J. M. Morel, A. B. Petro, and C. Sbert, “A PDE formalization of retinex theory,” IEEE Trans. Image Process. 19, 2825–2837(2010).

[CrossRef]

C. Fredembach and G. D. Finlayson, “The 1.5D sieve algorithm,” Pattern Recogn. Lett. 29, 629–636 (2008).

[CrossRef]

E. Provenzi, M. Fierro, A. Rizzi, L. De Carli, D. Gadia, and D. Marini, “Random spray Retinex: a new retinex implementation to investigate the local properties of the model,” IEEE Trans. Image Process. 16, 162–171 (2007).

[CrossRef]
[PubMed]

L. Meylan and S. Süsstrunk, “High dynamic range image rendering with a retinex-based adaptive filter,” IEEE Trans. Image Process. 15, 2820–2830 (2006).

[CrossRef]
[PubMed]

Z. Rahman, D. J. Jobson, and G. A. Woodell, “Retinex processing for automatic image enhancement,” J. Electron. Imaging 13, 100–110 (2004).

[CrossRef]

R. Sobol, “Improving the Retinex algorithm for rendering wide dynamic range photographs,” J. Electron. Imaging 13, 65–74(2004).

[CrossRef]

B. V. Funt, F. Ciurea, and J. J. McCann, “Retinex in MATLAB,” J. Electron. Imaging 13, 48–57 (2004).

[CrossRef]

R. Engbert and R. Kliegl, “Microsaccades keep the eyes’ balance during fixation,” Psychol Sci. 15, 431–436 (2004).

[CrossRef]
[PubMed]

S. D. Chen, H. Shen, and R. Topor, “An efficient algorithm for constructing Hamiltonian paths in meshes,” Parallel Comput. 28, 1293–1305 (2002).

[CrossRef]

R. Dafner, D. Cohen-Or, and Y. Matias, “Context-based space filling curves,” Comput. Graph. Forum 19, 209–218 (2000).

[CrossRef]

G. Marsaglia and W. W. Tsang, “The ziggurat method for generating random variables,” J. Stat. Software 5, 1–7 (2000).

D. Marini and A. Rizzi, “A computational approach to color adaptation effects,” Image Vis. Comput. 18, 1005–1014 (2000).

[CrossRef]

D. R. Karger, P. N. Klein, and R. E. Tarjan, “A randomized linear-time algorithm to find minimum spanning trees,” J. Assoc. Comput. Mach. 42, 321–328 (1995).

[CrossRef]

D. H. Brainard and B. A. Wandell, “Analysis of the retinex theory of color vision,” J. Opt. Soc. Am. 3, 1651–1661 (1986).

[CrossRef]

K. Barnard and B. V. Funt, “Analysis and improvement of multi-scale retinex,” in Proceedings of the Fifth Color Imaging Conference (Society for Information Systems and Technology, Society for Information Display, 1997), pp. 221–226.

D. H. Brainard and B. A. Wandell, “Analysis of the retinex theory of color vision,” J. Opt. Soc. Am. 3, 1651–1661 (1986).

[CrossRef]

S. D. Chen, H. Shen, and R. Topor, “An efficient algorithm for constructing Hamiltonian paths in meshes,” Parallel Comput. 28, 1293–1305 (2002).

[CrossRef]

B. V. Funt, F. Ciurea, and J. J. McCann, “Retinex in MATLAB,” J. Electron. Imaging 13, 48–57 (2004).

[CrossRef]

R. Dafner, D. Cohen-Or, and Y. Matias, “Context-based space filling curves,” Comput. Graph. Forum 19, 209–218 (2000).

[CrossRef]

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. (MIT Press, 2001).

G. F. Lawler and L. N. Coyle, Lectures on Contemporary Probability, Student Mathematical Library (American Mathematical Society, 2000).

R. Dafner, D. Cohen-Or, and Y. Matias, “Context-based space filling curves,” Comput. Graph. Forum 19, 209–218 (2000).

[CrossRef]

E. Provenzi, M. Fierro, A. Rizzi, L. De Carli, D. Gadia, and D. Marini, “Random spray Retinex: a new retinex implementation to investigate the local properties of the model,” IEEE Trans. Image Process. 16, 162–171 (2007).

[CrossRef]
[PubMed]

E. Provenzi, L. De Carli, A. Rizzi, and D. Marini, “Mathematical definition and analysis of the Retinex algorithm,” J. Opt. Soc. Am. A 22, 2613–2621 (2005).

[CrossRef]

R. Durret, Brownian Motion and Martingales in Analysis (Wadsworth, 1984).

R. Engbert and R. Kliegl, “Microsaccades keep the eyes’ balance during fixation,” Psychol Sci. 15, 431–436 (2004).

[CrossRef]
[PubMed]

E. Provenzi, M. Fierro, A. Rizzi, L. De Carli, D. Gadia, and D. Marini, “Random spray Retinex: a new retinex implementation to investigate the local properties of the model,” IEEE Trans. Image Process. 16, 162–171 (2007).

[CrossRef]
[PubMed]

C. Fredembach and G. D. Finlayson, “The 1.5D sieve algorithm,” Pattern Recogn. Lett. 29, 629–636 (2008).

[CrossRef]

C. Fredembach and G. D. Finlayson, “Hamiltonian path-based shadow removal,” in Proceedings of the 16th British Machine Vision Conference (British Machine Vision Association, 2005), Vol. 2, pp. 502–511.

J. A. Frankle and J. J. McCann, “Method and apparatus for lightness imaging,” U.S. patent 4,384,336 (17 May 1983).

C. Fredembach and G. D. Finlayson, “The 1.5D sieve algorithm,” Pattern Recogn. Lett. 29, 629–636 (2008).

[CrossRef]

C. Fredembach and G. D. Finlayson, “Hamiltonian path-based shadow removal,” in Proceedings of the 16th British Machine Vision Conference (British Machine Vision Association, 2005), Vol. 2, pp. 502–511.

D. Freedman, Brownian Motion and Diffusion (Holden-Day, 1971).

B. V. Funt, F. Ciurea, and J. J. McCann, “Retinex in MATLAB,” J. Electron. Imaging 13, 48–57 (2004).

[CrossRef]

K. Barnard and B. V. Funt, “Analysis and improvement of multi-scale retinex,” in Proceedings of the Fifth Color Imaging Conference (Society for Information Systems and Technology, Society for Information Display, 1997), pp. 221–226.

E. Provenzi, M. Fierro, A. Rizzi, L. De Carli, D. Gadia, and D. Marini, “Random spray Retinex: a new retinex implementation to investigate the local properties of the model,” IEEE Trans. Image Process. 16, 162–171 (2007).

[CrossRef]
[PubMed]

D. Gadia, A. Rizzi, and D. Marini, “Tuning retinex for HDR images visualization,” in Proceedings of the Second European Conference on Color in Graphics, Imaging and Vision (Society for Imaging Sciences and Technology, 2004), pp. 326–331.

J. Rudnick and G. Gaspari, Elements of the Random Walk(Cambridge University, 2004).

[CrossRef]

R. Gould, Graph Theory (Benjamin/Cummins, 1988).

Z. Rahman, D. J. Jobson, and G. A. Woodell, “Retinex processing for automatic image enhancement,” J. Electron. Imaging 13, 100–110 (2004).

[CrossRef]

D. R. Karger, P. N. Klein, and R. E. Tarjan, “A randomized linear-time algorithm to find minimum spanning trees,” J. Assoc. Comput. Mach. 42, 321–328 (1995).

[CrossRef]

D. R. Karger, P. N. Klein, and R. E. Tarjan, “A randomized linear-time algorithm to find minimum spanning trees,” J. Assoc. Comput. Mach. 42, 321–328 (1995).

[CrossRef]

R. Engbert and R. Kliegl, “Microsaccades keep the eyes’ balance during fixation,” Psychol Sci. 15, 431–436 (2004).

[CrossRef]
[PubMed]

G. F. Lawler and L. N. Coyle, Lectures on Contemporary Probability, Student Mathematical Library (American Mathematical Society, 2000).

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. (MIT Press, 2001).

B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, 1983).

E. Provenzi, M. Fierro, A. Rizzi, L. De Carli, D. Gadia, and D. Marini, “Random spray Retinex: a new retinex implementation to investigate the local properties of the model,” IEEE Trans. Image Process. 16, 162–171 (2007).

[CrossRef]
[PubMed]

E. Provenzi, L. De Carli, A. Rizzi, and D. Marini, “Mathematical definition and analysis of the Retinex algorithm,” J. Opt. Soc. Am. A 22, 2613–2621 (2005).

[CrossRef]

D. Marini and A. Rizzi, “A computational approach to color adaptation effects,” Image Vis. Comput. 18, 1005–1014 (2000).

[CrossRef]

D. Gadia, A. Rizzi, and D. Marini, “Tuning retinex for HDR images visualization,” in Proceedings of the Second European Conference on Color in Graphics, Imaging and Vision (Society for Imaging Sciences and Technology, 2004), pp. 326–331.

G. Marsaglia and W. W. Tsang, “The ziggurat method for generating random variables,” J. Stat. Software 5, 1–7 (2000).

R. Dafner, D. Cohen-Or, and Y. Matias, “Context-based space filling curves,” Comput. Graph. Forum 19, 209–218 (2000).

[CrossRef]

B. V. Funt, F. Ciurea, and J. J. McCann, “Retinex in MATLAB,” J. Electron. Imaging 13, 48–57 (2004).

[CrossRef]

J. J. McCann, “Lessons learned from Mondrians applied to real images and color gamuts,” in Proceedings of the Seventh Color Imaging Conference (Society for Information Systems and Technology, Society for Information Display, 1999), pp. 1–8.

J. A. Frankle and J. J. McCann, “Method and apparatus for lightness imaging,” U.S. patent 4,384,336 (17 May 1983).

L. Meylan and S. Süsstrunk, “High dynamic range image rendering with a retinex-based adaptive filter,” IEEE Trans. Image Process. 15, 2820–2830 (2006).

[CrossRef]
[PubMed]

J. M. Morel, A. B. Petro, and C. Sbert, “A PDE formalization of retinex theory,” IEEE Trans. Image Process. 19, 2825–2837(2010).

[CrossRef]

J. M. Morel, A. B. Petro, and C. Sbert, “A PDE formalization of retinex theory,” IEEE Trans. Image Process. 19, 2825–2837(2010).

[CrossRef]

E. Provenzi, M. Fierro, A. Rizzi, L. De Carli, D. Gadia, and D. Marini, “Random spray Retinex: a new retinex implementation to investigate the local properties of the model,” IEEE Trans. Image Process. 16, 162–171 (2007).

[CrossRef]
[PubMed]

E. Provenzi, L. De Carli, A. Rizzi, and D. Marini, “Mathematical definition and analysis of the Retinex algorithm,” J. Opt. Soc. Am. A 22, 2613–2621 (2005).

[CrossRef]

Z. Rahman, D. J. Jobson, and G. A. Woodell, “Retinex processing for automatic image enhancement,” J. Electron. Imaging 13, 100–110 (2004).

[CrossRef]

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. (MIT Press, 2001).

E. Provenzi, M. Fierro, A. Rizzi, L. De Carli, D. Gadia, and D. Marini, “Random spray Retinex: a new retinex implementation to investigate the local properties of the model,” IEEE Trans. Image Process. 16, 162–171 (2007).

[CrossRef]
[PubMed]

E. Provenzi, L. De Carli, A. Rizzi, and D. Marini, “Mathematical definition and analysis of the Retinex algorithm,” J. Opt. Soc. Am. A 22, 2613–2621 (2005).

[CrossRef]

D. Marini and A. Rizzi, “A computational approach to color adaptation effects,” Image Vis. Comput. 18, 1005–1014 (2000).

[CrossRef]

D. Gadia, A. Rizzi, and D. Marini, “Tuning retinex for HDR images visualization,” in Proceedings of the Second European Conference on Color in Graphics, Imaging and Vision (Society for Imaging Sciences and Technology, 2004), pp. 326–331.

J. Rudnick and G. Gaspari, Elements of the Random Walk(Cambridge University, 2004).

[CrossRef]

J. M. Morel, A. B. Petro, and C. Sbert, “A PDE formalization of retinex theory,” IEEE Trans. Image Process. 19, 2825–2837(2010).

[CrossRef]

M. Shelhamer, “Sequence of predictive saccades are correlated over a span of ∼2 s and produce a fractal time series,” J. Neurophysiol. 93, 2002–2011 (2005).

[CrossRef]

S. D. Chen, H. Shen, and R. Topor, “An efficient algorithm for constructing Hamiltonian paths in meshes,” Parallel Comput. 28, 1293–1305 (2002).

[CrossRef]

R. Sobol, “Improving the Retinex algorithm for rendering wide dynamic range photographs,” J. Electron. Imaging 13, 65–74(2004).

[CrossRef]

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. (MIT Press, 2001).

L. Meylan and S. Süsstrunk, “High dynamic range image rendering with a retinex-based adaptive filter,” IEEE Trans. Image Process. 15, 2820–2830 (2006).

[CrossRef]
[PubMed]

D. R. Karger, P. N. Klein, and R. E. Tarjan, “A randomized linear-time algorithm to find minimum spanning trees,” J. Assoc. Comput. Mach. 42, 321–328 (1995).

[CrossRef]

S. D. Chen, H. Shen, and R. Topor, “An efficient algorithm for constructing Hamiltonian paths in meshes,” Parallel Comput. 28, 1293–1305 (2002).

[CrossRef]

G. Marsaglia and W. W. Tsang, “The ziggurat method for generating random variables,” J. Stat. Software 5, 1–7 (2000).

D. H. Brainard and B. A. Wandell, “Analysis of the retinex theory of color vision,” J. Opt. Soc. Am. 3, 1651–1661 (1986).

[CrossRef]

Z. Rahman, D. J. Jobson, and G. A. Woodell, “Retinex processing for automatic image enhancement,” J. Electron. Imaging 13, 100–110 (2004).

[CrossRef]

S. Zeki, A Vision of the Brain (Blackwell Science, 1993).

R. Dafner, D. Cohen-Or, and Y. Matias, “Context-based space filling curves,” Comput. Graph. Forum 19, 209–218 (2000).

[CrossRef]

J. M. Morel, A. B. Petro, and C. Sbert, “A PDE formalization of retinex theory,” IEEE Trans. Image Process. 19, 2825–2837(2010).

[CrossRef]

E. Provenzi, M. Fierro, A. Rizzi, L. De Carli, D. Gadia, and D. Marini, “Random spray Retinex: a new retinex implementation to investigate the local properties of the model,” IEEE Trans. Image Process. 16, 162–171 (2007).

[CrossRef]
[PubMed]

L. Meylan and S. Süsstrunk, “High dynamic range image rendering with a retinex-based adaptive filter,” IEEE Trans. Image Process. 15, 2820–2830 (2006).

[CrossRef]
[PubMed]

D. Marini and A. Rizzi, “A computational approach to color adaptation effects,” Image Vis. Comput. 18, 1005–1014 (2000).

[CrossRef]

D. R. Karger, P. N. Klein, and R. E. Tarjan, “A randomized linear-time algorithm to find minimum spanning trees,” J. Assoc. Comput. Mach. 42, 321–328 (1995).

[CrossRef]

Z. Rahman, D. J. Jobson, and G. A. Woodell, “Retinex processing for automatic image enhancement,” J. Electron. Imaging 13, 100–110 (2004).

[CrossRef]

R. Sobol, “Improving the Retinex algorithm for rendering wide dynamic range photographs,” J. Electron. Imaging 13, 65–74(2004).

[CrossRef]

B. V. Funt, F. Ciurea, and J. J. McCann, “Retinex in MATLAB,” J. Electron. Imaging 13, 48–57 (2004).

[CrossRef]

M. Shelhamer, “Sequence of predictive saccades are correlated over a span of ∼2 s and produce a fractal time series,” J. Neurophysiol. 93, 2002–2011 (2005).

[CrossRef]

D. H. Brainard and B. A. Wandell, “Analysis of the retinex theory of color vision,” J. Opt. Soc. Am. 3, 1651–1661 (1986).

[CrossRef]

G. Marsaglia and W. W. Tsang, “The ziggurat method for generating random variables,” J. Stat. Software 5, 1–7 (2000).

S. D. Chen, H. Shen, and R. Topor, “An efficient algorithm for constructing Hamiltonian paths in meshes,” Parallel Comput. 28, 1293–1305 (2002).

[CrossRef]

C. Fredembach and G. D. Finlayson, “The 1.5D sieve algorithm,” Pattern Recogn. Lett. 29, 629–636 (2008).

[CrossRef]

R. Engbert and R. Kliegl, “Microsaccades keep the eyes’ balance during fixation,” Psychol Sci. 15, 431–436 (2004).

[CrossRef]
[PubMed]

C. Fredembach and G. D. Finlayson, “Hamiltonian path-based shadow removal,” in Proceedings of the 16th British Machine Vision Conference (British Machine Vision Association, 2005), Vol. 2, pp. 502–511.

Kodak, “Kodak lossless true color image suite,” 2004, retrieved 23 October 2010, http://r0k.us/graphics/kodak/.

R. Gould, Graph Theory (Benjamin/Cummins, 1988).

J. Rudnick and G. Gaspari, Elements of the Random Walk(Cambridge University, 2004).

[CrossRef]

G. F. Lawler and L. N. Coyle, Lectures on Contemporary Probability, Student Mathematical Library (American Mathematical Society, 2000).

B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, 1983).

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd ed. (MIT Press, 2001).

J. J. McCann, “Lessons learned from Mondrians applied to real images and color gamuts,” in Proceedings of the Seventh Color Imaging Conference (Society for Information Systems and Technology, Society for Information Display, 1999), pp. 1–8.

J. A. Frankle and J. J. McCann, “Method and apparatus for lightness imaging,” U.S. patent 4,384,336 (17 May 1983).

K. Barnard and B. V. Funt, “Analysis and improvement of multi-scale retinex,” in Proceedings of the Fifth Color Imaging Conference (Society for Information Systems and Technology, Society for Information Display, 1997), pp. 221–226.

D. Gadia, A. Rizzi, and D. Marini, “Tuning retinex for HDR images visualization,” in Proceedings of the Second European Conference on Color in Graphics, Imaging and Vision (Society for Imaging Sciences and Technology, 2004), pp. 326–331.

S. Zeki, A Vision of the Brain (Blackwell Science, 1993).

R. Durret, Brownian Motion and Martingales in Analysis (Wadsworth, 1984).

D. Freedman, Brownian Motion and Diffusion (Holden-Day, 1971).