Abstract

The equivalent ray geometry of two horizontally aligned detectors at the focal plane of the main antenna in a millimeter wave imaging system is analyzed to reveal the reason why the images from the detectors are fused as an image with a depth sense. Scanning the main antenna in both horizontal and vertical directions makes each detector perform as a camera, and the two detectors can work like a stereo camera in the millimeter wave range. However, the stereo camera geometry is different from that of the stereo camera used in the visual spectral range because the detectors’ viewing directions are diverging to each other and they are a certain distance apart. The depth sense is mainly induced by the distance between detectors. The images obtained from the detectors in the millimeter imaging system are perceived with a good depth sense. The disparities responsible for the depth sense are identified in the images.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Peichl, H. Still, S. Dill, M. Greiner, and M. Jirousek, “Imaging technologies and applications of microwave radiometry,” in Proceedings of Radar Conference (IEEE, 2004), pp. 269–273.
  2. D. A. Robertson, “Compact millimeter-wave medical imager,” Proc. SPIE 5410, 219–229 (2004).
    [CrossRef]
  3. E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984).
  4. L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4, 39–50 (2003).
    [CrossRef]
  5. V. N. Radzikhovsky, V. P. Gorishniak, S. E. Kuzmin, and B. M. Shevchuk, “16-channels millimeter-wave imaging system,” in Proceeding of Physics and Engineering of Millimeter and Sub-Millimeter Wave (IEEE, 2001), pp. 466–468.
  6. M.-C. Park and J.-Y. Son, “Stereoscopic millimeter-wave image processing for depth information,” in Proceedings of International Meeting on Information Display (IMID, 2009), pp. 1022–1024.
  7. J.-Y. Son and B. Javidi, “3-dimensional imaging systems based on multiview images,” J. Display Technol. 1, 125–140(2005).
    [CrossRef]
  8. J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying three-dimensional images,” in Proceedings of the IEEE Conference on 3-D Technologies for Imaging and Display (IEEE, 2006) pp. 502–523.
  9. T. Luthi and C. Matzler, “Stereoscopic passive millimeter wave imaging and ranging,” IEEE Trans. Microwave Theory Tech. 53, 2494–2599 (2005).
    [CrossRef]
  10. P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41, 1664–1675(1993).
    [CrossRef]
  11. J. W. Goodman, Introduction to Fourier Optics (Mcgraw-Hill, 1968).
  12. E. Hecht and A. Zajac, Optics (Addison-Wesley, 1979).
  13. J.-Y. Son, S. Yeom, D.-S. Lee, K.-H. Lee, and M.-C. Park, “A stereoscopic camera model of focal plane detector array,” J. Display Technol. 7, 281–288 (2011).
    [CrossRef]
  14. W. L. Wolfe and G. J. Zissis, The Infrared Handbook(Environmental Research Institute of Michigan, 1989).

2011

2005

J.-Y. Son and B. Javidi, “3-dimensional imaging systems based on multiview images,” J. Display Technol. 1, 125–140(2005).
[CrossRef]

T. Luthi and C. Matzler, “Stereoscopic passive millimeter wave imaging and ranging,” IEEE Trans. Microwave Theory Tech. 53, 2494–2599 (2005).
[CrossRef]

2004

D. A. Robertson, “Compact millimeter-wave medical imager,” Proc. SPIE 5410, 219–229 (2004).
[CrossRef]

2003

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4, 39–50 (2003).
[CrossRef]

1993

P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41, 1664–1675(1993).
[CrossRef]

Crowe, D. G.

E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984).

Dereniak, E. L.

E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984).

Dill, S.

M. Peichl, H. Still, S. Dill, M. Greiner, and M. Jirousek, “Imaging technologies and applications of microwave radiometry,” in Proceedings of Radar Conference (IEEE, 2004), pp. 269–273.

Goldsmith, P. F.

P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41, 1664–1675(1993).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Mcgraw-Hill, 1968).

Gorishniak, V. P.

V. N. Radzikhovsky, V. P. Gorishniak, S. E. Kuzmin, and B. M. Shevchuk, “16-channels millimeter-wave imaging system,” in Proceeding of Physics and Engineering of Millimeter and Sub-Millimeter Wave (IEEE, 2001), pp. 466–468.

Greiner, M.

M. Peichl, H. Still, S. Dill, M. Greiner, and M. Jirousek, “Imaging technologies and applications of microwave radiometry,” in Proceedings of Radar Conference (IEEE, 2004), pp. 269–273.

Hecht, E.

E. Hecht and A. Zajac, Optics (Addison-Wesley, 1979).

Hsieh, C.-T.

P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41, 1664–1675(1993).
[CrossRef]

Huguenin, G. R.

P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41, 1664–1675(1993).
[CrossRef]

Javidi, B.

J.-Y. Son and B. Javidi, “3-dimensional imaging systems based on multiview images,” J. Display Technol. 1, 125–140(2005).
[CrossRef]

J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying three-dimensional images,” in Proceedings of the IEEE Conference on 3-D Technologies for Imaging and Display (IEEE, 2006) pp. 502–523.

Jirousek, M.

M. Peichl, H. Still, S. Dill, M. Greiner, and M. Jirousek, “Imaging technologies and applications of microwave radiometry,” in Proceedings of Radar Conference (IEEE, 2004), pp. 269–273.

Kapitzky, J.

P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41, 1664–1675(1993).
[CrossRef]

Kuzmin, S. E.

V. N. Radzikhovsky, V. P. Gorishniak, S. E. Kuzmin, and B. M. Shevchuk, “16-channels millimeter-wave imaging system,” in Proceeding of Physics and Engineering of Millimeter and Sub-Millimeter Wave (IEEE, 2001), pp. 466–468.

Kwack, K.-D.

J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying three-dimensional images,” in Proceedings of the IEEE Conference on 3-D Technologies for Imaging and Display (IEEE, 2006) pp. 502–523.

Lee, D.-S.

Lee, K.-H.

Luthi, T.

T. Luthi and C. Matzler, “Stereoscopic passive millimeter wave imaging and ranging,” IEEE Trans. Microwave Theory Tech. 53, 2494–2599 (2005).
[CrossRef]

Matzler, C.

T. Luthi and C. Matzler, “Stereoscopic passive millimeter wave imaging and ranging,” IEEE Trans. Microwave Theory Tech. 53, 2494–2599 (2005).
[CrossRef]

Moffa, P.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4, 39–50 (2003).
[CrossRef]

Moore, E. L.

P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41, 1664–1675(1993).
[CrossRef]

Park, M.-C.

J.-Y. Son, S. Yeom, D.-S. Lee, K.-H. Lee, and M.-C. Park, “A stereoscopic camera model of focal plane detector array,” J. Display Technol. 7, 281–288 (2011).
[CrossRef]

M.-C. Park and J.-Y. Son, “Stereoscopic millimeter-wave image processing for depth information,” in Proceedings of International Meeting on Information Display (IMID, 2009), pp. 1022–1024.

Peichl, M.

M. Peichl, H. Still, S. Dill, M. Greiner, and M. Jirousek, “Imaging technologies and applications of microwave radiometry,” in Proceedings of Radar Conference (IEEE, 2004), pp. 269–273.

Radzikhovsky, V. N.

V. N. Radzikhovsky, V. P. Gorishniak, S. E. Kuzmin, and B. M. Shevchuk, “16-channels millimeter-wave imaging system,” in Proceeding of Physics and Engineering of Millimeter and Sub-Millimeter Wave (IEEE, 2001), pp. 466–468.

Robertson, D. A.

D. A. Robertson, “Compact millimeter-wave medical imager,” Proc. SPIE 5410, 219–229 (2004).
[CrossRef]

Shevchuk, B. M.

V. N. Radzikhovsky, V. P. Gorishniak, S. E. Kuzmin, and B. M. Shevchuk, “16-channels millimeter-wave imaging system,” in Proceeding of Physics and Engineering of Millimeter and Sub-Millimeter Wave (IEEE, 2001), pp. 466–468.

Shoucri, M.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4, 39–50 (2003).
[CrossRef]

Son, J.-Y.

J.-Y. Son, S. Yeom, D.-S. Lee, K.-H. Lee, and M.-C. Park, “A stereoscopic camera model of focal plane detector array,” J. Display Technol. 7, 281–288 (2011).
[CrossRef]

J.-Y. Son and B. Javidi, “3-dimensional imaging systems based on multiview images,” J. Display Technol. 1, 125–140(2005).
[CrossRef]

M.-C. Park and J.-Y. Son, “Stereoscopic millimeter-wave image processing for depth information,” in Proceedings of International Meeting on Information Display (IMID, 2009), pp. 1022–1024.

J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying three-dimensional images,” in Proceedings of the IEEE Conference on 3-D Technologies for Imaging and Display (IEEE, 2006) pp. 502–523.

Still, H.

M. Peichl, H. Still, S. Dill, M. Greiner, and M. Jirousek, “Imaging technologies and applications of microwave radiometry,” in Proceedings of Radar Conference (IEEE, 2004), pp. 269–273.

Wolfe, W. L.

W. L. Wolfe and G. J. Zissis, The Infrared Handbook(Environmental Research Institute of Michigan, 1989).

Yeom, S.

Yujiri, L.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4, 39–50 (2003).
[CrossRef]

Zajac, A.

E. Hecht and A. Zajac, Optics (Addison-Wesley, 1979).

Zissis, G. J.

W. L. Wolfe and G. J. Zissis, The Infrared Handbook(Environmental Research Institute of Michigan, 1989).

IEEE Microw. Mag.

L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter wave imaging,” IEEE Microw. Mag. 4, 39–50 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

T. Luthi and C. Matzler, “Stereoscopic passive millimeter wave imaging and ranging,” IEEE Trans. Microwave Theory Tech. 53, 2494–2599 (2005).
[CrossRef]

P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging systems for millimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 41, 1664–1675(1993).
[CrossRef]

J. Display Technol.

Proc. SPIE

D. A. Robertson, “Compact millimeter-wave medical imager,” Proc. SPIE 5410, 219–229 (2004).
[CrossRef]

Other

E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors (Wiley, 1984).

M. Peichl, H. Still, S. Dill, M. Greiner, and M. Jirousek, “Imaging technologies and applications of microwave radiometry,” in Proceedings of Radar Conference (IEEE, 2004), pp. 269–273.

J. W. Goodman, Introduction to Fourier Optics (Mcgraw-Hill, 1968).

E. Hecht and A. Zajac, Optics (Addison-Wesley, 1979).

W. L. Wolfe and G. J. Zissis, The Infrared Handbook(Environmental Research Institute of Michigan, 1989).

V. N. Radzikhovsky, V. P. Gorishniak, S. E. Kuzmin, and B. M. Shevchuk, “16-channels millimeter-wave imaging system,” in Proceeding of Physics and Engineering of Millimeter and Sub-Millimeter Wave (IEEE, 2001), pp. 466–468.

M.-C. Park and J.-Y. Son, “Stereoscopic millimeter-wave image processing for depth information,” in Proceedings of International Meeting on Information Display (IMID, 2009), pp. 1022–1024.

J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying three-dimensional images,” in Proceedings of the IEEE Conference on 3-D Technologies for Imaging and Display (IEEE, 2006) pp. 502–523.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle of scanning antenna to get an image frame in a millimeter wave imaging system.

Fig. 2
Fig. 2

Ray geometry of antenna in the millimeter wave imaging system.

Fig. 3
Fig. 3

Ray geometry for defining the focal plane.

Fig. 4
Fig. 4

Distribution of cross points.

Fig. 5
Fig. 5

Ray geometry showing the field of view of each detector formed by scanning.

Fig. 6
Fig. 6

Two detector images in the 8 mm wave for r D = 30 mm : (a) paper box with different temperature distributions and (b) man with an aluminum column.

Fig. 7
Fig. 7

Two detector images in the 3 mm wave: (a) outdoor scene by a camera, (b) set of two detector images of the outdoor scene at two different positions separated by 500 mm in the horizontal direction r D = 18 mm , (c) two detector images of the outdoor scene for r D = 36 mm , and (d) two detector images of the outdoor scene for r D = 50 mm .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

y = 2 a y 1 x + y 1 ( 1 + 2 a x 1 ) ,
y = x tan ( 2 β + θ ) + ( y 1 + x 1 tan ( 2 β + θ ) ) .
y = x tan ( 2 β θ ) ( y 1 + x 1 tan ( 2 β θ ) ) .
x c = 2 y 1 + { tan ( 2 β θ ) + tan ( 2 β + θ ) } x 1 tan ( 2 β θ ) + tan ( 2 β + θ ) , y c = 2 y 1 + { tan ( 2 β θ ) + tan ( 2 β + θ ) } x 1 tan ( 2 β θ ) + tan ( 2 β + θ ) tan ( 2 β θ ) { y 1 + x 1 tan ( 2 β θ ) } .
G ¯ = 2 R ¯ sin ( | θ c ξ / 2 | ) ,

Metrics