Abstract

We present an alternative mixed-surface implementation of the Stratton–Chu vectorial diffraction integrals as a means to improve near-field calculations outside the computational domain of the finite-difference time-domain method. This approach, originally derived for far-field calculations, reduces the effect of phase errors and reduces storage costs compared to standard single-surface implementations performed using arithmetic and geometric means. All three methods are applied to a strongly forward-scattering sphere, which is the gold standard for similar simulations with a corresponding analytical Mie series solution. Additionally, the mixed surface is applied to an ensemble of theoretical flow cytometry calibration standards in optical gel. The near-field electromagnetic scattering produced by these or any arbitrary object, such as a cell, could be used to simulate images in a high-numerical-aperture microscope. The results show the mixed-surface implementation outperforms the standard techniques for calculating the near-field electromagnetic fields.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription