R T cos [ 2 ϕ ( σ ) ] cos ( 2 π σ z ) d σ + + E B 2 ( σ ) R T sin [ 2 ϕ ( σ ) ] sin ( 2 π σ z ) d σ + + E B S 1 2 ( σ ) R T cos [ ϕ ( σ ) ] cos ( 2 π σ z ) d σ + + E B S 1 2 ( σ ) R T sin [ ϕ ( σ ) ] sin ( 2 π σ z ) d σ ,

Metrics