Abstract

We study the far-field reflected diffraction pattern of an index discontinuity in a thin one-dimensional slab illuminated by a plane wave and show that a time-saving modeling technique based on plane wave expansion approaches fairly well the Maxwell-based rigorous models. This method is simple to implement, and it furthermore allows a good understanding of the optical phenomena involved in the propagation of light through the slab.

© 2011 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Cottrell, J. A. Davis, T. R. Hedman, and R. A. Lilly, “Multiple imaging phase-encoded optical elements written as programmable spatial light modulators,” Appl. Opt. 29, 2505-2509(1990).
    [CrossRef]
  2. E. Carcolé, J. Campos, and S. Bosch, “Diffraction theory of Fresnel lenses encoded in low-resolution devices,” Appl. Opt. 33, 162-174 (1994).
    [CrossRef]
  3. M. Peloux, P. Chavel, F. Goudail, and J. Taboury, “Shape of diffraction orders of centered and decentered pixelated lenses,” Appl. Opt. 49, 1054-1064 (2010).
    [CrossRef]
  4. G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” MIT Technical Report 914 (MIT Lexington Lincoln Lab, 1991).
  5. E. N. Glytsis, “Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis,” J. Opt. Soc. Am. A 19, 702-715 (2002).
    [CrossRef]
  6. W. Singer and H. Tiziani, “Born approximation for the nonparaxial scalar treatment of thick phase gratings,” Appl. Opt. 37, 1249-1255 (1998).
    [CrossRef]
  7. M. Testorf, “Perturbation theory as a unified approach to describe diffractive optical elements,” J. Opt. Soc. Am. A 16, 1115-1123 (1999).
    [CrossRef]
  8. A. v. Pfeil, F. Wyrowski, A. Drauschke, and H. Aagedal, “Analysis of optical elements with the local plane-interface approximation,” Appl. Opt. 39, 3304-3313 (2000).
    [CrossRef]
  9. H. Wang, D. Kuang, and Z. Fang, “Diffraction analysis of blazed transmission gratings with a modified extended scalar theory,” J. Opt. Soc. Am. A 25, 1253-1259 (2008).
    [CrossRef]
  10. G. Moulin, F. Goudail, P. Chavel, and D. Kuang, “Heuristic models for diffraction by some simple micro-objects,” J. Opt. Soc. Am. A 26, 767-775 (2009).
    [CrossRef]
  11. V. Kettunen, M. Kuittinen, and J. Turunen, “Effects of abrupt surface-profile transitions in nonparaxial diffractive optics,” J. Opt. Soc. Am. A 18, 1257-1260 (2001).
    [CrossRef]
  12. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), Sec. 3.10, pp. 55-60.
  13. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am 71, 811-818 (1981).
    [CrossRef]
  14. J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844-1849 (2005).
    [CrossRef]
  15. G. C. Sherman, J. J. Stamnes, and E. Lalor, “Asymptotic approximations to angular-spectrum representations,” J. Math. Phys. 17, 760-776 (1976).
    [CrossRef]

2010 (1)

2009 (1)

2008 (1)

2005 (1)

2002 (1)

2001 (1)

2000 (1)

1999 (1)

1998 (1)

1994 (1)

1990 (1)

1981 (1)

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am 71, 811-818 (1981).
[CrossRef]

1976 (1)

G. C. Sherman, J. J. Stamnes, and E. Lalor, “Asymptotic approximations to angular-spectrum representations,” J. Math. Phys. 17, 760-776 (1976).
[CrossRef]

Aagedal, H.

Bosch, S.

Campos, J.

Carcolé, E.

Chavel, P.

Cottrell, D. M.

Davis, J. A.

Drauschke, A.

Fang, Z.

Gaylord, T. K.

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am 71, 811-818 (1981).
[CrossRef]

Glytsis, E. N.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), Sec. 3.10, pp. 55-60.

Goudail, F.

Hedman, T. R.

Hugonin, J. P.

Kettunen, V.

Kuang, D.

Kuittinen, M.

Lalanne, P.

Lalor, E.

G. C. Sherman, J. J. Stamnes, and E. Lalor, “Asymptotic approximations to angular-spectrum representations,” J. Math. Phys. 17, 760-776 (1976).
[CrossRef]

Lilly, R. A.

Moharam, M. G.

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am 71, 811-818 (1981).
[CrossRef]

Moulin, G.

Peloux, M.

Pfeil, A. v.

Sherman, G. C.

G. C. Sherman, J. J. Stamnes, and E. Lalor, “Asymptotic approximations to angular-spectrum representations,” J. Math. Phys. 17, 760-776 (1976).
[CrossRef]

Singer, W.

Stamnes, J. J.

G. C. Sherman, J. J. Stamnes, and E. Lalor, “Asymptotic approximations to angular-spectrum representations,” J. Math. Phys. 17, 760-776 (1976).
[CrossRef]

Swanson, G. J.

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” MIT Technical Report 914 (MIT Lexington Lincoln Lab, 1991).

Taboury, J.

Testorf, M.

Tiziani, H.

Turunen, J.

Wang, H.

Wyrowski, F.

Appl. Opt. (5)

J. Math. Phys. (1)

G. C. Sherman, J. J. Stamnes, and E. Lalor, “Asymptotic approximations to angular-spectrum representations,” J. Math. Phys. 17, 760-776 (1976).
[CrossRef]

J. Opt. Soc. Am (1)

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am 71, 811-818 (1981).
[CrossRef]

J. Opt. Soc. Am. A (6)

Other (2)

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” MIT Technical Report 914 (MIT Lexington Lincoln Lab, 1991).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), Sec. 3.10, pp. 55-60.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics