I. R. Capoglu, C. A. White, J. D. Rogers, H. Subramanian, A. Taflove, and V. Backman, “Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method,” Opt. Express 36, 1596-1598(2011).

[CrossRef]

T. Martin, “On the FDTD near-to-far-field transformations for weakly scattering objects,” IEEE Trans. Antennas Propag. 58, 2794-2795 (2010).

[CrossRef]

D. J. Robinson and J. B. Schneider, “On the use of the geometric mean in FDTD near-to-far-field transformations,” IEEE Trans. Antennas Propag. 55, 3204-3211 (2007).

[CrossRef]

J. B. Schneider and K. Abdijalilov, “Analytic field propagation TFSF boundary for FDTD problems involving planar interfaces: PECs, TE, and TM,” IEEE Trans. Antennas Propag. 54, 2531-2542 (2006).

[CrossRef]

P. Török, P. R. T. Munro, and E. E. Kriezis, “Rigorous near- to far-field transformation for vectorial diffraction calculations and its numerical implementation,” J. Opt. Soc. Am. A 23, 713-722(2006).

[CrossRef]

M. Fauver, E. Seibel, J. R. Rahn, M. G. Meyer, and F. W. Patten, “Three-dimensional imaging of single isolated cell nuclei using optical projection tomography,” Opt. Express 13, 4210-4223(2005).

[CrossRef]
[PubMed]

X. Li, A. Taflove, and V. Backman, “Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects,” IEEE Antennas Wirel. Propag. Lett. 4, 35-38 (2005).

[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256(2003).

[CrossRef]

H. R. Chuang and L. C. Kuo, “3D FDTD design analysis of a 2.4 GHz polarization-diversity printed dipole antenna with integrated balun and polarization-switching circuit for WLAN and wireless communication applications,” IEEE Trans. Microw. Theory Tech. 51, 374-381 (2003).

[CrossRef]

T. Martin and L. Pettersson, “Dispersion compensation for Huygens' sources and far-zone transformation in FDTD,” IEEE Trans. Antennas Propag. 48, 494-501 (2000).

[CrossRef]

T. Martin, “An improved near- to far-zone transformation for the finite-difference time-domain method,” IEEE Trans. Antennas Propag. 46, 1263-1271 (1998).

[CrossRef]

O. M. Ramahi, “Near- and far-field calculations in FDTD simulations using Kirchhoff surface integral representation,” IEEE Trans. Antennas Propag. 45, 753-759 (1997).

[CrossRef]

J. Y. Fang and D. W. Xeu, “Numerical errors in the computation of impedances by FDTD method and ways to eliminate them,” IEEE Microw. Guid. Wave Lett. 5, 6-8 (1995).

[CrossRef]

C. W. Penney and R. J. Luebbers, “Input impedance, radiation-pattern, and radar cross-section of spiral antennas using FDTD,” IEEE Trans. Antennas Propag. 42, 1328-1332(1994).

[CrossRef]

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A finite-difference time-domain near zone to far zone transformation [electromagnetic scattering],” IEEE Trans. Antennas Propag. 39, 429-433 (1991).

[CrossRef]

A. Taflove, K. R. Umashankar, and T. G. Jurgens, “Validation of FD-TD modeling of the radar cross-section of three-dimensional structures spanning up to nine wavelengths,” IEEE Trans. Antennas Propag. 33, 662-666 (1985).

[CrossRef]

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23, 4140-4148 (1984).

[CrossRef]
[PubMed]

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23, 4140-4148 (1984).

[CrossRef]
[PubMed]

A. Taflove and K. Umashankar, “Radar cross section of general three-dimensional scatterers,” IEEE Trans. Electromagn. Compat. EMC-25, 433-440 (1983).

[CrossRef]

K. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. EMC-24, 397-405 (1982).

[CrossRef]

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 330, 377-445(1908).

[CrossRef]

J. B. Schneider and K. Abdijalilov, “Analytic field propagation TFSF boundary for FDTD problems involving planar interfaces: PECs, TE, and TM,” IEEE Trans. Antennas Propag. 54, 2531-2542 (2006).

[CrossRef]

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23, 4140-4148 (1984).

[CrossRef]
[PubMed]

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23, 4140-4148 (1984).

[CrossRef]
[PubMed]

I. R. Capoglu, C. A. White, J. D. Rogers, H. Subramanian, A. Taflove, and V. Backman, “Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method,” Opt. Express 36, 1596-1598(2011).

[CrossRef]

X. Li, A. Taflove, and V. Backman, “Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects,” IEEE Antennas Wirel. Propag. Lett. 4, 35-38 (2005).

[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256(2003).

[CrossRef]

I. R. Capoglu, C. A. White, J. D. Rogers, H. Subramanian, A. Taflove, and V. Backman, “Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method,” Opt. Express 36, 1596-1598(2011).

[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256(2003).

[CrossRef]

H. R. Chuang and L. C. Kuo, “3D FDTD design analysis of a 2.4 GHz polarization-diversity printed dipole antenna with integrated balun and polarization-switching circuit for WLAN and wireless communication applications,” IEEE Trans. Microw. Theory Tech. 51, 374-381 (2003).

[CrossRef]

J. Y. Fang and D. W. Xeu, “Numerical errors in the computation of impedances by FDTD method and ways to eliminate them,” IEEE Microw. Guid. Wave Lett. 5, 6-8 (1995).

[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256(2003).

[CrossRef]

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23, 4140-4148 (1984).

[CrossRef]
[PubMed]

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23, 4140-4148 (1984).

[CrossRef]
[PubMed]

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23, 4140-4148 (1984).

[CrossRef]
[PubMed]

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23, 4140-4148 (1984).

[CrossRef]
[PubMed]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed., Artech House Antennas and Propagation Library (Artech House, 2005), pp. xxii, 1006.

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A finite-difference time-domain near zone to far zone transformation [electromagnetic scattering],” IEEE Trans. Antennas Propag. 39, 429-433 (1991).

[CrossRef]

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, 1991), pp. xviii, 637.

A. Taflove, K. R. Umashankar, and T. G. Jurgens, “Validation of FD-TD modeling of the radar cross-section of three-dimensional structures spanning up to nine wavelengths,” IEEE Trans. Antennas Propag. 33, 662-666 (1985).

[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256(2003).

[CrossRef]

P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16, 507-523 (2008).

[CrossRef]
[PubMed]

P. Török, P. R. T. Munro, and E. E. Kriezis, “Rigorous near- to far-field transformation for vectorial diffraction calculations and its numerical implementation,” J. Opt. Soc. Am. A 23, 713-722(2006).

[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256(2003).

[CrossRef]

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A finite-difference time-domain near zone to far zone transformation [electromagnetic scattering],” IEEE Trans. Antennas Propag. 39, 429-433 (1991).

[CrossRef]

H. R. Chuang and L. C. Kuo, “3D FDTD design analysis of a 2.4 GHz polarization-diversity printed dipole antenna with integrated balun and polarization-switching circuit for WLAN and wireless communication applications,” IEEE Trans. Microw. Theory Tech. 51, 374-381 (2003).

[CrossRef]

X. Li, A. Taflove, and V. Backman, “Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects,” IEEE Antennas Wirel. Propag. Lett. 4, 35-38 (2005).

[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256(2003).

[CrossRef]

C. W. Penney and R. J. Luebbers, “Input impedance, radiation-pattern, and radar cross-section of spiral antennas using FDTD,” IEEE Trans. Antennas Propag. 42, 1328-1332(1994).

[CrossRef]

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A finite-difference time-domain near zone to far zone transformation [electromagnetic scattering],” IEEE Trans. Antennas Propag. 39, 429-433 (1991).

[CrossRef]

T. Martin, “On the FDTD near-to-far-field transformations for weakly scattering objects,” IEEE Trans. Antennas Propag. 58, 2794-2795 (2010).

[CrossRef]

T. Martin and L. Pettersson, “Dispersion compensation for Huygens' sources and far-zone transformation in FDTD,” IEEE Trans. Antennas Propag. 48, 494-501 (2000).

[CrossRef]

T. Martin, “An improved near- to far-zone transformation for the finite-difference time-domain method,” IEEE Trans. Antennas Propag. 46, 1263-1271 (1998).

[CrossRef]

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 330, 377-445(1908).

[CrossRef]

P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16, 507-523 (2008).

[CrossRef]
[PubMed]

P. Török, P. R. T. Munro, and E. E. Kriezis, “Rigorous near- to far-field transformation for vectorial diffraction calculations and its numerical implementation,” J. Opt. Soc. Am. A 23, 713-722(2006).

[CrossRef]

C. W. Penney and R. J. Luebbers, “Input impedance, radiation-pattern, and radar cross-section of spiral antennas using FDTD,” IEEE Trans. Antennas Propag. 42, 1328-1332(1994).

[CrossRef]

T. Martin and L. Pettersson, “Dispersion compensation for Huygens' sources and far-zone transformation in FDTD,” IEEE Trans. Antennas Propag. 48, 494-501 (2000).

[CrossRef]

O. M. Ramahi, “Near- and far-field calculations in FDTD simulations using Kirchhoff surface integral representation,” IEEE Trans. Antennas Propag. 45, 753-759 (1997).

[CrossRef]

D. J. Robinson and J. B. Schneider, “On the use of the geometric mean in FDTD near-to-far-field transformations,” IEEE Trans. Antennas Propag. 55, 3204-3211 (2007).

[CrossRef]

I. R. Capoglu, C. A. White, J. D. Rogers, H. Subramanian, A. Taflove, and V. Backman, “Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method,” Opt. Express 36, 1596-1598(2011).

[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256(2003).

[CrossRef]

D. J. Robinson and J. B. Schneider, “On the use of the geometric mean in FDTD near-to-far-field transformations,” IEEE Trans. Antennas Propag. 55, 3204-3211 (2007).

[CrossRef]

J. B. Schneider and K. Abdijalilov, “Analytic field propagation TFSF boundary for FDTD problems involving planar interfaces: PECs, TE, and TM,” IEEE Trans. Antennas Propag. 54, 2531-2542 (2006).

[CrossRef]

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A finite-difference time-domain near zone to far zone transformation [electromagnetic scattering],” IEEE Trans. Antennas Propag. 39, 429-433 (1991).

[CrossRef]

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23, 4140-4148 (1984).

[CrossRef]
[PubMed]

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23, 4140-4148 (1984).

[CrossRef]
[PubMed]

I. R. Capoglu, C. A. White, J. D. Rogers, H. Subramanian, A. Taflove, and V. Backman, “Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method,” Opt. Express 36, 1596-1598(2011).

[CrossRef]

I. R. Capoglu, C. A. White, J. D. Rogers, H. Subramanian, A. Taflove, and V. Backman, “Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method,” Opt. Express 36, 1596-1598(2011).

[CrossRef]

X. Li, A. Taflove, and V. Backman, “Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects,” IEEE Antennas Wirel. Propag. Lett. 4, 35-38 (2005).

[CrossRef]

A. Taflove, K. R. Umashankar, and T. G. Jurgens, “Validation of FD-TD modeling of the radar cross-section of three-dimensional structures spanning up to nine wavelengths,” IEEE Trans. Antennas Propag. 33, 662-666 (1985).

[CrossRef]

A. Taflove and K. Umashankar, “Radar cross section of general three-dimensional scatterers,” IEEE Trans. Electromagn. Compat. EMC-25, 433-440 (1983).

[CrossRef]

K. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. EMC-24, 397-405 (1982).

[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed., Artech House Antennas and Propagation Library (Artech House, 2005), pp. xxii, 1006.

P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16, 507-523 (2008).

[CrossRef]
[PubMed]

P. Török, P. R. T. Munro, and E. E. Kriezis, “Rigorous near- to far-field transformation for vectorial diffraction calculations and its numerical implementation,” J. Opt. Soc. Am. A 23, 713-722(2006).

[CrossRef]

A. Taflove and K. Umashankar, “Radar cross section of general three-dimensional scatterers,” IEEE Trans. Electromagn. Compat. EMC-25, 433-440 (1983).

[CrossRef]

K. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. EMC-24, 397-405 (1982).

[CrossRef]

A. Taflove, K. R. Umashankar, and T. G. Jurgens, “Validation of FD-TD modeling of the radar cross-section of three-dimensional structures spanning up to nine wavelengths,” IEEE Trans. Antennas Propag. 33, 662-666 (1985).

[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256(2003).

[CrossRef]

I. R. Capoglu, C. A. White, J. D. Rogers, H. Subramanian, A. Taflove, and V. Backman, “Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method,” Opt. Express 36, 1596-1598(2011).

[CrossRef]

J. Y. Fang and D. W. Xeu, “Numerical errors in the computation of impedances by FDTD method and ways to eliminate them,” IEEE Microw. Guid. Wave Lett. 5, 6-8 (1995).

[CrossRef]

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 330, 377-445(1908).

[CrossRef]

R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651-3661(1999).

[CrossRef]

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23, 4140-4148 (1984).

[CrossRef]
[PubMed]

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23, 4140-4148 (1984).

[CrossRef]
[PubMed]

X. Li, A. Taflove, and V. Backman, “Modified FDTD near-to-far-field transformation for improved backscattering calculation of strongly forward-scattering objects,” IEEE Antennas Wirel. Propag. Lett. 4, 35-38 (2005).

[CrossRef]

Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256(2003).

[CrossRef]

J. Y. Fang and D. W. Xeu, “Numerical errors in the computation of impedances by FDTD method and ways to eliminate them,” IEEE Microw. Guid. Wave Lett. 5, 6-8 (1995).

[CrossRef]

T. Martin, “On the FDTD near-to-far-field transformations for weakly scattering objects,” IEEE Trans. Antennas Propag. 58, 2794-2795 (2010).

[CrossRef]

C. W. Penney and R. J. Luebbers, “Input impedance, radiation-pattern, and radar cross-section of spiral antennas using FDTD,” IEEE Trans. Antennas Propag. 42, 1328-1332(1994).

[CrossRef]

A. Taflove, K. R. Umashankar, and T. G. Jurgens, “Validation of FD-TD modeling of the radar cross-section of three-dimensional structures spanning up to nine wavelengths,” IEEE Trans. Antennas Propag. 33, 662-666 (1985).

[CrossRef]

T. Martin, “An improved near- to far-zone transformation for the finite-difference time-domain method,” IEEE Trans. Antennas Propag. 46, 1263-1271 (1998).

[CrossRef]

D. J. Robinson and J. B. Schneider, “On the use of the geometric mean in FDTD near-to-far-field transformations,” IEEE Trans. Antennas Propag. 55, 3204-3211 (2007).

[CrossRef]

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A finite-difference time-domain near zone to far zone transformation [electromagnetic scattering],” IEEE Trans. Antennas Propag. 39, 429-433 (1991).

[CrossRef]

O. M. Ramahi, “Near- and far-field calculations in FDTD simulations using Kirchhoff surface integral representation,” IEEE Trans. Antennas Propag. 45, 753-759 (1997).

[CrossRef]

T. Martin and L. Pettersson, “Dispersion compensation for Huygens' sources and far-zone transformation in FDTD,” IEEE Trans. Antennas Propag. 48, 494-501 (2000).

[CrossRef]

J. B. Schneider and K. Abdijalilov, “Analytic field propagation TFSF boundary for FDTD problems involving planar interfaces: PECs, TE, and TM,” IEEE Trans. Antennas Propag. 54, 2531-2542 (2006).

[CrossRef]

K. Umashankar and A. Taflove, “A novel method to analyze electromagnetic scattering of complex objects,” IEEE Trans. Electromagn. Compat. EMC-24, 397-405 (1982).

[CrossRef]

A. Taflove and K. Umashankar, “Radar cross section of general three-dimensional scatterers,” IEEE Trans. Electromagn. Compat. EMC-25, 433-440 (1983).

[CrossRef]

H. R. Chuang and L. C. Kuo, “3D FDTD design analysis of a 2.4 GHz polarization-diversity printed dipole antenna with integrated balun and polarization-switching circuit for WLAN and wireless communication applications,” IEEE Trans. Microw. Theory Tech. 51, 374-381 (2003).

[CrossRef]

I. R. Capoglu, C. A. White, J. D. Rogers, H. Subramanian, A. Taflove, and V. Backman, “Numerical simulation of partially coherent broadband optical imaging using the finite-difference time-domain method,” Opt. Express 36, 1596-1598(2011).

[CrossRef]

P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16, 507-523 (2008).

[CrossRef]
[PubMed]

M. Fauver, E. Seibel, J. R. Rahn, M. G. Meyer, and F. W. Patten, “Three-dimensional imaging of single isolated cell nuclei using optical projection tomography,” Opt. Express 13, 4210-4223(2005).

[CrossRef]
[PubMed]

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, 1991), pp. xviii, 637.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed., Artech House Antennas and Propagation Library (Artech House, 2005), pp. xxii, 1006.