Abstract

The effects of symmetry breaking on plasmonic properties of one nanotube and three types of nanotube dimers are numerically investigated. It is found that increasing the coaxial offset can result in redshifting of the transmission spectra and the existence of more peaks in the nanoegglike structures, while the nanocuplike structures present the opposite and more complex behaviors. We also study the combined effects of coaxial offset and gap size. The results show that the nanoegglike spectra redshift with the increase of coaxial offset and the decrease of the gap size, and the nanocuplike spectra display opposite behaviors. The asymmetrical distribution of surface charges demonstrates that the hybridization of dipolar and multipolar plasmon polaritons exist in the cross section of these structures, and the electric field adjacent to the thinner side enhances greatly. The proposed nanostructures may have great potential applications in various near-field optics.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1641–648 (2007).
    [CrossRef]
  2. M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
    [CrossRef]
  3. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
    [CrossRef] [PubMed]
  4. J. B. Lassiter,. M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. 9, 4326–4332 (2009).
    [CrossRef] [PubMed]
  5. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
    [CrossRef] [PubMed]
  6. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
    [CrossRef] [PubMed]
  7. N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9, 1255–1259 (2009).
    [CrossRef] [PubMed]
  8. M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18, 235704 (2007).
    [CrossRef]
  9. J. Ye, L. Lagae, G. Maes, G. Borghs, and P. V. Dorpe1, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express 17, 23765–23771 (2009).
    [CrossRef]
  10. Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry breaking in gold-silica-gold multilayer nanoshells,” ACS Nano 4, 1521–1528 (2010).
    [CrossRef] [PubMed]
  11. B. Yun, Z. Wang, G. Hu, and Y. Cui, “Theoretical studies on the near field properties of non-concentric core–shell nanoparticle dimmers,” Opt. Commun. 283, 2947–2952 (2010).
    [CrossRef]
  12. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  13. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
    [CrossRef]
  14. C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740–1774 (2004).
    [CrossRef]
  15. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, “Optical properties of the metal Al, Co, Cu, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef] [PubMed]
  16. Y. Wu and P. Nordlander, “Plasmon hybridization in nanoshells with a nonconcentric core,” J. Chem. Phys. 125, 124708(2006).
    [CrossRef] [PubMed]
  17. A. Moradi, “Plasmon hybridization in metallic nanotubes with a nonconcentric core,” Opt. Commun. 282, 3368–3370 (2009).
    [CrossRef]
  18. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
    [CrossRef]

2010 (2)

Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry breaking in gold-silica-gold multilayer nanoshells,” ACS Nano 4, 1521–1528 (2010).
[CrossRef] [PubMed]

B. Yun, Z. Wang, G. Hu, and Y. Cui, “Theoretical studies on the near field properties of non-concentric core–shell nanoparticle dimmers,” Opt. Commun. 283, 2947–2952 (2010).
[CrossRef]

2009 (5)

A. Moradi, “Plasmon hybridization in metallic nanotubes with a nonconcentric core,” Opt. Commun. 282, 3368–3370 (2009).
[CrossRef]

J. B. Lassiter,. M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. 9, 4326–4332 (2009).
[CrossRef] [PubMed]

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[CrossRef] [PubMed]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9, 1255–1259 (2009).
[CrossRef] [PubMed]

J. Ye, L. Lagae, G. Maes, G. Borghs, and P. V. Dorpe1, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express 17, 23765–23771 (2009).
[CrossRef]

2008 (2)

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef] [PubMed]

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[CrossRef]

2007 (2)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1641–648 (2007).
[CrossRef]

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18, 235704 (2007).
[CrossRef]

2006 (2)

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[CrossRef] [PubMed]

Y. Wu and P. Nordlander, “Plasmon hybridization in nanoshells with a nonconcentric core,” J. Chem. Phys. 125, 124708(2006).
[CrossRef] [PubMed]

2004 (2)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740–1774 (2004).
[CrossRef]

1983 (1)

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

Alexander, R. W.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Borghs, G.

Cortie, M.

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18, 235704 (2007).
[CrossRef]

Cui, Y.

B. Yun, Z. Wang, G. Hu, and Y. Cui, “Theoretical studies on the near field properties of non-concentric core–shell nanoparticle dimmers,” Opt. Commun. 283, 2947–2952 (2010).
[CrossRef]

Dorpe1, P. V.

Drezek, R. A.

Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry breaking in gold-silica-gold multilayer nanoshells,” ACS Nano 4, 1521–1528 (2010).
[CrossRef] [PubMed]

Ford, M.

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18, 235704 (2007).
[CrossRef]

Hafner, J. H.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[CrossRef] [PubMed]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Halas, N. J.

J. B. Lassiter,. M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. 9, 4326–4332 (2009).
[CrossRef] [PubMed]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9, 1255–1259 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef] [PubMed]

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1641–648 (2007).
[CrossRef]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[CrossRef] [PubMed]

Hao, F.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef] [PubMed]

Hu, G.

B. Yun, Z. Wang, G. Hu, and Y. Cui, “Theoretical studies on the near field properties of non-concentric core–shell nanoparticle dimmers,” Opt. Commun. 283, 2947–2952 (2010).
[CrossRef]

Hu, Y.

Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry breaking in gold-silica-gold multilayer nanoshells,” ACS Nano 4, 1521–1528 (2010).
[CrossRef] [PubMed]

Knight, M. W.

J. B. Lassiter,. M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. 9, 4326–4332 (2009).
[CrossRef] [PubMed]

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[CrossRef]

Lagae, L.

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1641–648 (2007).
[CrossRef]

Lassiter, B.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[CrossRef] [PubMed]

Lassiter, J. B.

J. B. Lassiter,. M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. 9, 4326–4332 (2009).
[CrossRef] [PubMed]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1641–648 (2007).
[CrossRef]

Long, L. L.

Maes, G.

Maier, S. A.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef] [PubMed]

Mirin, N. A.

J. B. Lassiter,. M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. 9, 4326–4332 (2009).
[CrossRef] [PubMed]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9, 1255–1259 (2009).
[CrossRef] [PubMed]

Moradi, A.

A. Moradi, “Plasmon hybridization in metallic nanotubes with a nonconcentric core,” Opt. Commun. 282, 3368–3370 (2009).
[CrossRef]

Nehl, C. L.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[CrossRef] [PubMed]

Noelck, S. J.

Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry breaking in gold-silica-gold multilayer nanoshells,” ACS Nano 4, 1521–1528 (2010).
[CrossRef] [PubMed]

Nordlander, P.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[CrossRef] [PubMed]

Y. Wu and P. Nordlander, “Plasmon hybridization in nanoshells with a nonconcentric core,” J. Chem. Phys. 125, 124708(2006).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740–1774 (2004).
[CrossRef]

Ordal, M. A.

Oubre, C.

C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740–1774 (2004).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Sonnefraud, Y.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef] [PubMed]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Van Dorpe, P.

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef] [PubMed]

Wang, H.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[CrossRef] [PubMed]

Wang, Z.

B. Yun, Z. Wang, G. Hu, and Y. Cui, “Theoretical studies on the near field properties of non-concentric core–shell nanoparticle dimmers,” Opt. Commun. 283, 2947–2952 (2010).
[CrossRef]

Ward, C. A.

Wu, Y.

Y. Wu and P. Nordlander, “Plasmon hybridization in nanoshells with a nonconcentric core,” J. Chem. Phys. 125, 124708(2006).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[CrossRef] [PubMed]

Ye, J.

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

Yun, B.

B. Yun, Z. Wang, G. Hu, and Y. Cui, “Theoretical studies on the near field properties of non-concentric core–shell nanoparticle dimmers,” Opt. Commun. 283, 2947–2952 (2010).
[CrossRef]

ACS Nano (2)

F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009).
[CrossRef] [PubMed]

Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry breaking in gold-silica-gold multilayer nanoshells,” ACS Nano 4, 1521–1528 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

J. Chem. Phys. (1)

Y. Wu and P. Nordlander, “Plasmon hybridization in nanoshells with a nonconcentric core,” J. Chem. Phys. 125, 124708(2006).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740–1774 (2004).
[CrossRef]

Nano Lett. (4)

J. B. Lassiter,. M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. 9, 4326–4332 (2009).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
[CrossRef] [PubMed]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9, 1255–1259 (2009).
[CrossRef] [PubMed]

Nanotechnology (1)

M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18, 235704 (2007).
[CrossRef]

Nat. Photon. (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1641–648 (2007).
[CrossRef]

New J. Phys. (1)

M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008).
[CrossRef]

Opt. Commun. (2)

B. Yun, Z. Wang, G. Hu, and Y. Cui, “Theoretical studies on the near field properties of non-concentric core–shell nanoparticle dimmers,” Opt. Commun. 283, 2947–2952 (2010).
[CrossRef]

A. Moradi, “Plasmon hybridization in metallic nanotubes with a nonconcentric core,” Opt. Commun. 282, 3368–3370 (2009).
[CrossRef]

Opt. Express (1)

Proc. Natl. Acad. Sci. USA (1)

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[CrossRef] [PubMed]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Top view of the infinitely long (a) noncoaxial nanotube, (b) noncoaxial nanotube dimers that are both inward eccentric, (c) noncoaxial nanotube dimers that are both outward eccentric, and (d) noncoaxial nanotube dimers, of which one is inward eccentric and the other is outward eccentric.

Fig. 2
Fig. 2

Transmission spectra through a noncoaxial nanotube as a function of wavelength for R = 100 nm , r = 80 nm with different core offsets of (a)  P = 0 , (b)  P = 0.2 , (c)  P = 0.4 , (d)  P = 0.6 , (e)  P = 0.8 , (f)  P = 1.2 , (g)  P = 1.4 , (h)  P = 1.5 , (i)  P = 1.6 , and (j)  P = 1.8 .

Fig. 3
Fig. 3

Electric field component E x distribution for coaxial and noncoaxial nanotubes: (a) and (b) the near field at the first and second resonance wavelengths λ = 0.41 and 0.514 μm ( P = 0 ); (c)–(f) the near field at λ = 0.4 , 0.435, 0.488, and 0.712 μm ( P = 0.8 ); (g)–(i) the near field at λ = 0.417 , 0.498, and 0.86 μm ( P = 1.2 ); (j)–(l) the near field at λ = 0.402 , 0.449, and 0.566 μm ( P = 1.8 ).

Fig. 4
Fig. 4

Transmission spectra through noncoaxial nanotube dimers as a function of wavelength, as already presented in Fig. 1b, with different core offsets: (a)  P = 0 , (b)  P = 0.2 , (c)  P = 0.4 , (d)  P = 0.6 , (e)  P = 0.8 , (f)  P = 1.2 , (g)  P = 1.4 , (h)  P = 1.5 , (i)  P = 1.6 , and (j)  P = 1.8 .

Fig. 5
Fig. 5

Transmission spectra through noncoaxial nanotube dimers as a function of wavelength, as already presented in Fig. 1c, with different coaxial offsets: (a)  P = 0 , (b)  P = 0.2 , (c)  P = 0.4 , (d)  P = 0.6 , (e)  P = 0.8 , (f)  P = 1.2 , (g)  P = 1.4 , (h)  P = 1.5 , (i)  P = 1.6 , and (j)  P = 1.8 .

Fig. 6
Fig. 6

Transmission spectra through noncoaxial nanotube dimers as a function of wavelength, as already presented in Fig. 1d, with different coaxial offsets: (a)  P = 0 , (b)  P = 0.2 , (c)  P = 0.4 , (d)  P = 0.6 , (e)  P = 0.8 , (f)  P = 1.2 , (g)  P = 1.4 , (h)  P = 1.5 , (i)  P = 1.6 , and (j)  P = 1.8 .

Fig. 7
Fig. 7

Instantaneous electric field component E x distribution of three types of dimer with P = 0.8 at different resonance peak wavelengths: both inward eccentric at (a)  λ = 0.463 μm , (b)  λ = 0.593 μm , and (c)  λ = 0.883 μm ; both outward eccentric at (d)  λ = 0.428 μm , (e)  λ = 0.479 μm , and (f)  λ = 0.697 μm ; one inward eccentric and the other one outward eccentric at (g)  λ = 0.443 μm , (h)  λ = 0.474 μm , and (i)  λ = 0.583 μm .

Fig. 8
Fig. 8

Plasmon resonance characteristics of both inward eccentric nanotube dimers with various P and G: (a) the fourth plasmon resonance peak wavelengths of the nanoegglike dimer and (b) the fourth plasmon resonance peak wavelengths of the nanocuplike dimer.

Metrics