Abstract

Acousto-optical coherence tomography (AOCT) is a variant of acousto-optic imaging (also called ultrasonic modulation imaging) that makes it possible to get the z resolution with acoustic and optic continuous wave beams. We describe here theoretically the AOCT effect, and we show that the acousto-optic “tagged photons” remain coherent if they are generated within a specific z region of the sample. We quantify the z selectivity for both the “tagged photon” field and for the Lesaffre et al. [Opt. Express 17, 18211 (2009)] photorefractive signal.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kempe, M. Larionov, D. Zaslavsky, and A. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
    [CrossRef]
  2. S. Lévêque-Fort, “Three-dimensional acousto-optic imaging in biological tissues with parallel signal processing,” Appl. Opt. 40, 1029–1036 (2001).
    [CrossRef]
  3. M. Atlan, B. Forget, F. Ramaz, A. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362(2005).
    [CrossRef] [PubMed]
  4. L. Wang, S. Jacques, and X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
    [CrossRef] [PubMed]
  5. W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
    [CrossRef]
  6. L. Wang and X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
    [CrossRef]
  7. G. Yao and L. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39, 659–664 (2000).
    [CrossRef]
  8. S. Leveque, A. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
    [CrossRef]
  9. M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2484 (2003).
    [CrossRef] [PubMed]
  10. F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000).
    [CrossRef]
  11. M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007).
    [CrossRef] [PubMed]
  12. F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
    [CrossRef]
  13. L. Wang and G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977(1998).
    [CrossRef]
  14. G. Yao, S. Jiao, and L. Wang, “Frequency-swept ultrasound-modulated optical tomography in biological tissue by use of parallel detection,” Opt. Lett. 25, 734–736 (2000).
    [CrossRef]
  15. B. Forget, F. Ramaz, M. Atlan, J. Selb, and A. Boccara, “High-contrast fast Fourier transform acousto-optical tomography of phantom tissues with a frequency-chirp modulation of the ultrasound,” Appl. Opt. 42, 1379–1383 (2003).
    [CrossRef] [PubMed]
  16. M. Gross, P. Goy, B. Forget, M. Atlan, F. Ramaz, A. Boccara, and A. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
    [CrossRef] [PubMed]
  17. Y. Li, H. Zhang, C. Kim, K. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
    [CrossRef]
  18. Y. Li, P. Hemmer, C. Kim, H. Zhang, and L. Wang, “Detection of ultrasound-modulated diffuse photons using spectral-hole burning,” Opt. Express 16, 14862–14874 (2008).
    [CrossRef] [PubMed]
  19. G. Rousseau, A. Blouin, and J. Monchalin, “Ultrasound-modulated optical imaging using a high-power pulsed laser and a double-pass confocal Fabry–Perot interferometer,” Opt. Lett. 34, 3445–3447 (2009).
    [CrossRef] [PubMed]
  20. T. Murray, L. Sui, G. Maguluri, R. Roy, A. Nieva, F. Blonigen, and C. DiMarzio, “Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect,” Opt. Lett. 29, 2509–2511 (2004).
    [CrossRef] [PubMed]
  21. L. Sui, R. Roy, C. DiMarzio, and T. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
    [CrossRef] [PubMed]
  22. M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, “Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media,” Opt. Express 13, 7097–7112 (2005).
    [CrossRef] [PubMed]
  23. F. Ramaz, B. Forget, M. Atlan, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
    [CrossRef] [PubMed]
  24. M. Lesaffre, F. Jean, F. Ramaz, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042(2007).
    [CrossRef] [PubMed]
  25. A. Lev and B. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28, 1549–1551 (2003).
    [CrossRef] [PubMed]
  26. A. Lev, E. Rubanov, B. Sfez, S. Shany, and A. Foldes, “Ultrasound-modulated light tomography assessment of osteoporosis,” Opt. Lett. 30, 1692–1694 (2005).
    [CrossRef] [PubMed]
  27. S. Farahi, G. Montemezzani, A. Grabar, J. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te crystal,” Opt. Lett. 35, 1798–1800 (2010).
    [CrossRef] [PubMed]
  28. E. Bossy, L. Sui, T. Murray, and R. Roy, “Fusion of conventional ultrasound imaging and acousto-optic sensing by use of a standard pulsed-ultrasound scanner,” Opt. Lett. 30, 744–746 (2005).
    [CrossRef] [PubMed]
  29. G. Rousseau, A. Blouin, and J. Monchalin, “Ultrasound-modulated optical imaging using a powerful long pulse laser,” Opt. Express 16, 12577–12590 (2008).
    [CrossRef] [PubMed]
  30. M. Lesaffre, S. Farahi, M. Gross, P. Delaye, C. Boccara, and F. Ramaz, “Acousto-optical coherence tomography using random phase jumps on ultrasound and light,” Opt. Express 17, 18211–18218 (2009).
    [CrossRef] [PubMed]
  31. P. Lai, R. Roy, and T. Murray, “Quantitative characterization of turbid media using pressure contrast acousto-optic imaging,” Opt. Lett. 34, 2850–2852 (2009).
    [CrossRef] [PubMed]
  32. P. Delaye, L. De Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154–164(1995).
    [CrossRef]
  33. P. Delaye, A. Blouin, D. Drolet, L. de Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
    [CrossRef]
  34. L. De Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5923 (1997).
    [CrossRef]

2010

2009

2008

2007

2005

2004

2003

2001

2000

1999

1998

1997

1995

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
[CrossRef]

P. Delaye, L. De Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154–164(1995).
[CrossRef]

L. Wang, S. Jacques, and X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[CrossRef] [PubMed]

Al-Koussa, M.

Atlan, M.

Blonigen, F.

Blouin, A.

Boccara, A.

M. Lesaffre, F. Jean, F. Ramaz, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042(2007).
[CrossRef] [PubMed]

M. Atlan, B. Forget, F. Ramaz, A. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362(2005).
[CrossRef] [PubMed]

M. Gross, P. Goy, B. Forget, M. Atlan, F. Ramaz, A. Boccara, and A. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
[CrossRef] [PubMed]

M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, “Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media,” Opt. Express 13, 7097–7112 (2005).
[CrossRef] [PubMed]

F. Ramaz, B. Forget, M. Atlan, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef] [PubMed]

B. Forget, F. Ramaz, M. Atlan, J. Selb, and A. Boccara, “High-contrast fast Fourier transform acousto-optical tomography of phantom tissues with a frequency-chirp modulation of the ultrasound,” Appl. Opt. 42, 1379–1383 (2003).
[CrossRef] [PubMed]

S. Leveque, A. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

Boccara, C.

Bossy, E.

Collot, L.

De Montmorillon, L.

L. De Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5923 (1997).
[CrossRef]

P. Delaye, A. Blouin, D. Drolet, L. de Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

P. Delaye, L. De Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154–164(1995).
[CrossRef]

Delaye, P.

M. Lesaffre, S. Farahi, M. Gross, P. Delaye, C. Boccara, and F. Ramaz, “Acousto-optical coherence tomography using random phase jumps on ultrasound and light,” Opt. Express 17, 18211–18218 (2009).
[CrossRef] [PubMed]

M. Lesaffre, F. Jean, F. Ramaz, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042(2007).
[CrossRef] [PubMed]

M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, “Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media,” Opt. Express 13, 7097–7112 (2005).
[CrossRef] [PubMed]

F. Ramaz, B. Forget, M. Atlan, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef] [PubMed]

P. Delaye, A. Blouin, D. Drolet, L. de Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997).
[CrossRef]

L. De Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5923 (1997).
[CrossRef]

P. Delaye, L. De Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154–164(1995).
[CrossRef]

DiMarzio, C.

Drolet, D.

Dunn, A.

Farahi, S.

Foldes, A.

Forget, B.

Genack, A.

Goy, P.

Grabar, A.

Gross, M.

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
[CrossRef]

M. Lesaffre, S. Farahi, M. Gross, P. Delaye, C. Boccara, and F. Ramaz, “Acousto-optical coherence tomography using random phase jumps on ultrasound and light,” Opt. Express 17, 18211–18218 (2009).
[CrossRef] [PubMed]

M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007).
[CrossRef] [PubMed]

M. Lesaffre, F. Jean, F. Ramaz, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042(2007).
[CrossRef] [PubMed]

M. Atlan, B. Forget, F. Ramaz, A. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362(2005).
[CrossRef] [PubMed]

M. Gross, P. Goy, B. Forget, M. Atlan, F. Ramaz, A. Boccara, and A. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
[CrossRef] [PubMed]

M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, “Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media,” Opt. Express 13, 7097–7112 (2005).
[CrossRef] [PubMed]

F. Ramaz, B. Forget, M. Atlan, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef] [PubMed]

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2484 (2003).
[CrossRef] [PubMed]

F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000).
[CrossRef]

Hemmer, P.

Y. Li, H. Zhang, C. Kim, K. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Y. Li, P. Hemmer, C. Kim, H. Zhang, and L. Wang, “Detection of ultrasound-modulated diffuse photons using spectral-hole burning,” Opt. Express 16, 14862–14874 (2008).
[CrossRef] [PubMed]

Huignard, J.

Jacques, S.

Jean, F.

Jiao, S.

Joud, F.

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
[CrossRef]

Kempe, M.

Kim, C.

Y. Li, P. Hemmer, C. Kim, H. Zhang, and L. Wang, “Detection of ultrasound-modulated diffuse photons using spectral-hole burning,” Opt. Express 16, 14862–14874 (2008).
[CrossRef] [PubMed]

Y. Li, H. Zhang, C. Kim, K. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Ku, G.

Lai, P.

Larionov, M.

Launay, J.

L. De Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5923 (1997).
[CrossRef]

Le Clerc, F.

Lebec, M.

Lesaffre, M.

Leutz, W.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
[CrossRef]

Lev, A.

Leveque, S.

Lévêque-Fort, S.

Li, Y.

Y. Li, P. Hemmer, C. Kim, H. Zhang, and L. Wang, “Detection of ultrasound-modulated diffuse photons using spectral-hole burning,” Opt. Express 16, 14862–14874 (2008).
[CrossRef] [PubMed]

Y. Li, H. Zhang, C. Kim, K. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Maguluri, G.

Maret, G.

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
[CrossRef]

Monchalin, J.

Montemezzani, G.

Murray, T.

Nieva, A.

Ramaz, F.

S. Farahi, G. Montemezzani, A. Grabar, J. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te crystal,” Opt. Lett. 35, 1798–1800 (2010).
[CrossRef] [PubMed]

M. Lesaffre, S. Farahi, M. Gross, P. Delaye, C. Boccara, and F. Ramaz, “Acousto-optical coherence tomography using random phase jumps on ultrasound and light,” Opt. Express 17, 18211–18218 (2009).
[CrossRef] [PubMed]

M. Lesaffre, F. Jean, F. Ramaz, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042(2007).
[CrossRef] [PubMed]

M. Atlan, B. Forget, F. Ramaz, A. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362(2005).
[CrossRef] [PubMed]

M. Gross, P. Goy, B. Forget, M. Atlan, F. Ramaz, A. Boccara, and A. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
[CrossRef] [PubMed]

M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, “Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media,” Opt. Express 13, 7097–7112 (2005).
[CrossRef] [PubMed]

F. Ramaz, B. Forget, M. Atlan, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004).
[CrossRef] [PubMed]

B. Forget, F. Ramaz, M. Atlan, J. Selb, and A. Boccara, “High-contrast fast Fourier transform acousto-optical tomography of phantom tissues with a frequency-chirp modulation of the ultrasound,” Appl. Opt. 42, 1379–1383 (2003).
[CrossRef] [PubMed]

Roosen, G.

Rousseau, G.

Roy, R.

Rubanov, E.

Saint-Jalmes, H.

Selb, J.

Sfez, B.

Shany, S.

Sui, L.

Verpillat, F.

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
[CrossRef]

Wagner, K.

Y. Li, H. Zhang, C. Kim, K. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Wang, L.

Yao, G.

Zaslavsky, D.

Zhang, H.

Y. Li, P. Hemmer, C. Kim, H. Zhang, and L. Wang, “Detection of ultrasound-modulated diffuse photons using spectral-hole burning,” Opt. Express 16, 14862–14874 (2008).
[CrossRef] [PubMed]

Y. Li, H. Zhang, C. Kim, K. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Zhao, X.

Appl. Opt.

Appl. Phys. Lett.

Y. Li, H. Zhang, C. Kim, K. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

J. Appl. Phys.

L. De Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5923 (1997).
[CrossRef]

J. Disp. Technol.

F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

P. Delaye, L. De Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154–164(1995).
[CrossRef]

Opt. Express

Opt. Lett.

G. Rousseau, A. Blouin, and J. Monchalin, “Ultrasound-modulated optical imaging using a high-power pulsed laser and a double-pass confocal Fabry–Perot interferometer,” Opt. Lett. 34, 3445–3447 (2009).
[CrossRef] [PubMed]

S. Farahi, G. Montemezzani, A. Grabar, J. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te crystal,” Opt. Lett. 35, 1798–1800 (2010).
[CrossRef] [PubMed]

P. Lai, R. Roy, and T. Murray, “Quantitative characterization of turbid media using pressure contrast acousto-optic imaging,” Opt. Lett. 34, 2850–2852 (2009).
[CrossRef] [PubMed]

M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007).
[CrossRef] [PubMed]

L. Wang and G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977(1998).
[CrossRef]

S. Leveque, A. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

A. Lev, E. Rubanov, B. Sfez, S. Shany, and A. Foldes, “Ultrasound-modulated light tomography assessment of osteoporosis,” Opt. Lett. 30, 1692–1694 (2005).
[CrossRef] [PubMed]

E. Bossy, L. Sui, T. Murray, and R. Roy, “Fusion of conventional ultrasound imaging and acousto-optic sensing by use of a standard pulsed-ultrasound scanner,” Opt. Lett. 30, 744–746 (2005).
[CrossRef] [PubMed]

M. Gross, P. Goy, B. Forget, M. Atlan, F. Ramaz, A. Boccara, and A. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
[CrossRef] [PubMed]

M. Atlan, B. Forget, F. Ramaz, A. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362(2005).
[CrossRef] [PubMed]

A. Lev and B. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28, 1549–1551 (2003).
[CrossRef] [PubMed]

M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2484 (2003).
[CrossRef] [PubMed]

T. Murray, L. Sui, G. Maguluri, R. Roy, A. Nieva, F. Blonigen, and C. DiMarzio, “Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect,” Opt. Lett. 29, 2509–2511 (2004).
[CrossRef] [PubMed]

L. Wang, S. Jacques, and X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[CrossRef] [PubMed]

F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000).
[CrossRef]

G. Yao, S. Jiao, and L. Wang, “Frequency-swept ultrasound-modulated optical tomography in biological tissue by use of parallel detection,” Opt. Lett. 25, 734–736 (2000).
[CrossRef]

Phys. B

W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Light scattering along the travel path l, which involves the scattering event located in r l , m , where m is the scattering event index.

Fig. 2
Fig. 2

Order of magnitude of the various times: 1 / ω 0 , optical period; 1 / ω US , acoustic period; T Φ , acousto-optical correlation time; τ, time averaging characteristic time; T mod , characteristic time of the modulation H ( t ) ; τ PR , PR time; τ c , lock-in integration time.

Fig. 3
Fig. 3

Plot of (a) correlation function g ̲ 1 ( θ ) and (b) its square | g ̲ 1 ( θ ) | 2 . The horizontal axis units are either θ / T Φ (for time correlation) or ( z z 0 ) / Δ z with Δ z = c US T Φ (for z resolution).

Fig. 4
Fig. 4

Principle of PR detection.

Equations (57)

Equations on this page are rendered with MathJax. Learn more.

E P ( t ) = { E ̲ P e j ω 0 t } ,
E S ( t ) = { E ̲ S e j ω 0 t } ,
E S ( t ) = l E S , l ( t ) = { l a E ̲ P e j ω 0 ( t s l / c ) } ,
U PZT ( t ) = { U ̲ PZT e j ω US t } ,
P US ( r , t ) = A ( r ) U PZT ( t z / c US ) ,
P US ( r , t ) = { P ̲ US ( r ) e j ω US t } ,
P ̲ US ( r ) = A ( r ) U ̲ PZT e j ω US z / c US .
s l ( t ) = s l , 0 { δ s ̲ l e j ω US t } ,
E S ( t ) = l a E ̲ P e j ω 0 ( t s l , 0 / c ) exp [ j ω 0 c { δ s ̲ l e j ω US t } ] .
δ s ̲ l = m δ s ̲ l , m = m β l , m e j ϕ l , m .
E S ( t ) = a l E ̲ P e j ω 0 ( t s l , 0 / c ) exp [ j ω 0 c m [ δ s ̲ l , m e j ω US t ] ] .
ω 0 c m { δ s ̲ l , m e j ω US t } 1.
exp [ j ω 0 c m { δ s ̲ l , m e j ω US t } ] 1 + j ω 0 c m { δ s ̲ l , m e j ω US t } .
E S ( t ) = { [ a l E ̲ P e j ω 0 ( t s l , 0 / c ) ] × [ 1 + j ω 0 c m { δ s ̲ l , m e j ω US t } ] } .
E S ( t ) = E S , ω 0 ( t ) + E S , ω 1 ( t ) + E S , ω 1 ( t ) .
E ̲ S , ω 0 ( t ) { E ̲ S , ω 0 exp ( j ω 0 t ) } E ̲ S , ω ± 1 ( t ) { E ̲ S , ω ± 1 exp ( j ω ± 1 t ) } .
E S , ω 0 ( t ) = { a l E ̲ P e j ω 0 ( t s l , 0 / c ) } ,
E S , ω 1 ( t ) + E S , ω 1 ( t ) = { a E ̲ P e j ω 0 t × l , m [ j 2 π β l , m λ e j 2 π s l , 0 / λ [ e j ϕ l , m e j ω US t + c . c . ] ] } ,
E ̲ S , ω ± 1 ( t ) = a E ̲ P l [ j e j 2 π s l , 0 / λ × m [ 2 π β l , m λ e ± j ϕ l , m ] ] .
E P ( t ) = { E ̲ P e j ( ω 0 t + ψ P ( t ) ) } ,
U PZT ( t ) = { U ̲ PZT e j ( ω US t ψ US ( t ) ) } ,
ψ P ( t ) = ψ US ( t z 0 / c US ) ,
E ̲ P ( t ) = E ̲ P e j ψ P ( t ) ,
U ̲ PZT ( t ) = U ̲ PZT e j ψ US ( t ) P ̲ US ( r , t ) = A ( r ) U ̲ PZT e j ω US z t / c US e j ψ US ( t z / c US ) .
E ̲ S , ω ± 1 ( t ) = a E ̲ P l [ j e j 2 π s l , 0 / λ × m 2 π β l , m λ e ± j ϕ l , m e ± j ψ l , m ( t ) ] ,
ψ l , m ( t ) = ψ P ( t ) + ψ US ( t z l , m / c US ) .
T ϕ τ τ PR , T mod , τ c .
... . τ 1 τ t = t τ / 2 t = t + τ / 2 ( ... . ) d t .
E ̲ S , ω ± 1 ( t ) τ = a E ̲ P l [ j e j 2 π s l , 0 / λ × m ( 2 π β l , m λ e ± j ϕ l , m × e ± j ψ l , m ( t ) τ ) ] .
ψ l , m ( t ) 0 e ± j ψ l , m ( t ) τ 1 ,
ψ l , m ( t ) 0 , π     randomly     e ± j ψ l , m ( t ) τ 0 ,
g ̲ 1 ( θ ) = E ̲ P ( t ) E ̲ P * ( t + θ ) τ | E ̲ P ( t ) | 2 τ = e j ψ P ( t ) e j ψ P ( t + θ ) τ = e j ψ US ( t ) e j ψ US ( t + θ ) τ = U ̲ US ( t ) U ̲ US * ( t + θ ) τ | U ̲ US ( t ) | 2 τ .
E ̲ S , ω ± 1 ( t ) τ = a E ̲ P l [ j e j 2 π s l , 0 / λ × m [ g ̲ 1 ( z l , m z 0 c US ) 2 π β l , m λ e ± j ϕ l , m ] ] .
E R ( t ) = [ E ̲ R , ω 1 e j ω 1 t ] .
E D ( t ) = [ E ̲ D , ω 1 ( t ) e j ω 1 t ] .
E ̲ S , ω 1 ( y , t ) = e α ( y y 1 ) / 2 [ E ̲ S , ω 1 ( y 1 , t ) + 0 t d t E ̲ S , ω 1 ( y 1 , t ) G ( y , t t ) ] ,
G ( y , t ) = γ ( y y 1 ) τ PR e t τ PR .
E ̲ S , ω 1 ( y , t ) = e α ( y y 1 ) / 2 [ E ̲ S , ω 1 ( y 1 , t ) + 0 d t E ̲ S , ω 1 ( y 1 , t t ) G ( y , t ) ] .
E S ( y , t ) = E T ( y , t ) + E D ( y , t ) E T ( y , t ) = E T , ω 1 ( y , t ) + E T , ω 0 ( y , t ) + E T , ω + 1 ( y , t ) E D ( y , t ) = E D , ω + 1 ( y , t ) ,
E ̲ S , ω 1 ( y , t ) = E ̲ T , ω 1 ( y , t ) + E ̲ D , ω 1 ( y , t ) E ̲ T , ω 1 ( y , t ) = e α ( y y 1 ) / 2 E ̲ S , ω 1 ( y 1 , t ) E ̲ D , ω 1 ( y , t ) = e α ( y y 1 ) / 2 0 d t E ̲ S , ω 1 ( y 1 , t t ) G ( y , t ) .
S PD ( t ) = c . c . + d x d z | E ̲ S ( x , y 2 , z , t ) | 2 ,
S PD ( t ) = c . c . + d x d z { | E ̲ T ( x , y 2 , z , t ) | 2 + | E ̲ D ( x , y 2 , z , t ) | 2 + ( E ̲ T ( x , y 2 , z , t ) E ̲ D * ( x , y 2 , z , t ) ) } .
S PD ( t ) = c . c . + d x d z E ̲ T , ω 1 ( x , y 2 , z , t ) E ̲ D , ω 1 * ( x , y 2 , z , t ) .
S PD ( t ) = c . c . + e α ( y 2 y 1 ) d x d z E ̲ S , ω 1 ( x , y 1 , z , t ) × 0 d t E ̲ S , ω 1 * ( x , y 1 , z , t t ) G * ( y 2 , t ) .
S PD ( t ) τ = c . c . + e α ( y 2 y 1 ) | a E ̲ p | 2 d x d z [ l j e j 2 π s l , 0 / λ × m 2 π β l , m λ g ̲ 1 ( z 0 z l , m v US ) e j ϕ l , m ] × [ 0 d t G * ( y 2 , t ) × ( l j e 2 j π s l , 0 / λ × m 2 π β l , m λ g ̲ 1 * ( z 0 z l , m v US ) e j ϕ l , m ) ] .
S PD ( t ) τ = c . c . + e α ( y 2 y 1 ) | 2 π a E ̲ p λ | 2 d x d z × l m [ β l , m g ̲ 1 ( z 0 z l , m c US ) 0 d t G * ( y 2 , t ) × m β l , m g ̲ 1 * ( z 0 z l , m c US ) e j ( ϕ l , m ϕ l , m ) ] .
S PD ( t ) τ = c . c . + e α ( y 2 y 1 ) | 2 π a E ̲ p λ | 2 0 d t G * ( y 2 , t ) d x d z l m m     with     z l , m z l , m < λ US [ β l , m β l , m e j ( ϕ l , m ϕ l , m ) g ̲ 1 ( z 0 z l , m c US ) g ̲ 1 * ( z 0 z l , m c US ) ] .
S PD ( t ) τ = c . c . + e α ( y 2 y 1 ) | 2 π a E ̲ p λ | 2 0 d t G * ( y 2 , t ) d x d z l m β l , m 2 | g ̲ 1 ( z 0 z l , m c US ) | 2 × m     with     z l , m z l , m < λ US e j ( ϕ l , m ϕ l , m ) .
H US ( t ) = + 1 for 0 t / T mod r H US ( t ) = 1 for r < t / T mod 1 .
U ̲ PZT ( t ) U ̲ PZT ( t ) = H US ( t ) U ̲ PZT ( t ) .
E ̲ S , ω 1 ( t ) E ̲ S , ω 1 ( t ) = H ( t ) E ̲ S , ω 1 ( t ) ,
E ̲ D , ω 1 ( y , t ) = e α ( y y 1 ) / 2 0 d t [ H ( t t ) × E ̲ S , ω 1 ( y 1 , t t ) G ( y , t ) ] .
S PD ( t ) = c . c . + e α ( y 2 y 1 ) d x d z [ H ( t ) E ̲ S , ω 1 ( x , y 2 , z , t ) 0 d t H ( t t ) E ̲ S , ω 1 * ( x , y 2 , z , t t ) G * ( y 2 , t ) ] .
S PD ( t ) τ = c . c . + e α ( y 2 y 1 ) | 2 π a E ̲ p λ | 2 H ( t ) 0 d t H ( t t ) G * ( y 2 , t ) d x d z l m [ β l , m 2 | g ̲ 1 ( z 0 z l , m c US ) | 2 × m / z l , m z l , m < λ US e j ( ϕ l , m ϕ l , m ) ] .
0 d t H ( t t ) G * ( y 2 , t ) = [ 1 T PR 0 T PR d t H ( t t ) ] × [ 0 d t G * ( y 2 , t ) ] = ( 1 2 r ) γ ( y 2 y 1 ) .
S PD ( t ) τ c . c + e α ( y 2 y 1 ) | 2 π a E ̲ p λ | 2 H ( t ) ( 1 2 r ) γ ( y 2 y 1 ) × d x d z l m β l , m 2 | g ̲ 1 ( z 0 z l , m c US ) | 2 × m / z l , m z l , m < λ US e j ( ϕ l , m ϕ l , m ) .
S PD ( t ) = ( 1 2 r ) H ( t ) | E ̲ p | 2 γ ( y 2 y 1 ) e α ( y 2 y 1 ) d x d z l m [ β l , m 2 | g ̲ 1 ( z 0 z l , m c US ) | 2 m     with     z l , m z l , m < λ US ( e j ( ϕ l , m ϕ l , m ) + c . c . ) ] .

Metrics