Abstract

Acousto-optical coherence tomography (AOCT) is a variant of acousto-optic imaging (also called ultrasonic modulation imaging) that makes it possible to get the z resolution with acoustic and optic continuous wave beams. We describe here theoretically the AOCT effect, and we show that the acousto-optic “tagged photons” remain coherent if they are generated within a specific z region of the sample. We quantify the z selectivity for both the “tagged photon” field and for the Lesaffre et al. [Opt. Express 17, 18211 (2009)] photorefractive signal.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kempe, M. Larionov, D. Zaslavsky, and A. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
    [CrossRef]
  2. S. Lévêque-Fort, “Three-dimensional acousto-optic imaging in biological tissues with parallel signal processing,” Appl. Opt. 40, 1029–1036 (2001).
    [CrossRef]
  3. M. Atlan, B. Forget, F. Ramaz, A. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362(2005).
    [CrossRef] [PubMed]
  4. L. Wang, S. Jacques, and X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
    [CrossRef] [PubMed]
  5. W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
    [CrossRef]
  6. L. Wang and X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
    [CrossRef]
  7. G. Yao and L. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39, 659–664 (2000).
    [CrossRef]
  8. S. Leveque, A. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
    [CrossRef]
  9. M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2484 (2003).
    [CrossRef] [PubMed]
  10. F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000).
    [CrossRef]
  11. M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007).
    [CrossRef] [PubMed]
  12. F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
    [CrossRef]
  13. L. Wang and G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977(1998).
    [CrossRef]
  14. G. Yao, S. Jiao, and L. Wang, “Frequency-swept ultrasound-modulated optical tomography in biological tissue by use of parallel detection,” Opt. Lett. 25, 734–736 (2000).
    [CrossRef]
  15. B. Forget, F. Ramaz, M. Atlan, J. Selb, and A. Boccara, “High-contrast fast Fourier transform acousto-optical tomography of phantom tissues with a frequency-chirp modulation of the ultrasound,” Appl. Opt. 42, 1379–1383 (2003).
    [CrossRef] [PubMed]
  16. M. Gross, P. Goy, B. Forget, M. Atlan, F. Ramaz, A. Boccara, and A. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
    [CrossRef] [PubMed]
  17. Y. Li, H. Zhang, C. Kim, K. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
    [CrossRef]
  18. Y. Li, P. Hemmer, C. Kim, H. Zhang, and L. Wang, “Detection of ultrasound-modulated diffuse photons using spectral-hole burning,” Opt. Express 16, 14862–14874 (2008).
    [CrossRef] [PubMed]
  19. G. Rousseau, A. Blouin, and J. Monchalin, “Ultrasound-modulated optical imaging using a high-power pulsed laser and a double-pass confocal Fabry–Perot interferometer,” Opt. Lett. 34, 3445–3447 (2009).
    [CrossRef] [PubMed]
  20. T. Murray, L. Sui, G. Maguluri, R. Roy, A. Nieva, F. Blonigen, and C. DiMarzio, “Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect,” Opt. Lett. 29, 2509–2511 (2004).
    [CrossRef] [PubMed]
  21. L. Sui, R. Roy, C. DiMarzio, and T. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
    [CrossRef] [PubMed]
  22. M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, “Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media,” Opt. Express 13, 7097–7112 (2005).
    [CrossRef] [PubMed]
  23. F. Ramaz, B. Forget, M. Atlan, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
    [CrossRef] [PubMed]
  24. M. Lesaffre, F. Jean, F. Ramaz, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042(2007).
    [CrossRef] [PubMed]
  25. A. Lev and B. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28, 1549–1551 (2003).
    [CrossRef] [PubMed]
  26. A. Lev, E. Rubanov, B. Sfez, S. Shany, and A. Foldes, “Ultrasound-modulated light tomography assessment of osteoporosis,” Opt. Lett. 30, 1692–1694 (2005).
    [CrossRef] [PubMed]
  27. S. Farahi, G. Montemezzani, A. Grabar, J. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te crystal,” Opt. Lett. 35, 1798–1800 (2010).
    [CrossRef] [PubMed]
  28. E. Bossy, L. Sui, T. Murray, and R. Roy, “Fusion of conventional ultrasound imaging and acousto-optic sensing by use of a standard pulsed-ultrasound scanner,” Opt. Lett. 30, 744–746 (2005).
    [CrossRef] [PubMed]
  29. G. Rousseau, A. Blouin, and J. Monchalin, “Ultrasound-modulated optical imaging using a powerful long pulse laser,” Opt. Express 16, 12577–12590 (2008).
    [CrossRef] [PubMed]
  30. M. Lesaffre, S. Farahi, M. Gross, P. Delaye, C. Boccara, and F. Ramaz, “Acousto-optical coherence tomography using random phase jumps on ultrasound and light,” Opt. Express 17, 18211–18218 (2009).
    [CrossRef] [PubMed]
  31. P. Lai, R. Roy, and T. Murray, “Quantitative characterization of turbid media using pressure contrast acousto-optic imaging,” Opt. Lett. 34, 2850–2852 (2009).
    [CrossRef] [PubMed]
  32. P. Delaye, L. De Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154–164(1995).
    [CrossRef]
  33. P. Delaye, A. Blouin, D. Drolet, L. de Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
    [CrossRef]
  34. L. De Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5923 (1997).
    [CrossRef]

2010 (2)

2009 (3)

2008 (3)

2007 (2)

2005 (6)

2004 (2)

2003 (3)

2001 (1)

2000 (3)

1999 (1)

1998 (1)

1997 (4)

1995 (3)

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
[CrossRef]

P. Delaye, L. De Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154–164(1995).
[CrossRef]

L. Wang, S. Jacques, and X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[CrossRef] [PubMed]

Al-Koussa, M.

Atlan, M.

Blonigen, F.

Blouin, A.

Boccara, A.

M. Lesaffre, F. Jean, F. Ramaz, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042(2007).
[CrossRef] [PubMed]

M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, “Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media,” Opt. Express 13, 7097–7112 (2005).
[CrossRef] [PubMed]

M. Atlan, B. Forget, F. Ramaz, A. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362(2005).
[CrossRef] [PubMed]

M. Gross, P. Goy, B. Forget, M. Atlan, F. Ramaz, A. Boccara, and A. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
[CrossRef] [PubMed]

F. Ramaz, B. Forget, M. Atlan, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef] [PubMed]

B. Forget, F. Ramaz, M. Atlan, J. Selb, and A. Boccara, “High-contrast fast Fourier transform acousto-optical tomography of phantom tissues with a frequency-chirp modulation of the ultrasound,” Appl. Opt. 42, 1379–1383 (2003).
[CrossRef] [PubMed]

S. Leveque, A. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

Boccara, C.

Bossy, E.

Collot, L.

De Montmorillon, L.

L. De Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5923 (1997).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, L. de Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

P. Delaye, L. De Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154–164(1995).
[CrossRef]

Delaye, P.

M. Lesaffre, S. Farahi, M. Gross, P. Delaye, C. Boccara, and F. Ramaz, “Acousto-optical coherence tomography using random phase jumps on ultrasound and light,” Opt. Express 17, 18211–18218 (2009).
[CrossRef] [PubMed]

M. Lesaffre, F. Jean, F. Ramaz, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042(2007).
[CrossRef] [PubMed]

M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, “Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media,” Opt. Express 13, 7097–7112 (2005).
[CrossRef] [PubMed]

F. Ramaz, B. Forget, M. Atlan, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef] [PubMed]

P. Delaye, A. Blouin, D. Drolet, L. de Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

L. De Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5923 (1997).
[CrossRef]

P. Delaye, L. De Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154–164(1995).
[CrossRef]

DiMarzio, C.

Drolet, D.

Dunn, A.

Farahi, S.

Foldes, A.

Forget, B.

Genack, A.

Goy, P.

Grabar, A.

Gross, M.

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
[CrossRef]

M. Lesaffre, S. Farahi, M. Gross, P. Delaye, C. Boccara, and F. Ramaz, “Acousto-optical coherence tomography using random phase jumps on ultrasound and light,” Opt. Express 17, 18211–18218 (2009).
[CrossRef] [PubMed]

M. Lesaffre, F. Jean, F. Ramaz, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042(2007).
[CrossRef] [PubMed]

M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007).
[CrossRef] [PubMed]

M. Gross, P. Goy, B. Forget, M. Atlan, F. Ramaz, A. Boccara, and A. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
[CrossRef] [PubMed]

M. Atlan, B. Forget, F. Ramaz, A. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362(2005).
[CrossRef] [PubMed]

M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, “Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media,” Opt. Express 13, 7097–7112 (2005).
[CrossRef] [PubMed]

F. Ramaz, B. Forget, M. Atlan, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef] [PubMed]

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2484 (2003).
[CrossRef] [PubMed]

F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000).
[CrossRef]

Hemmer, P.

Y. Li, H. Zhang, C. Kim, K. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Y. Li, P. Hemmer, C. Kim, H. Zhang, and L. Wang, “Detection of ultrasound-modulated diffuse photons using spectral-hole burning,” Opt. Express 16, 14862–14874 (2008).
[CrossRef] [PubMed]

Huignard, J.

Jacques, S.

Jean, F.

Jiao, S.

Joud, F.

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
[CrossRef]

Kempe, M.

Kim, C.

Y. Li, H. Zhang, C. Kim, K. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Y. Li, P. Hemmer, C. Kim, H. Zhang, and L. Wang, “Detection of ultrasound-modulated diffuse photons using spectral-hole burning,” Opt. Express 16, 14862–14874 (2008).
[CrossRef] [PubMed]

Ku, G.

Lai, P.

Larionov, M.

Launay, J.

L. De Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5923 (1997).
[CrossRef]

Le Clerc, F.

Lebec, M.

Lesaffre, M.

Leutz, W.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
[CrossRef]

Lev, A.

Leveque, S.

Lévêque-Fort, S.

Li, Y.

Y. Li, H. Zhang, C. Kim, K. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Y. Li, P. Hemmer, C. Kim, H. Zhang, and L. Wang, “Detection of ultrasound-modulated diffuse photons using spectral-hole burning,” Opt. Express 16, 14862–14874 (2008).
[CrossRef] [PubMed]

Maguluri, G.

Maret, G.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
[CrossRef]

Monchalin, J.

Montemezzani, G.

Murray, T.

Nieva, A.

Ramaz, F.

S. Farahi, G. Montemezzani, A. Grabar, J. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te crystal,” Opt. Lett. 35, 1798–1800 (2010).
[CrossRef] [PubMed]

M. Lesaffre, S. Farahi, M. Gross, P. Delaye, C. Boccara, and F. Ramaz, “Acousto-optical coherence tomography using random phase jumps on ultrasound and light,” Opt. Express 17, 18211–18218 (2009).
[CrossRef] [PubMed]

M. Lesaffre, F. Jean, F. Ramaz, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042(2007).
[CrossRef] [PubMed]

M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, “Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media,” Opt. Express 13, 7097–7112 (2005).
[CrossRef] [PubMed]

M. Atlan, B. Forget, F. Ramaz, A. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362(2005).
[CrossRef] [PubMed]

M. Gross, P. Goy, B. Forget, M. Atlan, F. Ramaz, A. Boccara, and A. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
[CrossRef] [PubMed]

F. Ramaz, B. Forget, M. Atlan, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef] [PubMed]

B. Forget, F. Ramaz, M. Atlan, J. Selb, and A. Boccara, “High-contrast fast Fourier transform acousto-optical tomography of phantom tissues with a frequency-chirp modulation of the ultrasound,” Appl. Opt. 42, 1379–1383 (2003).
[CrossRef] [PubMed]

Roosen, G.

Rousseau, G.

Roy, R.

Rubanov, E.

Saint-Jalmes, H.

Selb, J.

Sfez, B.

Shany, S.

Sui, L.

Verpillat, F.

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
[CrossRef]

Wagner, K.

Y. Li, H. Zhang, C. Kim, K. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Wang, L.

Yao, G.

Zaslavsky, D.

Zhang, H.

Y. Li, H. Zhang, C. Kim, K. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Y. Li, P. Hemmer, C. Kim, H. Zhang, and L. Wang, “Detection of ultrasound-modulated diffuse photons using spectral-hole burning,” Opt. Express 16, 14862–14874 (2008).
[CrossRef] [PubMed]

Zhao, X.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

Y. Li, H. Zhang, C. Kim, K. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

J. Appl. Phys. (1)

L. De Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5923 (1997).
[CrossRef]

J. Disp. Technol. (1)

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

P. Delaye, L. De Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154–164(1995).
[CrossRef]

Opt. Express (6)

Opt. Lett. (16)

G. Rousseau, A. Blouin, and J. Monchalin, “Ultrasound-modulated optical imaging using a high-power pulsed laser and a double-pass confocal Fabry–Perot interferometer,” Opt. Lett. 34, 3445–3447 (2009).
[CrossRef] [PubMed]

S. Farahi, G. Montemezzani, A. Grabar, J. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te crystal,” Opt. Lett. 35, 1798–1800 (2010).
[CrossRef] [PubMed]

P. Lai, R. Roy, and T. Murray, “Quantitative characterization of turbid media using pressure contrast acousto-optic imaging,” Opt. Lett. 34, 2850–2852 (2009).
[CrossRef] [PubMed]

M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007).
[CrossRef] [PubMed]

L. Wang and G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977(1998).
[CrossRef]

S. Leveque, A. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

A. Lev, E. Rubanov, B. Sfez, S. Shany, and A. Foldes, “Ultrasound-modulated light tomography assessment of osteoporosis,” Opt. Lett. 30, 1692–1694 (2005).
[CrossRef] [PubMed]

E. Bossy, L. Sui, T. Murray, and R. Roy, “Fusion of conventional ultrasound imaging and acousto-optic sensing by use of a standard pulsed-ultrasound scanner,” Opt. Lett. 30, 744–746 (2005).
[CrossRef] [PubMed]

M. Gross, P. Goy, B. Forget, M. Atlan, F. Ramaz, A. Boccara, and A. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
[CrossRef] [PubMed]

M. Atlan, B. Forget, F. Ramaz, A. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362(2005).
[CrossRef] [PubMed]

A. Lev and B. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28, 1549–1551 (2003).
[CrossRef] [PubMed]

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2484 (2003).
[CrossRef] [PubMed]

T. Murray, L. Sui, G. Maguluri, R. Roy, A. Nieva, F. Blonigen, and C. DiMarzio, “Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect,” Opt. Lett. 29, 2509–2511 (2004).
[CrossRef] [PubMed]

L. Wang, S. Jacques, and X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[CrossRef] [PubMed]

F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000).
[CrossRef]

G. Yao, S. Jiao, and L. Wang, “Frequency-swept ultrasound-modulated optical tomography in biological tissue by use of parallel detection,” Opt. Lett. 25, 734–736 (2000).
[CrossRef]

Phys. B (1)

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Light scattering along the travel path l, which involves the scattering event located in r l , m , where m is the scattering event index.

Fig. 2
Fig. 2

Order of magnitude of the various times: 1 / ω 0 , optical period; 1 / ω US , acoustic period; T Φ , acousto-optical correlation time; τ, time averaging characteristic time; T mod , characteristic time of the modulation H ( t ) ; τ PR , PR time; τ c , lock-in integration time.

Fig. 3
Fig. 3

Plot of (a) correlation function g ̲ 1 ( θ ) and (b) its square | g ̲ 1 ( θ ) | 2 . The horizontal axis units are either θ / T Φ (for time correlation) or ( z z 0 ) / Δ z with Δ z = c US T Φ (for z resolution).

Fig. 4
Fig. 4

Principle of PR detection.

Equations (57)

Equations on this page are rendered with MathJax. Learn more.

E P ( t ) = { E ̲ P e j ω 0 t } ,
E S ( t ) = { E ̲ S e j ω 0 t } ,
E S ( t ) = l E S , l ( t ) = { l a E ̲ P e j ω 0 ( t s l / c ) } ,
U PZT ( t ) = { U ̲ PZT e j ω US t } ,
P US ( r , t ) = A ( r ) U PZT ( t z / c US ) ,
P US ( r , t ) = { P ̲ US ( r ) e j ω US t } ,
P ̲ US ( r ) = A ( r ) U ̲ PZT e j ω US z / c US .
s l ( t ) = s l , 0 { δ s ̲ l e j ω US t } ,
E S ( t ) = l a E ̲ P e j ω 0 ( t s l , 0 / c ) exp [ j ω 0 c { δ s ̲ l e j ω US t } ] .
δ s ̲ l = m δ s ̲ l , m = m β l , m e j ϕ l , m .
E S ( t ) = a l E ̲ P e j ω 0 ( t s l , 0 / c ) exp [ j ω 0 c m [ δ s ̲ l , m e j ω US t ] ] .
ω 0 c m { δ s ̲ l , m e j ω US t } 1.
exp [ j ω 0 c m { δ s ̲ l , m e j ω US t } ] 1 + j ω 0 c m { δ s ̲ l , m e j ω US t } .
E S ( t ) = { [ a l E ̲ P e j ω 0 ( t s l , 0 / c ) ] × [ 1 + j ω 0 c m { δ s ̲ l , m e j ω US t } ] } .
E S ( t ) = E S , ω 0 ( t ) + E S , ω 1 ( t ) + E S , ω 1 ( t ) .
E ̲ S , ω 0 ( t ) { E ̲ S , ω 0 exp ( j ω 0 t ) } E ̲ S , ω ± 1 ( t ) { E ̲ S , ω ± 1 exp ( j ω ± 1 t ) } .
E S , ω 0 ( t ) = { a l E ̲ P e j ω 0 ( t s l , 0 / c ) } ,
E S , ω 1 ( t ) + E S , ω 1 ( t ) = { a E ̲ P e j ω 0 t × l , m [ j 2 π β l , m λ e j 2 π s l , 0 / λ [ e j ϕ l , m e j ω US t + c . c . ] ] } ,
E ̲ S , ω ± 1 ( t ) = a E ̲ P l [ j e j 2 π s l , 0 / λ × m [ 2 π β l , m λ e ± j ϕ l , m ] ] .
E P ( t ) = { E ̲ P e j ( ω 0 t + ψ P ( t ) ) } ,
U PZT ( t ) = { U ̲ PZT e j ( ω US t ψ US ( t ) ) } ,
ψ P ( t ) = ψ US ( t z 0 / c US ) ,
E ̲ P ( t ) = E ̲ P e j ψ P ( t ) ,
U ̲ PZT ( t ) = U ̲ PZT e j ψ US ( t ) P ̲ US ( r , t ) = A ( r ) U ̲ PZT e j ω US z t / c US e j ψ US ( t z / c US ) .
E ̲ S , ω ± 1 ( t ) = a E ̲ P l [ j e j 2 π s l , 0 / λ × m 2 π β l , m λ e ± j ϕ l , m e ± j ψ l , m ( t ) ] ,
ψ l , m ( t ) = ψ P ( t ) + ψ US ( t z l , m / c US ) .
T ϕ τ τ PR , T mod , τ c .
... . τ 1 τ t = t τ / 2 t = t + τ / 2 ( ... . ) d t .
E ̲ S , ω ± 1 ( t ) τ = a E ̲ P l [ j e j 2 π s l , 0 / λ × m ( 2 π β l , m λ e ± j ϕ l , m × e ± j ψ l , m ( t ) τ ) ] .
ψ l , m ( t ) 0 e ± j ψ l , m ( t ) τ 1 ,
ψ l , m ( t ) 0 , π     randomly     e ± j ψ l , m ( t ) τ 0 ,
g ̲ 1 ( θ ) = E ̲ P ( t ) E ̲ P * ( t + θ ) τ | E ̲ P ( t ) | 2 τ = e j ψ P ( t ) e j ψ P ( t + θ ) τ = e j ψ US ( t ) e j ψ US ( t + θ ) τ = U ̲ US ( t ) U ̲ US * ( t + θ ) τ | U ̲ US ( t ) | 2 τ .
E ̲ S , ω ± 1 ( t ) τ = a E ̲ P l [ j e j 2 π s l , 0 / λ × m [ g ̲ 1 ( z l , m z 0 c US ) 2 π β l , m λ e ± j ϕ l , m ] ] .
E R ( t ) = [ E ̲ R , ω 1 e j ω 1 t ] .
E D ( t ) = [ E ̲ D , ω 1 ( t ) e j ω 1 t ] .
E ̲ S , ω 1 ( y , t ) = e α ( y y 1 ) / 2 [ E ̲ S , ω 1 ( y 1 , t ) + 0 t d t E ̲ S , ω 1 ( y 1 , t ) G ( y , t t ) ] ,
G ( y , t ) = γ ( y y 1 ) τ PR e t τ PR .
E ̲ S , ω 1 ( y , t ) = e α ( y y 1 ) / 2 [ E ̲ S , ω 1 ( y 1 , t ) + 0 d t E ̲ S , ω 1 ( y 1 , t t ) G ( y , t ) ] .
E S ( y , t ) = E T ( y , t ) + E D ( y , t ) E T ( y , t ) = E T , ω 1 ( y , t ) + E T , ω 0 ( y , t ) + E T , ω + 1 ( y , t ) E D ( y , t ) = E D , ω + 1 ( y , t ) ,
E ̲ S , ω 1 ( y , t ) = E ̲ T , ω 1 ( y , t ) + E ̲ D , ω 1 ( y , t ) E ̲ T , ω 1 ( y , t ) = e α ( y y 1 ) / 2 E ̲ S , ω 1 ( y 1 , t ) E ̲ D , ω 1 ( y , t ) = e α ( y y 1 ) / 2 0 d t E ̲ S , ω 1 ( y 1 , t t ) G ( y , t ) .
S PD ( t ) = c . c . + d x d z | E ̲ S ( x , y 2 , z , t ) | 2 ,
S PD ( t ) = c . c . + d x d z { | E ̲ T ( x , y 2 , z , t ) | 2 + | E ̲ D ( x , y 2 , z , t ) | 2 + ( E ̲ T ( x , y 2 , z , t ) E ̲ D * ( x , y 2 , z , t ) ) } .
S PD ( t ) = c . c . + d x d z E ̲ T , ω 1 ( x , y 2 , z , t ) E ̲ D , ω 1 * ( x , y 2 , z , t ) .
S PD ( t ) = c . c . + e α ( y 2 y 1 ) d x d z E ̲ S , ω 1 ( x , y 1 , z , t ) × 0 d t E ̲ S , ω 1 * ( x , y 1 , z , t t ) G * ( y 2 , t ) .
S PD ( t ) τ = c . c . + e α ( y 2 y 1 ) | a E ̲ p | 2 d x d z [ l j e j 2 π s l , 0 / λ × m 2 π β l , m λ g ̲ 1 ( z 0 z l , m v US ) e j ϕ l , m ] × [ 0 d t G * ( y 2 , t ) × ( l j e 2 j π s l , 0 / λ × m 2 π β l , m λ g ̲ 1 * ( z 0 z l , m v US ) e j ϕ l , m ) ] .
S PD ( t ) τ = c . c . + e α ( y 2 y 1 ) | 2 π a E ̲ p λ | 2 d x d z × l m [ β l , m g ̲ 1 ( z 0 z l , m c US ) 0 d t G * ( y 2 , t ) × m β l , m g ̲ 1 * ( z 0 z l , m c US ) e j ( ϕ l , m ϕ l , m ) ] .
S PD ( t ) τ = c . c . + e α ( y 2 y 1 ) | 2 π a E ̲ p λ | 2 0 d t G * ( y 2 , t ) d x d z l m m     with     z l , m z l , m < λ US [ β l , m β l , m e j ( ϕ l , m ϕ l , m ) g ̲ 1 ( z 0 z l , m c US ) g ̲ 1 * ( z 0 z l , m c US ) ] .
S PD ( t ) τ = c . c . + e α ( y 2 y 1 ) | 2 π a E ̲ p λ | 2 0 d t G * ( y 2 , t ) d x d z l m β l , m 2 | g ̲ 1 ( z 0 z l , m c US ) | 2 × m     with     z l , m z l , m < λ US e j ( ϕ l , m ϕ l , m ) .
H US ( t ) = + 1 for 0 t / T mod r H US ( t ) = 1 for r < t / T mod 1 .
U ̲ PZT ( t ) U ̲ PZT ( t ) = H US ( t ) U ̲ PZT ( t ) .
E ̲ S , ω 1 ( t ) E ̲ S , ω 1 ( t ) = H ( t ) E ̲ S , ω 1 ( t ) ,
E ̲ D , ω 1 ( y , t ) = e α ( y y 1 ) / 2 0 d t [ H ( t t ) × E ̲ S , ω 1 ( y 1 , t t ) G ( y , t ) ] .
S PD ( t ) = c . c . + e α ( y 2 y 1 ) d x d z [ H ( t ) E ̲ S , ω 1 ( x , y 2 , z , t ) 0 d t H ( t t ) E ̲ S , ω 1 * ( x , y 2 , z , t t ) G * ( y 2 , t ) ] .
S PD ( t ) τ = c . c . + e α ( y 2 y 1 ) | 2 π a E ̲ p λ | 2 H ( t ) 0 d t H ( t t ) G * ( y 2 , t ) d x d z l m [ β l , m 2 | g ̲ 1 ( z 0 z l , m c US ) | 2 × m / z l , m z l , m < λ US e j ( ϕ l , m ϕ l , m ) ] .
0 d t H ( t t ) G * ( y 2 , t ) = [ 1 T PR 0 T PR d t H ( t t ) ] × [ 0 d t G * ( y 2 , t ) ] = ( 1 2 r ) γ ( y 2 y 1 ) .
S PD ( t ) τ c . c + e α ( y 2 y 1 ) | 2 π a E ̲ p λ | 2 H ( t ) ( 1 2 r ) γ ( y 2 y 1 ) × d x d z l m β l , m 2 | g ̲ 1 ( z 0 z l , m c US ) | 2 × m / z l , m z l , m < λ US e j ( ϕ l , m ϕ l , m ) .
S PD ( t ) = ( 1 2 r ) H ( t ) | E ̲ p | 2 γ ( y 2 y 1 ) e α ( y 2 y 1 ) d x d z l m [ β l , m 2 | g ̲ 1 ( z 0 z l , m c US ) | 2 m     with     z l , m z l , m < λ US ( e j ( ϕ l , m ϕ l , m ) + c . c . ) ] .

Metrics